From e4765a46833baff1dd7465c4cf50e947de7e8f21 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng <meng@databricks.com> Date: Mon, 3 Aug 2015 13:59:35 -0700 Subject: [PATCH] [SPARK-9544] [MLLIB] add Python API for RFormula Add Python API for RFormula. Similar to other feature transformers in Python. This is just a thin wrapper over the Scala implementation. ericl MechCoder Author: Xiangrui Meng <meng@databricks.com> Closes #7879 from mengxr/SPARK-9544 and squashes the following commits: 3d5ff03 [Xiangrui Meng] add an doctest for . and - 5e969a5 [Xiangrui Meng] fix pydoc 1cd41f8 [Xiangrui Meng] organize imports 3c18b10 [Xiangrui Meng] add Python API for RFormula --- .../apache/spark/ml/feature/RFormula.scala | 21 ++--- python/pyspark/ml/feature.py | 85 ++++++++++++++++++- 2 files changed, 91 insertions(+), 15 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala index d1726917e4..d5360c9217 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala @@ -19,16 +19,14 @@ package org.apache.spark.ml.feature import scala.collection.mutable import scala.collection.mutable.ArrayBuffer -import scala.util.parsing.combinator.RegexParsers import org.apache.spark.annotation.Experimental -import org.apache.spark.ml.{Estimator, Model, Transformer, Pipeline, PipelineModel, PipelineStage} +import org.apache.spark.ml.{Estimator, Model, Pipeline, PipelineModel, PipelineStage, Transformer} import org.apache.spark.ml.param.{Param, ParamMap} import org.apache.spark.ml.param.shared.{HasFeaturesCol, HasLabelCol} import org.apache.spark.ml.util.Identifiable import org.apache.spark.mllib.linalg.VectorUDT import org.apache.spark.sql.DataFrame -import org.apache.spark.sql.functions._ import org.apache.spark.sql.types._ /** @@ -63,31 +61,26 @@ class RFormula(override val uid: String) extends Estimator[RFormulaModel] with R */ val formula: Param[String] = new Param(this, "formula", "R model formula") - private var parsedFormula: Option[ParsedRFormula] = None - /** * Sets the formula to use for this transformer. Must be called before use. * @group setParam * @param value an R formula in string form (e.g. "y ~ x + z") */ - def setFormula(value: String): this.type = { - parsedFormula = Some(RFormulaParser.parse(value)) - set(formula, value) - this - } + def setFormula(value: String): this.type = set(formula, value) /** @group getParam */ def getFormula: String = $(formula) /** Whether the formula specifies fitting an intercept. */ private[ml] def hasIntercept: Boolean = { - require(parsedFormula.isDefined, "Must call setFormula() first.") - parsedFormula.get.hasIntercept + require(isDefined(formula), "Formula must be defined first.") + RFormulaParser.parse($(formula)).hasIntercept } override def fit(dataset: DataFrame): RFormulaModel = { - require(parsedFormula.isDefined, "Must call setFormula() first.") - val resolvedFormula = parsedFormula.get.resolve(dataset.schema) + require(isDefined(formula), "Formula must be defined first.") + val parsedFormula = RFormulaParser.parse($(formula)) + val resolvedFormula = parsedFormula.resolve(dataset.schema) // StringType terms and terms representing interactions need to be encoded before assembly. // TODO(ekl) add support for feature interactions val encoderStages = ArrayBuffer[PipelineStage]() diff --git a/python/pyspark/ml/feature.py b/python/pyspark/ml/feature.py index 015e7a9d49..3f04c41ac5 100644 --- a/python/pyspark/ml/feature.py +++ b/python/pyspark/ml/feature.py @@ -24,7 +24,7 @@ from pyspark.mllib.common import inherit_doc __all__ = ['Binarizer', 'HashingTF', 'IDF', 'IDFModel', 'NGram', 'Normalizer', 'OneHotEncoder', 'PolynomialExpansion', 'RegexTokenizer', 'StandardScaler', 'StandardScalerModel', 'StringIndexer', 'StringIndexerModel', 'Tokenizer', 'VectorAssembler', 'VectorIndexer', - 'Word2Vec', 'Word2VecModel', 'PCA', 'PCAModel'] + 'Word2Vec', 'Word2VecModel', 'PCA', 'PCAModel', 'RFormula', 'RFormulaModel'] @inherit_doc @@ -1110,6 +1110,89 @@ class PCAModel(JavaModel): """ +@inherit_doc +class RFormula(JavaEstimator, HasFeaturesCol, HasLabelCol): + """ + .. note:: Experimental + + Implements the transforms required for fitting a dataset against an + R model formula. Currently we support a limited subset of the R + operators, including '~', '+', '-', and '.'. Also see the R formula + docs: + http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html + + >>> df = sqlContext.createDataFrame([ + ... (1.0, 1.0, "a"), + ... (0.0, 2.0, "b"), + ... (0.0, 0.0, "a") + ... ], ["y", "x", "s"]) + >>> rf = RFormula(formula="y ~ x + s") + >>> rf.fit(df).transform(df).show() + +---+---+---+---------+-----+ + | y| x| s| features|label| + +---+---+---+---------+-----+ + |1.0|1.0| a|[1.0,1.0]| 1.0| + |0.0|2.0| b|[2.0,0.0]| 0.0| + |0.0|0.0| a|[0.0,1.0]| 0.0| + +---+---+---+---------+-----+ + ... + >>> rf.fit(df, {rf.formula: "y ~ . - s"}).transform(df).show() + +---+---+---+--------+-----+ + | y| x| s|features|label| + +---+---+---+--------+-----+ + |1.0|1.0| a| [1.0]| 1.0| + |0.0|2.0| b| [2.0]| 0.0| + |0.0|0.0| a| [0.0]| 0.0| + +---+---+---+--------+-----+ + ... + """ + + # a placeholder to make it appear in the generated doc + formula = Param(Params._dummy(), "formula", "R model formula") + + @keyword_only + def __init__(self, formula=None, featuresCol="features", labelCol="label"): + """ + __init__(self, formula=None, featuresCol="features", labelCol="label") + """ + super(RFormula, self).__init__() + self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.RFormula", self.uid) + self.formula = Param(self, "formula", "R model formula") + kwargs = self.__init__._input_kwargs + self.setParams(**kwargs) + + @keyword_only + def setParams(self, formula=None, featuresCol="features", labelCol="label"): + """ + setParams(self, formula=None, featuresCol="features", labelCol="label") + Sets params for RFormula. + """ + kwargs = self.setParams._input_kwargs + return self._set(**kwargs) + + def setFormula(self, value): + """ + Sets the value of :py:attr:`formula`. + """ + self._paramMap[self.formula] = value + return self + + def getFormula(self): + """ + Gets the value of :py:attr:`formula`. + """ + return self.getOrDefault(self.formula) + + def _create_model(self, java_model): + return RFormulaModel(java_model) + + +class RFormulaModel(JavaModel): + """ + Model fitted by :py:class:`RFormula`. + """ + + if __name__ == "__main__": import doctest from pyspark.context import SparkContext -- GitLab