diff --git a/python/pyspark/ml/classification.py b/python/pyspark/ml/classification.py
index 291320f881e7c97bd6b7f82fbb55c46893a4b6d6..5978d8f4d3a014934431d38a4547eb117eddd5aa 100644
--- a/python/pyspark/ml/classification.py
+++ b/python/pyspark/ml/classification.py
@@ -347,6 +347,7 @@ class DecisionTreeClassificationModel(DecisionTreeModel):
 
 @inherit_doc
 class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasSeed,
+                             HasRawPredictionCol, HasProbabilityCol,
                              DecisionTreeParams, HasCheckpointInterval):
     """
     `http://en.wikipedia.org/wiki/Random_forest  Random Forest`
@@ -354,6 +355,7 @@ class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPred
     It supports both binary and multiclass labels, as well as both continuous and categorical
     features.
 
+    >>> import numpy
     >>> from numpy import allclose
     >>> from pyspark.mllib.linalg import Vectors
     >>> from pyspark.ml.feature import StringIndexer
@@ -368,8 +370,13 @@ class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPred
     >>> allclose(model.treeWeights, [1.0, 1.0, 1.0])
     True
     >>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
-    >>> model.transform(test0).head().prediction
+    >>> result = model.transform(test0).head()
+    >>> result.prediction
     0.0
+    >>> numpy.argmax(result.probability)
+    0
+    >>> numpy.argmax(result.rawPrediction)
+    0
     >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
     >>> model.transform(test1).head().prediction
     1.0
@@ -390,11 +397,13 @@ class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPred
 
     @keyword_only
     def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
+                 probabilityCol="probability", rawPredictionCol="rawPrediction",
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini",
                  numTrees=20, featureSubsetStrategy="auto", seed=None):
         """
         __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
+                 probabilityCol="probability", rawPredictionCol="rawPrediction", \
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \
                  numTrees=20, featureSubsetStrategy="auto", seed=None)
@@ -427,11 +436,13 @@ class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPred
 
     @keyword_only
     def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
+                  probabilityCol="probability", rawPredictionCol="rawPrediction",
                   maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                   maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None,
                   impurity="gini", numTrees=20, featureSubsetStrategy="auto"):
         """
         setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
+                 probabilityCol="probability", rawPredictionCol="rawPrediction", \
                   maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                   maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, \
                   impurity="gini", numTrees=20, featureSubsetStrategy="auto")