From dedbceec1ef33ccd88101016de969a1ef3e3e142 Mon Sep 17 00:00:00 2001 From: cody koeninger <cody@koeninger.org> Date: Wed, 29 Jun 2016 23:21:03 -0700 Subject: [PATCH] [SPARK-12177][STREAMING][KAFKA] Update KafkaDStreams to new Kafka 0.10 Consumer API ## What changes were proposed in this pull request? New Kafka consumer api for the released 0.10 version of Kafka ## How was this patch tested? Unit tests, manual tests Author: cody koeninger <cody@koeninger.org> Closes #11863 from koeninger/kafka-0.9. --- external/kafka-0-10-assembly/pom.xml | 176 +++++ external/kafka-0-10/pom.xml | 98 +++ .../kafka010/CachedKafkaConsumer.scala | 189 ++++++ .../streaming/kafka010/ConsumerStrategy.scala | 314 +++++++++ .../kafka010/DirectKafkaInputDStream.scala | 318 +++++++++ .../spark/streaming/kafka010/KafkaRDD.scala | 232 +++++++ .../kafka010/KafkaRDDPartition.scala | 45 ++ .../streaming/kafka010/KafkaTestUtils.scala | 277 ++++++++ .../spark/streaming/kafka010/KafkaUtils.scala | 175 +++++ .../streaming/kafka010/LocationStrategy.scala | 77 +++ .../streaming/kafka010/OffsetRange.scala | 153 +++++ .../streaming/kafka010/package-info.java | 21 + .../spark/streaming/kafka010/package.scala | 23 + .../kafka010/JavaConsumerStrategySuite.java | 84 +++ .../kafka010/JavaDirectKafkaStreamSuite.java | 180 ++++++ .../streaming/kafka010/JavaKafkaRDDSuite.java | 122 ++++ .../kafka010/JavaLocationStrategySuite.java | 58 ++ .../src/test/resources/log4j.properties | 28 + .../kafka010/DirectKafkaStreamSuite.scala | 612 ++++++++++++++++++ .../streaming/kafka010/KafkaRDDSuite.scala | 169 +++++ pom.xml | 2 + project/SparkBuild.scala | 12 +- 22 files changed, 3359 insertions(+), 6 deletions(-) create mode 100644 external/kafka-0-10-assembly/pom.xml create mode 100644 external/kafka-0-10/pom.xml create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/CachedKafkaConsumer.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/ConsumerStrategy.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/DirectKafkaInputDStream.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDD.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDDPartition.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaTestUtils.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaUtils.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/LocationStrategy.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/OffsetRange.scala create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package-info.java create mode 100644 external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package.scala create mode 100644 external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaConsumerStrategySuite.java create mode 100644 external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaDirectKafkaStreamSuite.java create mode 100644 external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaKafkaRDDSuite.java create mode 100644 external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaLocationStrategySuite.java create mode 100644 external/kafka-0-10/src/test/resources/log4j.properties create mode 100644 external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/DirectKafkaStreamSuite.scala create mode 100644 external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/KafkaRDDSuite.scala diff --git a/external/kafka-0-10-assembly/pom.xml b/external/kafka-0-10-assembly/pom.xml new file mode 100644 index 0000000000..f2468d1cba --- /dev/null +++ b/external/kafka-0-10-assembly/pom.xml @@ -0,0 +1,176 @@ +<?xml version="1.0" encoding="UTF-8"?> +<!-- + ~ Licensed to the Apache Software Foundation (ASF) under one or more + ~ contributor license agreements. See the NOTICE file distributed with + ~ this work for additional information regarding copyright ownership. + ~ The ASF licenses this file to You under the Apache License, Version 2.0 + ~ (the "License"); you may not use this file except in compliance with + ~ the License. You may obtain a copy of the License at + ~ + ~ http://www.apache.org/licenses/LICENSE-2.0 + ~ + ~ Unless required by applicable law or agreed to in writing, software + ~ distributed under the License is distributed on an "AS IS" BASIS, + ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + ~ See the License for the specific language governing permissions and + ~ limitations under the License. + --> + +<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> + <modelVersion>4.0.0</modelVersion> + <parent> + <groupId>org.apache.spark</groupId> + <artifactId>spark-parent_2.11</artifactId> + <version>2.0.0-SNAPSHOT</version> + <relativePath>../../pom.xml</relativePath> + </parent> + + <groupId>org.apache.spark</groupId> + <artifactId>spark-streaming-kafka-0-10-assembly_2.11</artifactId> + <packaging>jar</packaging> + <name>Spark Integration for Kafka 0.10 Assembly</name> + <url>http://spark.apache.org/</url> + + <properties> + <sbt.project.name>streaming-kafka-0-10-assembly</sbt.project.name> + </properties> + + <dependencies> + <dependency> + <groupId>org.apache.spark</groupId> + <artifactId>spark-streaming-kafka-0-10_${scala.binary.version}</artifactId> + <version>${project.version}</version> + </dependency> + <dependency> + <groupId>org.apache.spark</groupId> + <artifactId>spark-streaming_${scala.binary.version}</artifactId> + <version>${project.version}</version> + <scope>provided</scope> + </dependency> + <!-- + Demote already included in the Spark assembly. + --> + <dependency> + <groupId>commons-codec</groupId> + <artifactId>commons-codec</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>commons-lang</groupId> + <artifactId>commons-lang</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>com.google.protobuf</groupId> + <artifactId>protobuf-java</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>net.jpountz.lz4</groupId> + <artifactId>lz4</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.apache.hadoop</groupId> + <artifactId>hadoop-client</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.apache.avro</groupId> + <artifactId>avro-mapred</artifactId> + <classifier>${avro.mapred.classifier}</classifier> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.apache.curator</groupId> + <artifactId>curator-recipes</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.apache.zookeeper</groupId> + <artifactId>zookeeper</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>log4j</groupId> + <artifactId>log4j</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>net.java.dev.jets3t</groupId> + <artifactId>jets3t</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.scala-lang</groupId> + <artifactId>scala-library</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.slf4j</groupId> + <artifactId>slf4j-api</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.slf4j</groupId> + <artifactId>slf4j-log4j12</artifactId> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.xerial.snappy</groupId> + <artifactId>snappy-java</artifactId> + <scope>provided</scope> + </dependency> + </dependencies> + + <build> + <outputDirectory>target/scala-${scala.binary.version}/classes</outputDirectory> + <testOutputDirectory>target/scala-${scala.binary.version}/test-classes</testOutputDirectory> + <plugins> + <plugin> + <groupId>org.apache.maven.plugins</groupId> + <artifactId>maven-shade-plugin</artifactId> + <configuration> + <shadedArtifactAttached>false</shadedArtifactAttached> + <artifactSet> + <includes> + <include>*:*</include> + </includes> + </artifactSet> + <filters> + <filter> + <artifact>*:*</artifact> + <excludes> + <exclude>META-INF/*.SF</exclude> + <exclude>META-INF/*.DSA</exclude> + <exclude>META-INF/*.RSA</exclude> + </excludes> + </filter> + </filters> + </configuration> + <executions> + <execution> + <phase>package</phase> + <goals> + <goal>shade</goal> + </goals> + <configuration> + <transformers> + <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/> + <transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer"> + <resource>reference.conf</resource> + </transformer> + <transformer implementation="org.apache.maven.plugins.shade.resource.DontIncludeResourceTransformer"> + <resource>log4j.properties</resource> + </transformer> + <transformer implementation="org.apache.maven.plugins.shade.resource.ApacheLicenseResourceTransformer"/> + <transformer implementation="org.apache.maven.plugins.shade.resource.ApacheNoticeResourceTransformer"/> + </transformers> + </configuration> + </execution> + </executions> + </plugin> + </plugins> +</build> +</project> + diff --git a/external/kafka-0-10/pom.xml b/external/kafka-0-10/pom.xml new file mode 100644 index 0000000000..50395f6d14 --- /dev/null +++ b/external/kafka-0-10/pom.xml @@ -0,0 +1,98 @@ +<?xml version="1.0" encoding="UTF-8"?> +<!-- + ~ Licensed to the Apache Software Foundation (ASF) under one or more + ~ contributor license agreements. See the NOTICE file distributed with + ~ this work for additional information regarding copyright ownership. + ~ The ASF licenses this file to You under the Apache License, Version 2.0 + ~ (the "License"); you may not use this file except in compliance with + ~ the License. You may obtain a copy of the License at + ~ + ~ http://www.apache.org/licenses/LICENSE-2.0 + ~ + ~ Unless required by applicable law or agreed to in writing, software + ~ distributed under the License is distributed on an "AS IS" BASIS, + ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + ~ See the License for the specific language governing permissions and + ~ limitations under the License. + --> + +<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> + <modelVersion>4.0.0</modelVersion> + <parent> + <groupId>org.apache.spark</groupId> + <artifactId>spark-parent_2.11</artifactId> + <version>2.0.0-SNAPSHOT</version> + <relativePath>../../pom.xml</relativePath> + </parent> + + <groupId>org.apache.spark</groupId> + <artifactId>spark-streaming-kafka-0-10_2.11</artifactId> + <properties> + <sbt.project.name>streaming-kafka-0-10</sbt.project.name> + </properties> + <packaging>jar</packaging> + <name>Spark Integration for Kafka 0.10</name> + <url>http://spark.apache.org/</url> + + <dependencies> + <dependency> + <groupId>org.apache.spark</groupId> + <artifactId>spark-streaming_${scala.binary.version}</artifactId> + <version>${project.version}</version> + <scope>provided</scope> + </dependency> + <dependency> + <groupId>org.apache.spark</groupId> + <artifactId>spark-core_${scala.binary.version}</artifactId> + <version>${project.version}</version> + <type>test-jar</type> + <scope>test</scope> + </dependency> + <dependency> + <groupId>org.apache.kafka</groupId> + <artifactId>kafka_${scala.binary.version}</artifactId> + <version>0.10.0.0</version> + <exclusions> + <exclusion> + <groupId>com.sun.jmx</groupId> + <artifactId>jmxri</artifactId> + </exclusion> + <exclusion> + <groupId>com.sun.jdmk</groupId> + <artifactId>jmxtools</artifactId> + </exclusion> + <exclusion> + <groupId>net.sf.jopt-simple</groupId> + <artifactId>jopt-simple</artifactId> + </exclusion> + <exclusion> + <groupId>org.slf4j</groupId> + <artifactId>slf4j-simple</artifactId> + </exclusion> + <exclusion> + <groupId>org.apache.zookeeper</groupId> + <artifactId>zookeeper</artifactId> + </exclusion> + </exclusions> + </dependency> + <dependency> + <groupId>net.sf.jopt-simple</groupId> + <artifactId>jopt-simple</artifactId> + <version>3.2</version> + <scope>test</scope> + </dependency> + <dependency> + <groupId>org.scalacheck</groupId> + <artifactId>scalacheck_${scala.binary.version}</artifactId> + <scope>test</scope> + </dependency> + <dependency> + <groupId>org.apache.spark</groupId> + <artifactId>spark-tags_${scala.binary.version}</artifactId> + </dependency> + </dependencies> + <build> + <outputDirectory>target/scala-${scala.binary.version}/classes</outputDirectory> + <testOutputDirectory>target/scala-${scala.binary.version}/test-classes</testOutputDirectory> + </build> +</project> diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/CachedKafkaConsumer.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/CachedKafkaConsumer.scala new file mode 100644 index 0000000000..fa3ea6131a --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/CachedKafkaConsumer.scala @@ -0,0 +1,189 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.{ util => ju } + +import org.apache.kafka.clients.consumer.{ ConsumerConfig, ConsumerRecord, KafkaConsumer } +import org.apache.kafka.common.{ KafkaException, TopicPartition } + +import org.apache.spark.SparkConf +import org.apache.spark.internal.Logging + + +/** + * Consumer of single topicpartition, intended for cached reuse. + * Underlying consumer is not threadsafe, so neither is this, + * but processing the same topicpartition and group id in multiple threads is usually bad anyway. + */ +private[kafka010] +class CachedKafkaConsumer[K, V] private( + val groupId: String, + val topic: String, + val partition: Int, + val kafkaParams: ju.Map[String, Object]) extends Logging { + + assert(groupId == kafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG), + "groupId used for cache key must match the groupId in kafkaParams") + + val topicPartition = new TopicPartition(topic, partition) + + protected val consumer = { + val c = new KafkaConsumer[K, V](kafkaParams) + val tps = new ju.ArrayList[TopicPartition]() + tps.add(topicPartition) + c.assign(tps) + c + } + + // TODO if the buffer was kept around as a random-access structure, + // could possibly optimize re-calculating of an RDD in the same batch + protected var buffer = ju.Collections.emptyList[ConsumerRecord[K, V]]().iterator + protected var nextOffset = -2L + + def close(): Unit = consumer.close() + + /** + * Get the record for the given offset, waiting up to timeout ms if IO is necessary. + * Sequential forward access will use buffers, but random access will be horribly inefficient. + */ + def get(offset: Long, timeout: Long): ConsumerRecord[K, V] = { + logDebug(s"Get $groupId $topic $partition nextOffset $nextOffset requested $offset") + if (offset != nextOffset) { + logInfo(s"Initial fetch for $groupId $topic $partition $offset") + seek(offset) + poll(timeout) + } + + if (!buffer.hasNext()) { poll(timeout) } + assert(buffer.hasNext(), + s"Failed to get records for $groupId $topic $partition $offset after polling for $timeout") + var record = buffer.next() + + if (record.offset != offset) { + logInfo(s"Buffer miss for $groupId $topic $partition $offset") + seek(offset) + poll(timeout) + assert(buffer.hasNext(), + s"Failed to get records for $groupId $topic $partition $offset after polling for $timeout") + record = buffer.next() + assert(record.offset == offset, + s"Got wrong record for $groupId $topic $partition even after seeking to offset $offset") + } + + nextOffset = offset + 1 + record + } + + private def seek(offset: Long): Unit = { + logDebug(s"Seeking to $topicPartition $offset") + consumer.seek(topicPartition, offset) + } + + private def poll(timeout: Long): Unit = { + val p = consumer.poll(timeout) + val r = p.records(topicPartition) + logDebug(s"Polled ${p.partitions()} ${r.size}") + buffer = r.iterator + } + +} + +private[kafka010] +object CachedKafkaConsumer extends Logging { + + private case class CacheKey(groupId: String, topic: String, partition: Int) + + // Don't want to depend on guava, don't want a cleanup thread, use a simple LinkedHashMap + private var cache: ju.LinkedHashMap[CacheKey, CachedKafkaConsumer[_, _]] = null + + /** Must be called before get, once per JVM, to configure the cache. Further calls are ignored */ + def init( + initialCapacity: Int, + maxCapacity: Int, + loadFactor: Float): Unit = CachedKafkaConsumer.synchronized { + if (null == cache) { + logInfo(s"Initializing cache $initialCapacity $maxCapacity $loadFactor") + cache = new ju.LinkedHashMap[CacheKey, CachedKafkaConsumer[_, _]]( + initialCapacity, loadFactor, true) { + override def removeEldestEntry( + entry: ju.Map.Entry[CacheKey, CachedKafkaConsumer[_, _]]): Boolean = { + if (this.size > maxCapacity) { + try { + entry.getValue.consumer.close() + } catch { + case x: KafkaException => + logError("Error closing oldest Kafka consumer", x) + } + true + } else { + false + } + } + } + } + } + + /** + * Get a cached consumer for groupId, assigned to topic and partition. + * If matching consumer doesn't already exist, will be created using kafkaParams. + */ + def get[K, V]( + groupId: String, + topic: String, + partition: Int, + kafkaParams: ju.Map[String, Object]): CachedKafkaConsumer[K, V] = + CachedKafkaConsumer.synchronized { + val k = CacheKey(groupId, topic, partition) + val v = cache.get(k) + if (null == v) { + logInfo(s"Cache miss for $k") + logDebug(cache.keySet.toString) + val c = new CachedKafkaConsumer[K, V](groupId, topic, partition, kafkaParams) + cache.put(k, c) + c + } else { + // any given topicpartition should have a consistent key and value type + v.asInstanceOf[CachedKafkaConsumer[K, V]] + } + } + + /** + * Get a fresh new instance, unassociated with the global cache. + * Caller is responsible for closing + */ + def getUncached[K, V]( + groupId: String, + topic: String, + partition: Int, + kafkaParams: ju.Map[String, Object]): CachedKafkaConsumer[K, V] = + new CachedKafkaConsumer[K, V](groupId, topic, partition, kafkaParams) + + /** remove consumer for given groupId, topic, and partition, if it exists */ + def remove(groupId: String, topic: String, partition: Int): Unit = { + val k = CacheKey(groupId, topic, partition) + logInfo(s"Removing $k from cache") + val v = CachedKafkaConsumer.synchronized { + cache.remove(k) + } + if (null != v) { + v.close() + logInfo(s"Removed $k from cache") + } + } +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/ConsumerStrategy.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/ConsumerStrategy.scala new file mode 100644 index 0000000000..079a07dbc2 --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/ConsumerStrategy.scala @@ -0,0 +1,314 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.{ util => ju } + +import scala.collection.JavaConverters._ + +import org.apache.kafka.clients.consumer._ +import org.apache.kafka.common.TopicPartition + +import org.apache.spark.annotation.Experimental + + +/** + * :: Experimental :: + * Choice of how to create and configure underlying Kafka Consumers on driver and executors. + * Kafka 0.10 consumers can require additional, sometimes complex, setup after object + * instantiation. This interface encapsulates that process, and allows it to be checkpointed. + * @tparam K type of Kafka message key + * @tparam V type of Kafka message value + */ +@Experimental +trait ConsumerStrategy[K, V] { + /** + * Kafka <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on executors. Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + */ + def executorKafkaParams: ju.Map[String, Object] + + /** + * Must return a fully configured Kafka Consumer, including subscribed or assigned topics. + * This consumer will be used on the driver to query for offsets only, not messages. + * @param currentOffsets A map from TopicPartition to offset, indicating how far the driver + * has successfully read. Will be empty on initial start, possibly non-empty on restart from + * checkpoint. + */ + def onStart(currentOffsets: Map[TopicPartition, Long]): Consumer[K, V] +} + +/** + * :: Experimental :: + * Subscribe to a collection of topics. + * @param topics collection of topics to subscribe + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsets: offsets to begin at on initial startup. If no offset is given for a + * TopicPartition, the committed offset (if applicable) or kafka param + * auto.offset.reset will be used. + */ +@Experimental +case class Subscribe[K, V] private( + topics: ju.Collection[java.lang.String], + kafkaParams: ju.Map[String, Object], + offsets: ju.Map[TopicPartition, Long] + ) extends ConsumerStrategy[K, V] { + + def executorKafkaParams: ju.Map[String, Object] = kafkaParams + + def onStart(currentOffsets: Map[TopicPartition, Long]): Consumer[K, V] = { + val consumer = new KafkaConsumer[K, V](kafkaParams) + consumer.subscribe(topics) + if (currentOffsets.isEmpty) { + offsets.asScala.foreach { case (topicPartition, offset) => + consumer.seek(topicPartition, offset) + } + } + + consumer + } +} + +/** + * :: Experimental :: + * Companion object for creating [[Subscribe]] strategy + */ +@Experimental +object Subscribe { + /** + * :: Experimental :: + * Subscribe to a collection of topics. + * @param topics collection of topics to subscribe + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsets: offsets to begin at on initial startup. If no offset is given for a + * TopicPartition, the committed offset (if applicable) or kafka param + * auto.offset.reset will be used. + */ + @Experimental + def apply[K, V]( + topics: Iterable[java.lang.String], + kafkaParams: collection.Map[String, Object], + offsets: collection.Map[TopicPartition, Long]): Subscribe[K, V] = { + Subscribe[K, V]( + new ju.ArrayList(topics.asJavaCollection), + new ju.HashMap[String, Object](kafkaParams.asJava), + new ju.HashMap[TopicPartition, Long](offsets.asJava)) + } + + /** + * :: Experimental :: + * Subscribe to a collection of topics. + * @param topics collection of topics to subscribe + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + */ + @Experimental + def apply[K, V]( + topics: Iterable[java.lang.String], + kafkaParams: collection.Map[String, Object]): Subscribe[K, V] = { + Subscribe[K, V]( + new ju.ArrayList(topics.asJavaCollection), + new ju.HashMap[String, Object](kafkaParams.asJava), + ju.Collections.emptyMap[TopicPartition, Long]()) + } + + /** + * :: Experimental :: + * Subscribe to a collection of topics. + * @param topics collection of topics to subscribe + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsets: offsets to begin at on initial startup. If no offset is given for a + * TopicPartition, the committed offset (if applicable) or kafka param + * auto.offset.reset will be used. + */ + @Experimental + def create[K, V]( + topics: ju.Collection[java.lang.String], + kafkaParams: ju.Map[String, Object], + offsets: ju.Map[TopicPartition, Long]): Subscribe[K, V] = { + Subscribe[K, V](topics, kafkaParams, offsets) + } + + /** + * :: Experimental :: + * Subscribe to a collection of topics. + * @param topics collection of topics to subscribe + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + */ + @Experimental + def create[K, V]( + topics: ju.Collection[java.lang.String], + kafkaParams: ju.Map[String, Object]): Subscribe[K, V] = { + Subscribe[K, V](topics, kafkaParams, ju.Collections.emptyMap[TopicPartition, Long]()) + } + +} + +/** + * :: Experimental :: + * Assign a fixed collection of TopicPartitions + * @param topicPartitions collection of TopicPartitions to assign + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsets: offsets to begin at on initial startup. If no offset is given for a + * TopicPartition, the committed offset (if applicable) or kafka param + * auto.offset.reset will be used. + */ +@Experimental +case class Assign[K, V] private( + topicPartitions: ju.Collection[TopicPartition], + kafkaParams: ju.Map[String, Object], + offsets: ju.Map[TopicPartition, Long] + ) extends ConsumerStrategy[K, V] { + + def executorKafkaParams: ju.Map[String, Object] = kafkaParams + + def onStart(currentOffsets: Map[TopicPartition, Long]): Consumer[K, V] = { + val consumer = new KafkaConsumer[K, V](kafkaParams) + consumer.assign(topicPartitions) + if (currentOffsets.isEmpty) { + offsets.asScala.foreach { case (topicPartition, offset) => + consumer.seek(topicPartition, offset) + } + } + + consumer + } +} + +/** + * :: Experimental :: + * Companion object for creating [[Assign]] strategy + */ +@Experimental +object Assign { + /** + * :: Experimental :: + * Assign a fixed collection of TopicPartitions + * @param topicPartitions collection of TopicPartitions to assign + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsets: offsets to begin at on initial startup. If no offset is given for a + * TopicPartition, the committed offset (if applicable) or kafka param + * auto.offset.reset will be used. + */ + @Experimental + def apply[K, V]( + topicPartitions: Iterable[TopicPartition], + kafkaParams: collection.Map[String, Object], + offsets: collection.Map[TopicPartition, Long]): Assign[K, V] = { + Assign[K, V]( + new ju.ArrayList(topicPartitions.asJavaCollection), + new ju.HashMap[String, Object](kafkaParams.asJava), + new ju.HashMap[TopicPartition, Long](offsets.asJava)) + } + + /** + * :: Experimental :: + * Assign a fixed collection of TopicPartitions + * @param topicPartitions collection of TopicPartitions to assign + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + */ + @Experimental + def apply[K, V]( + topicPartitions: Iterable[TopicPartition], + kafkaParams: collection.Map[String, Object]): Assign[K, V] = { + Assign[K, V]( + new ju.ArrayList(topicPartitions.asJavaCollection), + new ju.HashMap[String, Object](kafkaParams.asJava), + ju.Collections.emptyMap[TopicPartition, Long]()) + } + + /** + * :: Experimental :: + * Assign a fixed collection of TopicPartitions + * @param topicPartitions collection of TopicPartitions to assign + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsets: offsets to begin at on initial startup. If no offset is given for a + * TopicPartition, the committed offset (if applicable) or kafka param + * auto.offset.reset will be used. + */ + @Experimental + def create[K, V]( + topicPartitions: ju.Collection[TopicPartition], + kafkaParams: ju.Map[String, Object], + offsets: ju.Map[TopicPartition, Long]): Assign[K, V] = { + Assign[K, V](topicPartitions, kafkaParams, offsets) + } + + /** + * :: Experimental :: + * Assign a fixed collection of TopicPartitions + * @param topicPartitions collection of TopicPartitions to assign + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a> to be used on driver. The same params will be used on executors, + * with minor automatic modifications applied. + * Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + */ + @Experimental + def create[K, V]( + topicPartitions: ju.Collection[TopicPartition], + kafkaParams: ju.Map[String, Object]): Assign[K, V] = { + Assign[K, V](topicPartitions, kafkaParams, ju.Collections.emptyMap[TopicPartition, Long]()) + } +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/DirectKafkaInputDStream.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/DirectKafkaInputDStream.scala new file mode 100644 index 0000000000..acd1841d53 --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/DirectKafkaInputDStream.scala @@ -0,0 +1,318 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.{ util => ju } +import java.util.concurrent.ConcurrentLinkedQueue +import java.util.concurrent.atomic.AtomicReference + +import scala.annotation.tailrec +import scala.collection.JavaConverters._ +import scala.collection.mutable + +import org.apache.kafka.clients.consumer._ +import org.apache.kafka.common.{ PartitionInfo, TopicPartition } + +import org.apache.spark.SparkException +import org.apache.spark.internal.Logging +import org.apache.spark.storage.StorageLevel +import org.apache.spark.streaming.{StreamingContext, Time} +import org.apache.spark.streaming.dstream._ +import org.apache.spark.streaming.scheduler.{RateController, StreamInputInfo} +import org.apache.spark.streaming.scheduler.rate.RateEstimator + +/** + * A DStream where + * each given Kafka topic/partition corresponds to an RDD partition. + * The spark configuration spark.streaming.kafka.maxRatePerPartition gives the maximum number + * of messages + * per second that each '''partition''' will accept. + * @param locationStrategy In most cases, pass in [[PreferConsistent]], + * see [[LocationStrategy]] for more details. + * @param executorKafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.html#newconsumerconfigs"> + * configuration parameters</a>. + * Requires "bootstrap.servers" to be set with Kafka broker(s), + * NOT zookeeper servers, specified in host1:port1,host2:port2 form. + * @param consumerStrategy In most cases, pass in [[Subscribe]], + * see [[ConsumerStrategy]] for more details + * @tparam K type of Kafka message key + * @tparam V type of Kafka message value + */ +private[spark] class DirectKafkaInputDStream[K, V]( + _ssc: StreamingContext, + locationStrategy: LocationStrategy, + consumerStrategy: ConsumerStrategy[K, V] + ) extends InputDStream[ConsumerRecord[K, V]](_ssc) with Logging with CanCommitOffsets { + + val executorKafkaParams = { + val ekp = new ju.HashMap[String, Object](consumerStrategy.executorKafkaParams) + KafkaUtils.fixKafkaParams(ekp) + ekp + } + + protected var currentOffsets = Map[TopicPartition, Long]() + + @transient private var kc: Consumer[K, V] = null + def consumer(): Consumer[K, V] = this.synchronized { + if (null == kc) { + kc = consumerStrategy.onStart(currentOffsets) + } + kc + } + + override def persist(newLevel: StorageLevel): DStream[ConsumerRecord[K, V]] = { + logError("Kafka ConsumerRecord is not serializable. " + + "Use .map to extract fields before calling .persist or .window") + super.persist(newLevel) + } + + protected def getBrokers = { + val c = consumer + val result = new ju.HashMap[TopicPartition, String]() + val hosts = new ju.HashMap[TopicPartition, String]() + val assignments = c.assignment().iterator() + while (assignments.hasNext()) { + val tp: TopicPartition = assignments.next() + if (null == hosts.get(tp)) { + val infos = c.partitionsFor(tp.topic).iterator() + while (infos.hasNext()) { + val i = infos.next() + hosts.put(new TopicPartition(i.topic(), i.partition()), i.leader.host()) + } + } + result.put(tp, hosts.get(tp)) + } + result + } + + protected def getPreferredHosts: ju.Map[TopicPartition, String] = { + locationStrategy match { + case PreferBrokers => getBrokers + case PreferConsistent => ju.Collections.emptyMap[TopicPartition, String]() + case PreferFixed(hostMap) => hostMap + } + } + + // Keep this consistent with how other streams are named (e.g. "Flume polling stream [2]") + private[streaming] override def name: String = s"Kafka 0.10 direct stream [$id]" + + protected[streaming] override val checkpointData = + new DirectKafkaInputDStreamCheckpointData + + + /** + * Asynchronously maintains & sends new rate limits to the receiver through the receiver tracker. + */ + override protected[streaming] val rateController: Option[RateController] = { + if (RateController.isBackPressureEnabled(ssc.conf)) { + Some(new DirectKafkaRateController(id, + RateEstimator.create(ssc.conf, context.graph.batchDuration))) + } else { + None + } + } + + private val maxRateLimitPerPartition: Int = context.sparkContext.getConf.getInt( + "spark.streaming.kafka.maxRatePerPartition", 0) + + protected[streaming] def maxMessagesPerPartition( + offsets: Map[TopicPartition, Long]): Option[Map[TopicPartition, Long]] = { + val estimatedRateLimit = rateController.map(_.getLatestRate().toInt) + + // calculate a per-partition rate limit based on current lag + val effectiveRateLimitPerPartition = estimatedRateLimit.filter(_ > 0) match { + case Some(rate) => + val lagPerPartition = offsets.map { case (tp, offset) => + tp -> Math.max(offset - currentOffsets(tp), 0) + } + val totalLag = lagPerPartition.values.sum + + lagPerPartition.map { case (tp, lag) => + val backpressureRate = Math.round(lag / totalLag.toFloat * rate) + tp -> (if (maxRateLimitPerPartition > 0) { + Math.min(backpressureRate, maxRateLimitPerPartition)} else backpressureRate) + } + case None => offsets.map { case (tp, offset) => tp -> maxRateLimitPerPartition } + } + + if (effectiveRateLimitPerPartition.values.sum > 0) { + val secsPerBatch = context.graph.batchDuration.milliseconds.toDouble / 1000 + Some(effectiveRateLimitPerPartition.map { + case (tp, limit) => tp -> (secsPerBatch * limit).toLong + }) + } else { + None + } + } + + /** + * Returns the latest (highest) available offsets, taking new partitions into account. + */ + protected def latestOffsets(): Map[TopicPartition, Long] = { + val c = consumer + c.poll(0) + val parts = c.assignment().asScala + + // make sure new partitions are reflected in currentOffsets + val newPartitions = parts.diff(currentOffsets.keySet) + // position for new partitions determined by auto.offset.reset if no commit + currentOffsets = currentOffsets ++ newPartitions.map(tp => tp -> c.position(tp)).toMap + // don't want to consume messages, so pause + c.pause(newPartitions.asJava) + // find latest available offsets + c.seekToEnd(currentOffsets.keySet.asJava) + parts.map(tp => tp -> c.position(tp)).toMap + } + + // limits the maximum number of messages per partition + protected def clamp( + offsets: Map[TopicPartition, Long]): Map[TopicPartition, Long] = { + + maxMessagesPerPartition(offsets).map { mmp => + mmp.map { case (tp, messages) => + val uo = offsets(tp) + tp -> Math.min(currentOffsets(tp) + messages, uo) + } + }.getOrElse(offsets) + } + + override def compute(validTime: Time): Option[KafkaRDD[K, V]] = { + val untilOffsets = clamp(latestOffsets()) + val offsetRanges = untilOffsets.map { case (tp, uo) => + val fo = currentOffsets(tp) + OffsetRange(tp.topic, tp.partition, fo, uo) + } + val rdd = new KafkaRDD[K, V]( + context.sparkContext, executorKafkaParams, offsetRanges.toArray, getPreferredHosts, true) + + // Report the record number and metadata of this batch interval to InputInfoTracker. + val description = offsetRanges.filter { offsetRange => + // Don't display empty ranges. + offsetRange.fromOffset != offsetRange.untilOffset + }.map { offsetRange => + s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" + + s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}" + }.mkString("\n") + // Copy offsetRanges to immutable.List to prevent from being modified by the user + val metadata = Map( + "offsets" -> offsetRanges.toList, + StreamInputInfo.METADATA_KEY_DESCRIPTION -> description) + val inputInfo = StreamInputInfo(id, rdd.count, metadata) + ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo) + + currentOffsets = untilOffsets + commitAll() + Some(rdd) + } + + override def start(): Unit = { + val c = consumer + c.poll(0) + if (currentOffsets.isEmpty) { + currentOffsets = c.assignment().asScala.map { tp => + tp -> c.position(tp) + }.toMap + } + + // don't actually want to consume any messages, so pause all partitions + c.pause(currentOffsets.keySet.asJava) + } + + override def stop(): Unit = this.synchronized { + if (kc != null) { + kc.close() + } + } + + protected val commitQueue = new ConcurrentLinkedQueue[OffsetRange] + protected val commitCallback = new AtomicReference[OffsetCommitCallback] + + /** + * Queue up offset ranges for commit to Kafka at a future time. Threadsafe. + * @param offsetRanges The maximum untilOffset for a given partition will be used at commit. + */ + def commitAsync(offsetRanges: Array[OffsetRange]): Unit = { + commitAsync(offsetRanges, null) + } + + /** + * Queue up offset ranges for commit to Kafka at a future time. Threadsafe. + * @param offsetRanges The maximum untilOffset for a given partition will be used at commit. + * @param callback Only the most recently provided callback will be used at commit. + */ + def commitAsync(offsetRanges: Array[OffsetRange], callback: OffsetCommitCallback): Unit = { + commitCallback.set(callback) + commitQueue.addAll(ju.Arrays.asList(offsetRanges: _*)) + } + + protected def commitAll(): Unit = { + val m = new ju.HashMap[TopicPartition, OffsetAndMetadata]() + val it = commitQueue.iterator() + while (it.hasNext) { + val osr = it.next + val tp = osr.topicPartition + val x = m.get(tp) + val offset = if (null == x) { osr.untilOffset } else { Math.max(x.offset, osr.untilOffset) } + m.put(tp, new OffsetAndMetadata(offset)) + } + if (!m.isEmpty) { + consumer.commitAsync(m, commitCallback.get) + } + } + + private[streaming] + class DirectKafkaInputDStreamCheckpointData extends DStreamCheckpointData(this) { + def batchForTime: mutable.HashMap[Time, Array[(String, Int, Long, Long)]] = { + data.asInstanceOf[mutable.HashMap[Time, Array[OffsetRange.OffsetRangeTuple]]] + } + + override def update(time: Time): Unit = { + batchForTime.clear() + generatedRDDs.foreach { kv => + val a = kv._2.asInstanceOf[KafkaRDD[K, V]].offsetRanges.map(_.toTuple).toArray + batchForTime += kv._1 -> a + } + } + + override def cleanup(time: Time): Unit = { } + + override def restore(): Unit = { + batchForTime.toSeq.sortBy(_._1)(Time.ordering).foreach { case (t, b) => + logInfo(s"Restoring KafkaRDD for time $t ${b.mkString("[", ", ", "]")}") + generatedRDDs += t -> new KafkaRDD[K, V]( + context.sparkContext, + executorKafkaParams, + b.map(OffsetRange(_)), + getPreferredHosts, + // during restore, it's possible same partition will be consumed from multiple + // threads, so dont use cache + false + ) + } + } + } + + /** + * A RateController to retrieve the rate from RateEstimator. + */ + private[streaming] class DirectKafkaRateController(id: Int, estimator: RateEstimator) + extends RateController(id, estimator) { + override def publish(rate: Long): Unit = () + } +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDD.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDD.scala new file mode 100644 index 0000000000..c15c163449 --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDD.scala @@ -0,0 +1,232 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.{ util => ju } + +import scala.collection.mutable.ArrayBuffer + +import org.apache.kafka.clients.consumer.{ ConsumerConfig, ConsumerRecord } +import org.apache.kafka.common.TopicPartition + +import org.apache.spark.{Partition, SparkContext, SparkException, TaskContext} +import org.apache.spark.internal.Logging +import org.apache.spark.partial.{BoundedDouble, PartialResult} +import org.apache.spark.rdd.RDD +import org.apache.spark.scheduler.ExecutorCacheTaskLocation +import org.apache.spark.storage.StorageLevel + +/** + * A batch-oriented interface for consuming from Kafka. + * Starting and ending offsets are specified in advance, + * so that you can control exactly-once semantics. + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a>. Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsetRanges offset ranges that define the Kafka data belonging to this RDD + * @param preferredHosts map from TopicPartition to preferred host for processing that partition. + * In most cases, use [[DirectKafkaInputDStream.preferConsistent]] + * Use [[DirectKafkaInputDStream.preferBrokers]] if your executors are on same nodes as brokers. + * @param useConsumerCache whether to use a consumer from a per-jvm cache + * @tparam K type of Kafka message key + * @tparam V type of Kafka message value + */ +private[spark] class KafkaRDD[K, V]( + sc: SparkContext, + val kafkaParams: ju.Map[String, Object], + val offsetRanges: Array[OffsetRange], + val preferredHosts: ju.Map[TopicPartition, String], + useConsumerCache: Boolean +) extends RDD[ConsumerRecord[K, V]](sc, Nil) with Logging with HasOffsetRanges { + + assert("none" == + kafkaParams.get(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG).asInstanceOf[String], + ConsumerConfig.AUTO_OFFSET_RESET_CONFIG + + " must be set to none for executor kafka params, else messages may not match offsetRange") + + assert(false == + kafkaParams.get(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG).asInstanceOf[Boolean], + ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG + + " must be set to false for executor kafka params, else offsets may commit before processing") + + // TODO is it necessary to have separate configs for initial poll time vs ongoing poll time? + private val pollTimeout = conf.getLong("spark.streaming.kafka.consumer.poll.ms", 256) + private val cacheInitialCapacity = + conf.getInt("spark.streaming.kafka.consumer.cache.initialCapacity", 16) + private val cacheMaxCapacity = + conf.getInt("spark.streaming.kafka.consumer.cache.maxCapacity", 64) + private val cacheLoadFactor = + conf.getDouble("spark.streaming.kafka.consumer.cache.loadFactor", 0.75).toFloat + + override def persist(newLevel: StorageLevel): this.type = { + logError("Kafka ConsumerRecord is not serializable. " + + "Use .map to extract fields before calling .persist or .window") + super.persist(newLevel) + } + + override def getPartitions: Array[Partition] = { + offsetRanges.zipWithIndex.map { case (o, i) => + new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset) + }.toArray + } + + override def count(): Long = offsetRanges.map(_.count).sum + + override def countApprox( + timeout: Long, + confidence: Double = 0.95 + ): PartialResult[BoundedDouble] = { + val c = count + new PartialResult(new BoundedDouble(c, 1.0, c, c), true) + } + + override def isEmpty(): Boolean = count == 0L + + override def take(num: Int): Array[ConsumerRecord[K, V]] = { + val nonEmptyPartitions = this.partitions + .map(_.asInstanceOf[KafkaRDDPartition]) + .filter(_.count > 0) + + if (num < 1 || nonEmptyPartitions.isEmpty) { + return new Array[ConsumerRecord[K, V]](0) + } + + // Determine in advance how many messages need to be taken from each partition + val parts = nonEmptyPartitions.foldLeft(Map[Int, Int]()) { (result, part) => + val remain = num - result.values.sum + if (remain > 0) { + val taken = Math.min(remain, part.count) + result + (part.index -> taken.toInt) + } else { + result + } + } + + val buf = new ArrayBuffer[ConsumerRecord[K, V]] + val res = context.runJob( + this, + (tc: TaskContext, it: Iterator[ConsumerRecord[K, V]]) => + it.take(parts(tc.partitionId)).toArray, parts.keys.toArray + ) + res.foreach(buf ++= _) + buf.toArray + } + + private def executors(): Array[ExecutorCacheTaskLocation] = { + val bm = sparkContext.env.blockManager + bm.master.getPeers(bm.blockManagerId).toArray + .map(x => ExecutorCacheTaskLocation(x.host, x.executorId)) + .sortWith(compareExecutors) + } + + protected[kafka010] def compareExecutors( + a: ExecutorCacheTaskLocation, + b: ExecutorCacheTaskLocation): Boolean = + if (a.host == b.host) { + a.executorId > b.executorId + } else { + a.host > b.host + } + + /** + * Non-negative modulus, from java 8 math + */ + private def floorMod(a: Int, b: Int): Int = ((a % b) + b) % b + + override def getPreferredLocations(thePart: Partition): Seq[String] = { + // The intention is best-effort consistent executor for a given topicpartition, + // so that caching consumers can be effective. + // TODO what about hosts specified by ip vs name + val part = thePart.asInstanceOf[KafkaRDDPartition] + val allExecs = executors() + val tp = part.topicPartition + val prefHost = preferredHosts.get(tp) + val prefExecs = if (null == prefHost) allExecs else allExecs.filter(_.host == prefHost) + val execs = if (prefExecs.isEmpty) allExecs else prefExecs + if (execs.isEmpty) { + Seq() + } else { + // execs is sorted, tp.hashCode depends only on topic and partition, so consistent index + val index = this.floorMod(tp.hashCode, execs.length) + val chosen = execs(index) + Seq(chosen.toString) + } + } + + private def errBeginAfterEnd(part: KafkaRDDPartition): String = + s"Beginning offset ${part.fromOffset} is after the ending offset ${part.untilOffset} " + + s"for topic ${part.topic} partition ${part.partition}. " + + "You either provided an invalid fromOffset, or the Kafka topic has been damaged" + + override def compute(thePart: Partition, context: TaskContext): Iterator[ConsumerRecord[K, V]] = { + val part = thePart.asInstanceOf[KafkaRDDPartition] + assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part)) + if (part.fromOffset == part.untilOffset) { + logInfo(s"Beginning offset ${part.fromOffset} is the same as ending offset " + + s"skipping ${part.topic} ${part.partition}") + Iterator.empty + } else { + new KafkaRDDIterator(part, context) + } + } + + /** + * An iterator that fetches messages directly from Kafka for the offsets in partition. + * Uses a cached consumer where possible to take advantage of prefetching + */ + private class KafkaRDDIterator( + part: KafkaRDDPartition, + context: TaskContext) extends Iterator[ConsumerRecord[K, V]] { + + logInfo(s"Computing topic ${part.topic}, partition ${part.partition} " + + s"offsets ${part.fromOffset} -> ${part.untilOffset}") + + val groupId = kafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG).asInstanceOf[String] + + context.addTaskCompletionListener{ context => closeIfNeeded() } + + val consumer = if (useConsumerCache) { + CachedKafkaConsumer.init(cacheInitialCapacity, cacheMaxCapacity, cacheLoadFactor) + if (context.attemptNumber > 1) { + // just in case the prior attempt failures were cache related + CachedKafkaConsumer.remove(groupId, part.topic, part.partition) + } + CachedKafkaConsumer.get[K, V](groupId, part.topic, part.partition, kafkaParams) + } else { + CachedKafkaConsumer.getUncached[K, V](groupId, part.topic, part.partition, kafkaParams) + } + + var requestOffset = part.fromOffset + + def closeIfNeeded(): Unit = { + if (!useConsumerCache && consumer != null) { + consumer.close + } + } + + override def hasNext(): Boolean = requestOffset < part.untilOffset + + override def next(): ConsumerRecord[K, V] = { + assert(hasNext(), "Can't call getNext() once untilOffset has been reached") + val r = consumer.get(requestOffset, pollTimeout) + requestOffset += 1 + r + } + } +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDDPartition.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDDPartition.scala new file mode 100644 index 0000000000..95569b109f --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaRDDPartition.scala @@ -0,0 +1,45 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import org.apache.kafka.common.TopicPartition + +import org.apache.spark.Partition + + +/** + * @param topic kafka topic name + * @param partition kafka partition id + * @param fromOffset inclusive starting offset + * @param untilOffset exclusive ending offset + */ +private[kafka010] +class KafkaRDDPartition( + val index: Int, + val topic: String, + val partition: Int, + val fromOffset: Long, + val untilOffset: Long +) extends Partition { + /** Number of messages this partition refers to */ + def count(): Long = untilOffset - fromOffset + + /** Kafka TopicPartition object, for convenience */ + def topicPartition(): TopicPartition = new TopicPartition(topic, partition) + +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaTestUtils.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaTestUtils.scala new file mode 100644 index 0000000000..13c08430db --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaTestUtils.scala @@ -0,0 +1,277 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.io.File +import java.lang.{Integer => JInt} +import java.net.InetSocketAddress +import java.util.{Map => JMap, Properties} +import java.util.concurrent.TimeoutException + +import scala.annotation.tailrec +import scala.collection.JavaConverters._ +import scala.language.postfixOps +import scala.util.control.NonFatal + +import kafka.admin.AdminUtils +import kafka.api.Request +import kafka.producer.{KeyedMessage, Producer, ProducerConfig} +import kafka.serializer.StringEncoder +import kafka.server.{KafkaConfig, KafkaServer} +import kafka.utils.ZkUtils +import org.apache.zookeeper.server.{NIOServerCnxnFactory, ZooKeeperServer} + +import org.apache.spark.SparkConf +import org.apache.spark.internal.Logging +import org.apache.spark.streaming.Time +import org.apache.spark.util.Utils + +/** + * This is a helper class for Kafka test suites. This has the functionality to set up + * and tear down local Kafka servers, and to push data using Kafka producers. + * + * The reason to put Kafka test utility class in src is to test Python related Kafka APIs. + */ +private[kafka010] class KafkaTestUtils extends Logging { + + // Zookeeper related configurations + private val zkHost = "localhost" + private var zkPort: Int = 0 + private val zkConnectionTimeout = 60000 + private val zkSessionTimeout = 6000 + + private var zookeeper: EmbeddedZookeeper = _ + + private var zkUtils: ZkUtils = _ + + // Kafka broker related configurations + private val brokerHost = "localhost" + private var brokerPort = 9092 + private var brokerConf: KafkaConfig = _ + + // Kafka broker server + private var server: KafkaServer = _ + + // Kafka producer + private var producer: Producer[String, String] = _ + + // Flag to test whether the system is correctly started + private var zkReady = false + private var brokerReady = false + + def zkAddress: String = { + assert(zkReady, "Zookeeper not setup yet or already torn down, cannot get zookeeper address") + s"$zkHost:$zkPort" + } + + def brokerAddress: String = { + assert(brokerReady, "Kafka not setup yet or already torn down, cannot get broker address") + s"$brokerHost:$brokerPort" + } + + def zookeeperClient: ZkUtils = { + assert(zkReady, "Zookeeper not setup yet or already torn down, cannot get zookeeper client") + Option(zkUtils).getOrElse( + throw new IllegalStateException("Zookeeper client is not yet initialized")) + } + + // Set up the Embedded Zookeeper server and get the proper Zookeeper port + private def setupEmbeddedZookeeper(): Unit = { + // Zookeeper server startup + zookeeper = new EmbeddedZookeeper(s"$zkHost:$zkPort") + // Get the actual zookeeper binding port + zkPort = zookeeper.actualPort + zkUtils = ZkUtils(s"$zkHost:$zkPort", zkSessionTimeout, zkConnectionTimeout, false) + zkReady = true + } + + // Set up the Embedded Kafka server + private def setupEmbeddedKafkaServer(): Unit = { + assert(zkReady, "Zookeeper should be set up beforehand") + + // Kafka broker startup + Utils.startServiceOnPort(brokerPort, port => { + brokerPort = port + brokerConf = new KafkaConfig(brokerConfiguration, doLog = false) + server = new KafkaServer(brokerConf) + server.startup() + (server, port) + }, new SparkConf(), "KafkaBroker") + + brokerReady = true + } + + /** setup the whole embedded servers, including Zookeeper and Kafka brokers */ + def setup(): Unit = { + setupEmbeddedZookeeper() + setupEmbeddedKafkaServer() + } + + /** Teardown the whole servers, including Kafka broker and Zookeeper */ + def teardown(): Unit = { + brokerReady = false + zkReady = false + + if (producer != null) { + producer.close() + producer = null + } + + if (server != null) { + server.shutdown() + server = null + } + + brokerConf.logDirs.foreach { f => Utils.deleteRecursively(new File(f)) } + + if (zkUtils != null) { + zkUtils.close() + zkUtils = null + } + + if (zookeeper != null) { + zookeeper.shutdown() + zookeeper = null + } + } + + /** Create a Kafka topic and wait until it is propagated to the whole cluster */ + def createTopic(topic: String, partitions: Int): Unit = { + AdminUtils.createTopic(zkUtils, topic, partitions, 1) + // wait until metadata is propagated + (0 until partitions).foreach { p => + waitUntilMetadataIsPropagated(topic, p) + } + } + + /** Create a Kafka topic and wait until it is propagated to the whole cluster */ + def createTopic(topic: String): Unit = { + createTopic(topic, 1) + } + + /** Java-friendly function for sending messages to the Kafka broker */ + def sendMessages(topic: String, messageToFreq: JMap[String, JInt]): Unit = { + sendMessages(topic, Map(messageToFreq.asScala.mapValues(_.intValue()).toSeq: _*)) + } + + /** Send the messages to the Kafka broker */ + def sendMessages(topic: String, messageToFreq: Map[String, Int]): Unit = { + val messages = messageToFreq.flatMap { case (s, freq) => Seq.fill(freq)(s) }.toArray + sendMessages(topic, messages) + } + + /** Send the array of messages to the Kafka broker */ + def sendMessages(topic: String, messages: Array[String]): Unit = { + producer = new Producer[String, String](new ProducerConfig(producerConfiguration)) + producer.send(messages.map { new KeyedMessage[String, String](topic, _ ) }: _*) + producer.close() + producer = null + } + + private def brokerConfiguration: Properties = { + val props = new Properties() + props.put("broker.id", "0") + props.put("host.name", "localhost") + props.put("port", brokerPort.toString) + props.put("log.dir", Utils.createTempDir().getAbsolutePath) + props.put("zookeeper.connect", zkAddress) + props.put("log.flush.interval.messages", "1") + props.put("replica.socket.timeout.ms", "1500") + props + } + + private def producerConfiguration: Properties = { + val props = new Properties() + props.put("metadata.broker.list", brokerAddress) + props.put("serializer.class", classOf[StringEncoder].getName) + // wait for all in-sync replicas to ack sends + props.put("request.required.acks", "-1") + props + } + + // A simplified version of scalatest eventually, rewritten here to avoid adding extra test + // dependency + def eventually[T](timeout: Time, interval: Time)(func: => T): T = { + def makeAttempt(): Either[Throwable, T] = { + try { + Right(func) + } catch { + case e if NonFatal(e) => Left(e) + } + } + + val startTime = System.currentTimeMillis() + @tailrec + def tryAgain(attempt: Int): T = { + makeAttempt() match { + case Right(result) => result + case Left(e) => + val duration = System.currentTimeMillis() - startTime + if (duration < timeout.milliseconds) { + Thread.sleep(interval.milliseconds) + } else { + throw new TimeoutException(e.getMessage) + } + + tryAgain(attempt + 1) + } + } + + tryAgain(1) + } + + private def waitUntilMetadataIsPropagated(topic: String, partition: Int): Unit = { + def isPropagated = server.apis.metadataCache.getPartitionInfo(topic, partition) match { + case Some(partitionState) => + val leaderAndInSyncReplicas = partitionState.leaderIsrAndControllerEpoch.leaderAndIsr + + zkUtils.getLeaderForPartition(topic, partition).isDefined && + Request.isValidBrokerId(leaderAndInSyncReplicas.leader) && + leaderAndInSyncReplicas.isr.size >= 1 + + case _ => + false + } + eventually(Time(10000), Time(100)) { + assert(isPropagated, s"Partition [$topic, $partition] metadata not propagated after timeout") + } + } + + private class EmbeddedZookeeper(val zkConnect: String) { + val snapshotDir = Utils.createTempDir() + val logDir = Utils.createTempDir() + + val zookeeper = new ZooKeeperServer(snapshotDir, logDir, 500) + val (ip, port) = { + val splits = zkConnect.split(":") + (splits(0), splits(1).toInt) + } + val factory = new NIOServerCnxnFactory() + factory.configure(new InetSocketAddress(ip, port), 16) + factory.startup(zookeeper) + + val actualPort = factory.getLocalPort + + def shutdown() { + factory.shutdown() + Utils.deleteRecursively(snapshotDir) + Utils.deleteRecursively(logDir) + } + } +} + diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaUtils.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaUtils.scala new file mode 100644 index 0000000000..c0524990bc --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaUtils.scala @@ -0,0 +1,175 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.{ util => ju } + +import org.apache.kafka.clients.consumer._ +import org.apache.kafka.common.TopicPartition + +import org.apache.spark.SparkContext +import org.apache.spark.annotation.Experimental +import org.apache.spark.api.java.{ JavaRDD, JavaSparkContext } +import org.apache.spark.api.java.function.{ Function0 => JFunction0 } +import org.apache.spark.internal.Logging +import org.apache.spark.rdd.RDD +import org.apache.spark.streaming.StreamingContext +import org.apache.spark.streaming.api.java.{ JavaInputDStream, JavaStreamingContext } +import org.apache.spark.streaming.dstream._ + +/** + * :: Experimental :: + * Companion object for constructing Kafka streams and RDDs + */ +@Experimental +object KafkaUtils extends Logging { + /** + * :: Experimental :: + * Scala constructor for a batch-oriented interface for consuming from Kafka. + * Starting and ending offsets are specified in advance, + * so that you can control exactly-once semantics. + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a>. Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsetRanges offset ranges that define the Kafka data belonging to this RDD + * @param locationStrategy In most cases, pass in [[PreferConsistent]], + * see [[LocationStrategy]] for more details. + * @tparam K type of Kafka message key + * @tparam V type of Kafka message value + */ + @Experimental + def createRDD[K, V]( + sc: SparkContext, + kafkaParams: ju.Map[String, Object], + offsetRanges: Array[OffsetRange], + locationStrategy: LocationStrategy + ): RDD[ConsumerRecord[K, V]] = { + val preferredHosts = locationStrategy match { + case PreferBrokers => + throw new AssertionError( + "If you want to prefer brokers, you must provide a mapping using PreferFixed " + + "A single KafkaRDD does not have a driver consumer and cannot look up brokers for you.") + case PreferConsistent => ju.Collections.emptyMap[TopicPartition, String]() + case PreferFixed(hostMap) => hostMap + } + val kp = new ju.HashMap[String, Object](kafkaParams) + fixKafkaParams(kp) + val osr = offsetRanges.clone() + + new KafkaRDD[K, V](sc, kp, osr, preferredHosts, true) + } + + /** + * :: Experimental :: + * Java constructor for a batch-oriented interface for consuming from Kafka. + * Starting and ending offsets are specified in advance, + * so that you can control exactly-once semantics. + * @param keyClass Class of the keys in the Kafka records + * @param valueClass Class of the values in the Kafka records + * @param kafkaParams Kafka + * <a href="http://kafka.apache.org/documentation.htmll#newconsumerconfigs"> + * configuration parameters</a>. Requires "bootstrap.servers" to be set + * with Kafka broker(s) specified in host1:port1,host2:port2 form. + * @param offsetRanges offset ranges that define the Kafka data belonging to this RDD + * @param locationStrategy In most cases, pass in [[PreferConsistent]], + * see [[LocationStrategy]] for more details. + * @tparam K type of Kafka message key + * @tparam V type of Kafka message value + */ + @Experimental + def createRDD[K, V]( + jsc: JavaSparkContext, + kafkaParams: ju.Map[String, Object], + offsetRanges: Array[OffsetRange], + locationStrategy: LocationStrategy + ): JavaRDD[ConsumerRecord[K, V]] = { + + new JavaRDD(createRDD[K, V](jsc.sc, kafkaParams, offsetRanges, locationStrategy)) + } + + /** + * :: Experimental :: + * Scala constructor for a DStream where + * each given Kafka topic/partition corresponds to an RDD partition. + * The spark configuration spark.streaming.kafka.maxRatePerPartition gives the maximum number + * of messages + * per second that each '''partition''' will accept. + * @param locationStrategy In most cases, pass in [[PreferConsistent]], + * see [[LocationStrategy]] for more details. + * @param consumerStrategy In most cases, pass in [[Subscribe]], + * see [[ConsumerStrategy]] for more details + * @tparam K type of Kafka message key + * @tparam V type of Kafka message value + */ + @Experimental + def createDirectStream[K, V]( + ssc: StreamingContext, + locationStrategy: LocationStrategy, + consumerStrategy: ConsumerStrategy[K, V] + ): InputDStream[ConsumerRecord[K, V]] = { + new DirectKafkaInputDStream[K, V](ssc, locationStrategy, consumerStrategy) + } + + /** + * :: Experimental :: + * Java constructor for a DStream where + * each given Kafka topic/partition corresponds to an RDD partition. + * @param keyClass Class of the keys in the Kafka records + * @param valueClass Class of the values in the Kafka records + * @param locationStrategy In most cases, pass in [[PreferConsistent]], + * see [[LocationStrategy]] for more details. + * @param consumerStrategy In most cases, pass in [[Subscribe]], + * see [[ConsumerStrategy]] for more details + * @tparam K type of Kafka message key + * @tparam V type of Kafka message value + */ + @Experimental + def createDirectStream[K, V]( + jssc: JavaStreamingContext, + locationStrategy: LocationStrategy, + consumerStrategy: ConsumerStrategy[K, V] + ): JavaInputDStream[ConsumerRecord[K, V]] = { + new JavaInputDStream( + createDirectStream[K, V]( + jssc.ssc, locationStrategy, consumerStrategy)) + } + + /** + * Tweak kafka params to prevent issues on executors + */ + private[kafka010] def fixKafkaParams(kafkaParams: ju.HashMap[String, Object]): Unit = { + logWarning(s"overriding ${ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG} to false for executor") + kafkaParams.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false: java.lang.Boolean) + + logWarning(s"overriding ${ConsumerConfig.AUTO_OFFSET_RESET_CONFIG} to none for executor") + kafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "none") + + // driver and executor should be in different consumer groups + val groupId = "spark-executor-" + kafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG) + logWarning(s"overriding executor ${ConsumerConfig.GROUP_ID_CONFIG} to ${groupId}") + kafkaParams.put(ConsumerConfig.GROUP_ID_CONFIG, groupId) + + // possible workaround for KAFKA-3135 + val rbb = kafkaParams.get(ConsumerConfig.RECEIVE_BUFFER_CONFIG) + if (null == rbb || rbb.asInstanceOf[java.lang.Integer] < 65536) { + logWarning(s"overriding ${ConsumerConfig.RECEIVE_BUFFER_CONFIG} to 65536 see KAFKA-3135") + kafkaParams.put(ConsumerConfig.RECEIVE_BUFFER_CONFIG, 65536: java.lang.Integer) + } + } +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/LocationStrategy.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/LocationStrategy.scala new file mode 100644 index 0000000000..df620300ea --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/LocationStrategy.scala @@ -0,0 +1,77 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.{ util => ju } + +import scala.collection.JavaConverters._ + +import org.apache.kafka.common.TopicPartition + +import org.apache.spark.annotation.Experimental + + +/** + * :: Experimental :: + * Choice of how to schedule consumers for a given TopicPartition on an executor. + * Kafka 0.10 consumers prefetch messages, so it's important for performance + * to keep cached consumers on appropriate executors, not recreate them for every partition. + * Choice of location is only a preference, not an absolute; partitions may be scheduled elsewhere. + */ +@Experimental +sealed trait LocationStrategy + +/** + * :: Experimental :: + * Use this only if your executors are on the same nodes as your Kafka brokers. + */ +@Experimental +case object PreferBrokers extends LocationStrategy { + def create: PreferBrokers.type = this +} + +/** + * :: Experimental :: + * Use this in most cases, it will consistently distribute partitions across all executors. + */ +@Experimental +case object PreferConsistent extends LocationStrategy { + def create: PreferConsistent.type = this +} + +/** + * :: Experimental :: + * Use this to place particular TopicPartitions on particular hosts if your load is uneven. + * Any TopicPartition not specified in the map will use a consistent location. + */ +@Experimental +case class PreferFixed private(hostMap: ju.Map[TopicPartition, String]) extends LocationStrategy + +/** + * :: Experimental :: + * Use this to place particular TopicPartitions on particular hosts if your load is uneven. + * Any TopicPartition not specified in the map will use a consistent location. + */ +@Experimental +object PreferFixed { + def apply(hostMap: collection.Map[TopicPartition, String]): PreferFixed = { + PreferFixed(new ju.HashMap[TopicPartition, String](hostMap.asJava)) + } + def create(hostMap: ju.Map[TopicPartition, String]): PreferFixed = + PreferFixed(hostMap) +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/OffsetRange.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/OffsetRange.scala new file mode 100644 index 0000000000..c66d3c9b8d --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/OffsetRange.scala @@ -0,0 +1,153 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import org.apache.kafka.clients.consumer.OffsetCommitCallback +import org.apache.kafka.common.TopicPartition + +import org.apache.spark.annotation.Experimental + +/** + * Represents any object that has a collection of [[OffsetRange]]s. This can be used to access the + * offset ranges in RDDs generated by the direct Kafka DStream (see + * [[KafkaUtils.createDirectStream]]). + * {{{ + * KafkaUtils.createDirectStream(...).foreachRDD { rdd => + * val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges + * ... + * } + * }}} + */ +trait HasOffsetRanges { + def offsetRanges: Array[OffsetRange] +} + +/** + * :: Experimental :: + * Represents any object that can commit a collection of [[OffsetRange]]s. + * The direct Kafka DStream implements this interface (see + * [[KafkaUtils.createDirectStream]]). + * {{{ + * val stream = KafkaUtils.createDirectStream(...) + * ... + * stream.asInstanceOf[CanCommitOffsets].commitAsync(offsets, new OffsetCommitCallback() { + * def onComplete(m: java.util.Map[TopicPartition, OffsetAndMetadata], e: Exception) { + * if (null != e) { + * // error + * } else { + * // success + * } + * } + * }) + * }}} + */ +@Experimental +trait CanCommitOffsets { + /** + * :: Experimental :: + * Queue up offset ranges for commit to Kafka at a future time. Threadsafe. + * This is only needed if you intend to store offsets in Kafka, instead of your own store. + * @param offsetRanges The maximum untilOffset for a given partition will be used at commit. + */ + @Experimental + def commitAsync(offsetRanges: Array[OffsetRange]): Unit + + /** + * :: Experimental :: + * Queue up offset ranges for commit to Kafka at a future time. Threadsafe. + * This is only needed if you intend to store offsets in Kafka, instead of your own store. + * @param offsetRanges The maximum untilOffset for a given partition will be used at commit. + * @param callback Only the most recently provided callback will be used at commit. + */ + @Experimental + def commitAsync(offsetRanges: Array[OffsetRange], callback: OffsetCommitCallback): Unit +} + +/** + * Represents a range of offsets from a single Kafka TopicPartition. Instances of this class + * can be created with `OffsetRange.create()`. + * @param topic Kafka topic name + * @param partition Kafka partition id + * @param fromOffset Inclusive starting offset + * @param untilOffset Exclusive ending offset + */ +final class OffsetRange private( + val topic: String, + val partition: Int, + val fromOffset: Long, + val untilOffset: Long) extends Serializable { + import OffsetRange.OffsetRangeTuple + + /** Kafka TopicPartition object, for convenience */ + def topicPartition(): TopicPartition = new TopicPartition(topic, partition) + + /** Number of messages this OffsetRange refers to */ + def count(): Long = untilOffset - fromOffset + + override def equals(obj: Any): Boolean = obj match { + case that: OffsetRange => + this.topic == that.topic && + this.partition == that.partition && + this.fromOffset == that.fromOffset && + this.untilOffset == that.untilOffset + case _ => false + } + + override def hashCode(): Int = { + toTuple.hashCode() + } + + override def toString(): String = { + s"OffsetRange(topic: '$topic', partition: $partition, range: [$fromOffset -> $untilOffset])" + } + + /** this is to avoid ClassNotFoundException during checkpoint restore */ + private[streaming] + def toTuple: OffsetRangeTuple = (topic, partition, fromOffset, untilOffset) +} + +/** + * Companion object the provides methods to create instances of [[OffsetRange]]. + */ +object OffsetRange { + def create(topic: String, partition: Int, fromOffset: Long, untilOffset: Long): OffsetRange = + new OffsetRange(topic, partition, fromOffset, untilOffset) + + def create( + topicPartition: TopicPartition, + fromOffset: Long, + untilOffset: Long): OffsetRange = + new OffsetRange(topicPartition.topic, topicPartition.partition, fromOffset, untilOffset) + + def apply(topic: String, partition: Int, fromOffset: Long, untilOffset: Long): OffsetRange = + new OffsetRange(topic, partition, fromOffset, untilOffset) + + def apply( + topicPartition: TopicPartition, + fromOffset: Long, + untilOffset: Long): OffsetRange = + new OffsetRange(topicPartition.topic, topicPartition.partition, fromOffset, untilOffset) + + /** this is to avoid ClassNotFoundException during checkpoint restore */ + private[kafka010] + type OffsetRangeTuple = (String, Int, Long, Long) + + private[kafka010] + def apply(t: OffsetRangeTuple) = + new OffsetRange(t._1, t._2, t._3, t._4) +} diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package-info.java b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package-info.java new file mode 100644 index 0000000000..ebfcf8764a --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package-info.java @@ -0,0 +1,21 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + * Spark Integration for Kafka 0.10 + */ +package org.apache.spark.streaming.kafka010; diff --git a/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package.scala b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package.scala new file mode 100644 index 0000000000..2bfc1e84d7 --- /dev/null +++ b/external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/package.scala @@ -0,0 +1,23 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming + +/** + * Spark Integration for Kafka 0.10 + */ +package object kafka diff --git a/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaConsumerStrategySuite.java b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaConsumerStrategySuite.java new file mode 100644 index 0000000000..aba45f5de6 --- /dev/null +++ b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaConsumerStrategySuite.java @@ -0,0 +1,84 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010; + +import java.io.Serializable; +import java.util.*; + +import scala.collection.JavaConverters; + +import org.apache.kafka.common.TopicPartition; + +import org.junit.Assert; +import org.junit.Test; + +public class JavaConsumerStrategySuite implements Serializable { + + @Test + public void testConsumerStrategyConstructors() { + final String topic1 = "topic1"; + final Collection<String> topics = Arrays.asList(topic1); + final scala.collection.Iterable<String> sTopics = + JavaConverters.collectionAsScalaIterableConverter(topics).asScala(); + final TopicPartition tp1 = new TopicPartition(topic1, 0); + final TopicPartition tp2 = new TopicPartition(topic1, 1); + final Collection<TopicPartition> parts = Arrays.asList(tp1, tp2); + final scala.collection.Iterable<TopicPartition> sParts = + JavaConverters.collectionAsScalaIterableConverter(parts).asScala(); + final Map<String, Object> kafkaParams = new HashMap<String, Object>(); + kafkaParams.put("bootstrap.servers", "not used"); + final scala.collection.Map<String, Object> sKafkaParams = + JavaConverters.mapAsScalaMapConverter(kafkaParams).asScala(); + final Map<TopicPartition, Object> offsets = new HashMap<>(); + offsets.put(tp1, 23L); + final scala.collection.Map<TopicPartition, Object> sOffsets = + JavaConverters.mapAsScalaMapConverter(offsets).asScala(); + + // make sure constructors can be called from java + final ConsumerStrategy<String, String> sub0 = + Subscribe.<String, String>apply(topics, kafkaParams, offsets); + final ConsumerStrategy<String, String> sub1 = + Subscribe.<String, String>apply(sTopics, sKafkaParams, sOffsets); + final ConsumerStrategy<String, String> sub2 = + Subscribe.<String, String>apply(sTopics, sKafkaParams); + final ConsumerStrategy<String, String> sub3 = + Subscribe.<String, String>create(topics, kafkaParams, offsets); + final ConsumerStrategy<String, String> sub4 = + Subscribe.<String, String>create(topics, kafkaParams); + + Assert.assertEquals( + sub1.executorKafkaParams().get("bootstrap.servers"), + sub3.executorKafkaParams().get("bootstrap.servers")); + + final ConsumerStrategy<String, String> asn0 = + Assign.<String, String>apply(parts, kafkaParams, offsets); + final ConsumerStrategy<String, String> asn1 = + Assign.<String, String>apply(sParts, sKafkaParams, sOffsets); + final ConsumerStrategy<String, String> asn2 = + Assign.<String, String>apply(sParts, sKafkaParams); + final ConsumerStrategy<String, String> asn3 = + Assign.<String, String>create(parts, kafkaParams, offsets); + final ConsumerStrategy<String, String> asn4 = + Assign.<String, String>create(parts, kafkaParams); + + Assert.assertEquals( + asn1.executorKafkaParams().get("bootstrap.servers"), + asn3.executorKafkaParams().get("bootstrap.servers")); + } + +} diff --git a/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaDirectKafkaStreamSuite.java b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaDirectKafkaStreamSuite.java new file mode 100644 index 0000000000..e57ede7afa --- /dev/null +++ b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaDirectKafkaStreamSuite.java @@ -0,0 +1,180 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010; + +import java.io.Serializable; +import java.util.*; +import java.util.concurrent.atomic.AtomicReference; + +import org.apache.kafka.common.serialization.StringDeserializer; +import org.apache.kafka.clients.consumer.ConsumerRecord; + +import org.junit.After; +import org.junit.Assert; +import org.junit.Before; +import org.junit.Test; + +import org.apache.spark.SparkConf; +import org.apache.spark.api.java.JavaRDD; +import org.apache.spark.api.java.function.Function; +import org.apache.spark.api.java.function.VoidFunction; +import org.apache.spark.streaming.Durations; +import org.apache.spark.streaming.api.java.JavaDStream; +import org.apache.spark.streaming.api.java.JavaInputDStream; +import org.apache.spark.streaming.api.java.JavaStreamingContext; + +public class JavaDirectKafkaStreamSuite implements Serializable { + private transient JavaStreamingContext ssc = null; + private transient KafkaTestUtils kafkaTestUtils = null; + + @Before + public void setUp() { + kafkaTestUtils = new KafkaTestUtils(); + kafkaTestUtils.setup(); + SparkConf sparkConf = new SparkConf() + .setMaster("local[4]").setAppName(this.getClass().getSimpleName()); + ssc = new JavaStreamingContext(sparkConf, Durations.milliseconds(200)); + } + + @After + public void tearDown() { + if (ssc != null) { + ssc.stop(); + ssc = null; + } + + if (kafkaTestUtils != null) { + kafkaTestUtils.teardown(); + kafkaTestUtils = null; + } + } + + @Test + public void testKafkaStream() throws InterruptedException { + final String topic1 = "topic1"; + final String topic2 = "topic2"; + // hold a reference to the current offset ranges, so it can be used downstream + final AtomicReference<OffsetRange[]> offsetRanges = new AtomicReference<>(); + + String[] topic1data = createTopicAndSendData(topic1); + String[] topic2data = createTopicAndSendData(topic2); + + Set<String> sent = new HashSet<>(); + sent.addAll(Arrays.asList(topic1data)); + sent.addAll(Arrays.asList(topic2data)); + + Random random = new Random(); + + final Map<String, Object> kafkaParams = new HashMap<>(); + kafkaParams.put("bootstrap.servers", kafkaTestUtils.brokerAddress()); + kafkaParams.put("key.deserializer", StringDeserializer.class); + kafkaParams.put("value.deserializer", StringDeserializer.class); + kafkaParams.put("auto.offset.reset", "earliest"); + kafkaParams.put("group.id", "java-test-consumer-" + random.nextInt() + + "-" + System.currentTimeMillis()); + + JavaInputDStream<ConsumerRecord<String, String>> istream1 = KafkaUtils.createDirectStream( + ssc, + PreferConsistent.create(), + Subscribe.<String, String>create(Arrays.asList(topic1), kafkaParams) + ); + + JavaDStream<String> stream1 = istream1.transform( + // Make sure you can get offset ranges from the rdd + new Function<JavaRDD<ConsumerRecord<String, String>>, + JavaRDD<ConsumerRecord<String, String>>>() { + @Override + public JavaRDD<ConsumerRecord<String, String>> call( + JavaRDD<ConsumerRecord<String, String>> rdd + ) { + OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges(); + offsetRanges.set(offsets); + Assert.assertEquals(topic1, offsets[0].topic()); + return rdd; + } + } + ).map( + new Function<ConsumerRecord<String, String>, String>() { + @Override + public String call(ConsumerRecord<String, String> r) { + return r.value(); + } + } + ); + + final Map<String, Object> kafkaParams2 = new HashMap<>(kafkaParams); + kafkaParams2.put("group.id", "java-test-consumer-" + random.nextInt() + + "-" + System.currentTimeMillis()); + + JavaInputDStream<ConsumerRecord<String, String>> istream2 = KafkaUtils.createDirectStream( + ssc, + PreferConsistent.create(), + Subscribe.<String, String>create(Arrays.asList(topic2), kafkaParams2) + ); + + JavaDStream<String> stream2 = istream2.transform( + // Make sure you can get offset ranges from the rdd + new Function<JavaRDD<ConsumerRecord<String, String>>, + JavaRDD<ConsumerRecord<String, String>>>() { + @Override + public JavaRDD<ConsumerRecord<String, String>> call( + JavaRDD<ConsumerRecord<String, String>> rdd + ) { + OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges(); + offsetRanges.set(offsets); + Assert.assertEquals(topic2, offsets[0].topic()); + return rdd; + } + } + ).map( + new Function<ConsumerRecord<String, String>, String>() { + @Override + public String call(ConsumerRecord<String, String> r) { + return r.value(); + } + } + ); + + JavaDStream<String> unifiedStream = stream1.union(stream2); + + final Set<String> result = Collections.synchronizedSet(new HashSet<String>()); + unifiedStream.foreachRDD(new VoidFunction<JavaRDD<String>>() { + @Override + public void call(JavaRDD<String> rdd) { + result.addAll(rdd.collect()); + } + } + ); + ssc.start(); + long startTime = System.currentTimeMillis(); + boolean matches = false; + while (!matches && System.currentTimeMillis() - startTime < 20000) { + matches = sent.size() == result.size(); + Thread.sleep(50); + } + Assert.assertEquals(sent, result); + ssc.stop(); + } + + private String[] createTopicAndSendData(String topic) { + String[] data = { topic + "-1", topic + "-2", topic + "-3"}; + kafkaTestUtils.createTopic(topic); + kafkaTestUtils.sendMessages(topic, data); + return data; + } +} diff --git a/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaKafkaRDDSuite.java b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaKafkaRDDSuite.java new file mode 100644 index 0000000000..548ba134dc --- /dev/null +++ b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaKafkaRDDSuite.java @@ -0,0 +1,122 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010; + +import java.io.Serializable; +import java.util.HashMap; +import java.util.Map; + +import org.apache.kafka.common.serialization.StringDeserializer; +import org.apache.kafka.common.TopicPartition; +import org.apache.kafka.clients.consumer.ConsumerRecord; +import org.junit.After; +import org.junit.Assert; +import org.junit.Before; +import org.junit.Test; + +import org.apache.spark.SparkConf; +import org.apache.spark.api.java.JavaRDD; +import org.apache.spark.api.java.JavaSparkContext; +import org.apache.spark.api.java.function.Function; + +public class JavaKafkaRDDSuite implements Serializable { + private transient JavaSparkContext sc = null; + private transient KafkaTestUtils kafkaTestUtils = null; + + @Before + public void setUp() { + kafkaTestUtils = new KafkaTestUtils(); + kafkaTestUtils.setup(); + SparkConf sparkConf = new SparkConf() + .setMaster("local[4]").setAppName(this.getClass().getSimpleName()); + sc = new JavaSparkContext(sparkConf); + } + + @After + public void tearDown() { + if (sc != null) { + sc.stop(); + sc = null; + } + + if (kafkaTestUtils != null) { + kafkaTestUtils.teardown(); + kafkaTestUtils = null; + } + } + + @Test + public void testKafkaRDD() throws InterruptedException { + String topic1 = "topic1"; + String topic2 = "topic2"; + + createTopicAndSendData(topic1); + createTopicAndSendData(topic2); + + Map<String, Object> kafkaParams = new HashMap<>(); + kafkaParams.put("bootstrap.servers", kafkaTestUtils.brokerAddress()); + kafkaParams.put("key.deserializer", StringDeserializer.class); + kafkaParams.put("value.deserializer", StringDeserializer.class); + + OffsetRange[] offsetRanges = { + OffsetRange.create(topic1, 0, 0, 1), + OffsetRange.create(topic2, 0, 0, 1) + }; + + Map<TopicPartition, String> leaders = new HashMap<>(); + String[] hostAndPort = kafkaTestUtils.brokerAddress().split(":"); + String broker = hostAndPort[0]; + leaders.put(offsetRanges[0].topicPartition(), broker); + leaders.put(offsetRanges[1].topicPartition(), broker); + + Function<ConsumerRecord<String, String>, String> handler = + new Function<ConsumerRecord<String, String>, String>() { + @Override + public String call(ConsumerRecord<String, String> r) { + return r.value(); + } + }; + + JavaRDD<String> rdd1 = KafkaUtils.<String, String>createRDD( + sc, + kafkaParams, + offsetRanges, + PreferFixed.create(leaders) + ).map(handler); + + JavaRDD<String> rdd2 = KafkaUtils.<String, String>createRDD( + sc, + kafkaParams, + offsetRanges, + PreferConsistent.create() + ).map(handler); + + // just making sure the java user apis work; the scala tests handle logic corner cases + long count1 = rdd1.count(); + long count2 = rdd2.count(); + Assert.assertTrue(count1 > 0); + Assert.assertEquals(count1, count2); + } + + private String[] createTopicAndSendData(String topic) { + String[] data = { topic + "-1", topic + "-2", topic + "-3"}; + kafkaTestUtils.createTopic(topic); + kafkaTestUtils.sendMessages(topic, data); + return data; + } +} diff --git a/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaLocationStrategySuite.java b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaLocationStrategySuite.java new file mode 100644 index 0000000000..7873c09e1a --- /dev/null +++ b/external/kafka-0-10/src/test/java/org/apache/spark/streaming/kafka010/JavaLocationStrategySuite.java @@ -0,0 +1,58 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010; + +import java.io.Serializable; +import java.util.*; + +import scala.collection.JavaConverters; + +import org.apache.kafka.common.TopicPartition; + +import org.junit.Assert; +import org.junit.Test; + +public class JavaLocationStrategySuite implements Serializable { + + @Test + public void testLocationStrategyConstructors() { + final String topic1 = "topic1"; + final TopicPartition tp1 = new TopicPartition(topic1, 0); + final TopicPartition tp2 = new TopicPartition(topic1, 1); + final Map<TopicPartition, String> hosts = new HashMap<>(); + hosts.put(tp1, "node1"); + hosts.put(tp2, "node2"); + final scala.collection.Map<TopicPartition, String> sHosts = + JavaConverters.mapAsScalaMapConverter(hosts).asScala(); + + // make sure constructors can be called from java + final LocationStrategy c1 = PreferConsistent.create(); + final LocationStrategy c2 = PreferConsistent$.MODULE$; + Assert.assertEquals(c1, c2); + + final LocationStrategy c3 = PreferBrokers.create(); + final LocationStrategy c4 = PreferBrokers$.MODULE$; + Assert.assertEquals(c3, c4); + + final LocationStrategy c5 = PreferFixed.create(hosts); + final LocationStrategy c6 = PreferFixed.apply(sHosts); + Assert.assertEquals(c5, c6); + + } + +} diff --git a/external/kafka-0-10/src/test/resources/log4j.properties b/external/kafka-0-10/src/test/resources/log4j.properties new file mode 100644 index 0000000000..75e3b53a09 --- /dev/null +++ b/external/kafka-0-10/src/test/resources/log4j.properties @@ -0,0 +1,28 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +# Set everything to be logged to the file target/unit-tests.log +log4j.rootCategory=INFO, file +log4j.appender.file=org.apache.log4j.FileAppender +log4j.appender.file.append=true +log4j.appender.file.file=target/unit-tests.log +log4j.appender.file.layout=org.apache.log4j.PatternLayout +log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss.SSS} %t %p %c{1}: %m%n + +# Ignore messages below warning level from Jetty, because it's a bit verbose +log4j.logger.org.spark-project.jetty=WARN + diff --git a/external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/DirectKafkaStreamSuite.scala b/external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/DirectKafkaStreamSuite.scala new file mode 100644 index 0000000000..776d11ad2f --- /dev/null +++ b/external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/DirectKafkaStreamSuite.scala @@ -0,0 +1,612 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.io.File +import java.util.{ Arrays, HashMap => JHashMap, Map => JMap } +import java.util.concurrent.atomic.AtomicLong +import java.util.concurrent.ConcurrentLinkedQueue + +import scala.collection.JavaConverters._ +import scala.concurrent.duration._ +import scala.language.postfixOps +import scala.util.Random + +import org.apache.kafka.clients.consumer._ +import org.apache.kafka.common.TopicPartition +import org.apache.kafka.common.serialization.StringDeserializer +import org.scalatest.{BeforeAndAfter, BeforeAndAfterAll} +import org.scalatest.concurrent.Eventually + +import org.apache.spark.{SparkConf, SparkContext, SparkFunSuite} +import org.apache.spark.internal.Logging +import org.apache.spark.rdd.RDD +import org.apache.spark.streaming.{Milliseconds, StreamingContext, Time} +import org.apache.spark.streaming.dstream.DStream +import org.apache.spark.streaming.scheduler._ +import org.apache.spark.streaming.scheduler.rate.RateEstimator +import org.apache.spark.util.Utils + +class DirectKafkaStreamSuite + extends SparkFunSuite + with BeforeAndAfter + with BeforeAndAfterAll + with Eventually + with Logging { + val sparkConf = new SparkConf() + .setMaster("local[4]") + .setAppName(this.getClass.getSimpleName) + + private var sc: SparkContext = _ + private var ssc: StreamingContext = _ + private var testDir: File = _ + + private var kafkaTestUtils: KafkaTestUtils = _ + + override def beforeAll { + kafkaTestUtils = new KafkaTestUtils + kafkaTestUtils.setup() + } + + override def afterAll { + if (kafkaTestUtils != null) { + kafkaTestUtils.teardown() + kafkaTestUtils = null + } + } + + after { + if (ssc != null) { + ssc.stop() + sc = null + } + if (sc != null) { + sc.stop() + } + if (testDir != null) { + Utils.deleteRecursively(testDir) + } + } + + def getKafkaParams(extra: (String, Object)*): JHashMap[String, Object] = { + val kp = new JHashMap[String, Object]() + kp.put("bootstrap.servers", kafkaTestUtils.brokerAddress) + kp.put("key.deserializer", classOf[StringDeserializer]) + kp.put("value.deserializer", classOf[StringDeserializer]) + kp.put("group.id", s"test-consumer-${Random.nextInt}-${System.currentTimeMillis}") + extra.foreach(e => kp.put(e._1, e._2)) + kp + } + + val preferredHosts = PreferConsistent + + test("basic stream receiving with multiple topics and smallest starting offset") { + val topics = List("basic1", "basic2", "basic3") + val data = Map("a" -> 7, "b" -> 9) + topics.foreach { t => + kafkaTestUtils.createTopic(t) + kafkaTestUtils.sendMessages(t, data) + } + val totalSent = data.values.sum * topics.size + val kafkaParams = getKafkaParams("auto.offset.reset" -> "earliest") + + ssc = new StreamingContext(sparkConf, Milliseconds(200)) + val stream = withClue("Error creating direct stream") { + KafkaUtils.createDirectStream[String, String]( + ssc, preferredHosts, Subscribe[String, String](topics, kafkaParams.asScala)) + } + val allReceived = new ConcurrentLinkedQueue[(String, String)]() + + // hold a reference to the current offset ranges, so it can be used downstream + var offsetRanges = Array[OffsetRange]() + val tf = stream.transform { rdd => + // Get the offset ranges in the RDD + offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges + rdd.map(r => (r.key, r.value)) + } + + tf.foreachRDD { rdd => + for (o <- offsetRanges) { + logInfo(s"${o.topic} ${o.partition} ${o.fromOffset} ${o.untilOffset}") + } + val collected = rdd.mapPartitionsWithIndex { (i, iter) => + // For each partition, get size of the range in the partition, + // and the number of items in the partition + val off = offsetRanges(i) + val all = iter.toSeq + val partSize = all.size + val rangeSize = off.untilOffset - off.fromOffset + Iterator((partSize, rangeSize)) + }.collect + + // Verify whether number of elements in each partition + // matches with the corresponding offset range + collected.foreach { case (partSize, rangeSize) => + assert(partSize === rangeSize, "offset ranges are wrong") + } + } + + stream.foreachRDD { rdd => + allReceived.addAll(Arrays.asList(rdd.map(r => (r.key, r.value)).collect(): _*)) + } + ssc.start() + eventually(timeout(20000.milliseconds), interval(200.milliseconds)) { + assert(allReceived.size === totalSent, + "didn't get expected number of messages, messages:\n" + + allReceived.asScala.mkString("\n")) + } + ssc.stop() + } + + test("receiving from largest starting offset") { + val topic = "latest" + val topicPartition = new TopicPartition(topic, 0) + val data = Map("a" -> 10) + kafkaTestUtils.createTopic(topic) + val kafkaParams = getKafkaParams("auto.offset.reset" -> "latest") + val kc = new KafkaConsumer(kafkaParams) + kc.assign(Arrays.asList(topicPartition)) + def getLatestOffset(): Long = { + kc.seekToEnd(Arrays.asList(topicPartition)) + kc.position(topicPartition) + } + + // Send some initial messages before starting context + kafkaTestUtils.sendMessages(topic, data) + eventually(timeout(10 seconds), interval(20 milliseconds)) { + assert(getLatestOffset() > 3) + } + val offsetBeforeStart = getLatestOffset() + kc.close() + + // Setup context and kafka stream with largest offset + ssc = new StreamingContext(sparkConf, Milliseconds(200)) + val stream = withClue("Error creating direct stream") { + val s = new DirectKafkaInputDStream[String, String]( + ssc, preferredHosts, Subscribe[String, String](List(topic), kafkaParams.asScala)) + s.consumer.poll(0) + assert( + s.consumer.position(topicPartition) >= offsetBeforeStart, + "Start offset not from latest" + ) + s + } + + val collectedData = new ConcurrentLinkedQueue[String]() + stream.map { _.value }.foreachRDD { rdd => + collectedData.addAll(Arrays.asList(rdd.collect(): _*)) + } + ssc.start() + val newData = Map("b" -> 10) + kafkaTestUtils.sendMessages(topic, newData) + eventually(timeout(10 seconds), interval(50 milliseconds)) { + collectedData.contains("b") + } + assert(!collectedData.contains("a")) + } + + + test("creating stream by offset") { + val topic = "offset" + val topicPartition = new TopicPartition(topic, 0) + val data = Map("a" -> 10) + kafkaTestUtils.createTopic(topic) + val kafkaParams = getKafkaParams("auto.offset.reset" -> "latest") + val kc = new KafkaConsumer(kafkaParams) + kc.assign(Arrays.asList(topicPartition)) + def getLatestOffset(): Long = { + kc.seekToEnd(Arrays.asList(topicPartition)) + kc.position(topicPartition) + } + + // Send some initial messages before starting context + kafkaTestUtils.sendMessages(topic, data) + eventually(timeout(10 seconds), interval(20 milliseconds)) { + assert(getLatestOffset() >= 10) + } + val offsetBeforeStart = getLatestOffset() + kc.close() + + // Setup context and kafka stream with largest offset + ssc = new StreamingContext(sparkConf, Milliseconds(200)) + val stream = withClue("Error creating direct stream") { + val s = new DirectKafkaInputDStream[String, String](ssc, preferredHosts, + Assign[String, String]( + List(topicPartition), + kafkaParams.asScala, + Map(topicPartition -> 11L))) + s.consumer.poll(0) + assert( + s.consumer.position(topicPartition) >= offsetBeforeStart, + "Start offset not from latest" + ) + s + } + + val collectedData = new ConcurrentLinkedQueue[String]() + stream.map(_.value).foreachRDD { rdd => collectedData.addAll(Arrays.asList(rdd.collect(): _*)) } + ssc.start() + val newData = Map("b" -> 10) + kafkaTestUtils.sendMessages(topic, newData) + eventually(timeout(10 seconds), interval(50 milliseconds)) { + collectedData.contains("b") + } + assert(!collectedData.contains("a")) + } + + // Test to verify the offset ranges can be recovered from the checkpoints + test("offset recovery") { + val topic = "recovery" + kafkaTestUtils.createTopic(topic) + testDir = Utils.createTempDir() + + val kafkaParams = getKafkaParams("auto.offset.reset" -> "earliest") + + // Send data to Kafka + def sendData(data: Seq[Int]) { + val strings = data.map { _.toString} + kafkaTestUtils.sendMessages(topic, strings.map { _ -> 1}.toMap) + } + + // Setup the streaming context + ssc = new StreamingContext(sparkConf, Milliseconds(100)) + val kafkaStream = withClue("Error creating direct stream") { + KafkaUtils.createDirectStream[String, String]( + ssc, preferredHosts, Subscribe[String, String](List(topic), kafkaParams.asScala)) + } + val keyedStream = kafkaStream.map { r => "key" -> r.value.toInt } + val stateStream = keyedStream.updateStateByKey { (values: Seq[Int], state: Option[Int]) => + Some(values.sum + state.getOrElse(0)) + } + ssc.checkpoint(testDir.getAbsolutePath) + + // This is ensure all the data is eventually receiving only once + stateStream.foreachRDD { (rdd: RDD[(String, Int)]) => + rdd.collect().headOption.foreach { x => + DirectKafkaStreamSuite.total.set(x._2) + } + } + + ssc.start() + + // Send some data + for (i <- (1 to 10).grouped(4)) { + sendData(i) + } + + eventually(timeout(10 seconds), interval(50 milliseconds)) { + assert(DirectKafkaStreamSuite.total.get === (1 to 10).sum) + } + + ssc.stop() + + // Verify that offset ranges were generated + val offsetRangesBeforeStop = getOffsetRanges(kafkaStream) + assert(offsetRangesBeforeStop.size >= 1, "No offset ranges generated") + assert( + offsetRangesBeforeStop.head._2.forall { _.fromOffset === 0 }, + "starting offset not zero" + ) + + logInfo("====== RESTARTING ========") + + // Recover context from checkpoints + ssc = new StreamingContext(testDir.getAbsolutePath) + val recoveredStream = + ssc.graph.getInputStreams().head.asInstanceOf[DStream[ConsumerRecord[String, String]]] + + // Verify offset ranges have been recovered + val recoveredOffsetRanges = getOffsetRanges(recoveredStream).map { x => (x._1, x._2.toSet) } + assert(recoveredOffsetRanges.size > 0, "No offset ranges recovered") + val earlierOffsetRanges = offsetRangesBeforeStop.map { x => (x._1, x._2.toSet) } + assert( + recoveredOffsetRanges.forall { or => + earlierOffsetRanges.contains((or._1, or._2)) + }, + "Recovered ranges are not the same as the ones generated\n" + + earlierOffsetRanges + "\n" + recoveredOffsetRanges + ) + // Restart context, give more data and verify the total at the end + // If the total is write that means each records has been received only once + ssc.start() + for (i <- (11 to 20).grouped(4)) { + sendData(i) + } + + eventually(timeout(10 seconds), interval(50 milliseconds)) { + assert(DirectKafkaStreamSuite.total.get === (1 to 20).sum) + } + ssc.stop() + } + + // Test to verify the offsets can be recovered from Kafka + test("offset recovery from kafka") { + val topic = "recoveryfromkafka" + kafkaTestUtils.createTopic(topic) + + val kafkaParams = getKafkaParams( + "auto.offset.reset" -> "earliest", + ("enable.auto.commit", false: java.lang.Boolean) + ) + + val collectedData = new ConcurrentLinkedQueue[String]() + val committed = new JHashMap[TopicPartition, OffsetAndMetadata]() + + // Send data to Kafka and wait for it to be received + def sendDataAndWaitForReceive(data: Seq[Int]) { + val strings = data.map { _.toString} + kafkaTestUtils.sendMessages(topic, strings.map { _ -> 1}.toMap) + eventually(timeout(10 seconds), interval(50 milliseconds)) { + assert(strings.forall { collectedData.contains }) + } + } + + // Setup the streaming context + ssc = new StreamingContext(sparkConf, Milliseconds(100)) + withClue("Error creating direct stream") { + val kafkaStream = KafkaUtils.createDirectStream[String, String]( + ssc, preferredHosts, Subscribe[String, String](List(topic), kafkaParams.asScala)) + kafkaStream.foreachRDD { (rdd: RDD[ConsumerRecord[String, String]], time: Time) => + val offsets = rdd.asInstanceOf[HasOffsetRanges].offsetRanges + val data = rdd.map(_.value).collect() + collectedData.addAll(Arrays.asList(data: _*)) + kafkaStream.asInstanceOf[CanCommitOffsets] + .commitAsync(offsets, new OffsetCommitCallback() { + def onComplete(m: JMap[TopicPartition, OffsetAndMetadata], e: Exception) { + if (null != e) { + logError("commit failed", e) + } else { + committed.putAll(m) + } + } + }) + } + } + ssc.start() + // Send some data and wait for them to be received + for (i <- (1 to 10).grouped(4)) { + sendDataAndWaitForReceive(i) + } + ssc.stop() + assert(! committed.isEmpty) + val consumer = new KafkaConsumer[String, String](kafkaParams) + consumer.subscribe(Arrays.asList(topic)) + consumer.poll(0) + committed.asScala.foreach { + case (k, v) => + // commits are async, not exactly once + assert(v.offset > 0) + assert(consumer.position(k) >= v.offset) + } + } + + + test("Direct Kafka stream report input information") { + val topic = "report-test" + val data = Map("a" -> 7, "b" -> 9) + kafkaTestUtils.createTopic(topic) + kafkaTestUtils.sendMessages(topic, data) + + val totalSent = data.values.sum + val kafkaParams = getKafkaParams("auto.offset.reset" -> "earliest") + + import DirectKafkaStreamSuite._ + ssc = new StreamingContext(sparkConf, Milliseconds(200)) + val collector = new InputInfoCollector + ssc.addStreamingListener(collector) + + val stream = withClue("Error creating direct stream") { + KafkaUtils.createDirectStream[String, String]( + ssc, preferredHosts, Subscribe[String, String](List(topic), kafkaParams.asScala)) + } + + val allReceived = new ConcurrentLinkedQueue[(String, String)] + + stream.map(r => (r.key, r.value)) + .foreachRDD { rdd => allReceived.addAll(Arrays.asList(rdd.collect(): _*)) } + ssc.start() + eventually(timeout(20000.milliseconds), interval(200.milliseconds)) { + assert(allReceived.size === totalSent, + "didn't get expected number of messages, messages:\n" + + allReceived.asScala.mkString("\n")) + + // Calculate all the record number collected in the StreamingListener. + assert(collector.numRecordsSubmitted.get() === totalSent) + assert(collector.numRecordsStarted.get() === totalSent) + assert(collector.numRecordsCompleted.get() === totalSent) + } + ssc.stop() + } + + test("maxMessagesPerPartition with backpressure disabled") { + val topic = "maxMessagesPerPartition" + val kafkaStream = getDirectKafkaStream(topic, None) + + val input = Map(new TopicPartition(topic, 0) -> 50L, new TopicPartition(topic, 1) -> 50L) + assert(kafkaStream.maxMessagesPerPartition(input).get == + Map(new TopicPartition(topic, 0) -> 10L, new TopicPartition(topic, 1) -> 10L)) + } + + test("maxMessagesPerPartition with no lag") { + val topic = "maxMessagesPerPartition" + val rateController = Some(new ConstantRateController(0, new ConstantEstimator(100), 100)) + val kafkaStream = getDirectKafkaStream(topic, rateController) + + val input = Map(new TopicPartition(topic, 0) -> 0L, new TopicPartition(topic, 1) -> 0L) + assert(kafkaStream.maxMessagesPerPartition(input).isEmpty) + } + + test("maxMessagesPerPartition respects max rate") { + val topic = "maxMessagesPerPartition" + val rateController = Some(new ConstantRateController(0, new ConstantEstimator(100), 1000)) + val kafkaStream = getDirectKafkaStream(topic, rateController) + + val input = Map(new TopicPartition(topic, 0) -> 1000L, new TopicPartition(topic, 1) -> 1000L) + assert(kafkaStream.maxMessagesPerPartition(input).get == + Map(new TopicPartition(topic, 0) -> 10L, new TopicPartition(topic, 1) -> 10L)) + } + + test("using rate controller") { + val topic = "backpressure" + val topicPartitions = Set(new TopicPartition(topic, 0), new TopicPartition(topic, 1)) + kafkaTestUtils.createTopic(topic, 2) + val kafkaParams = getKafkaParams("auto.offset.reset" -> "earliest") + val executorKafkaParams = new JHashMap[String, Object](kafkaParams) + KafkaUtils.fixKafkaParams(executorKafkaParams) + + val batchIntervalMilliseconds = 100 + val estimator = new ConstantEstimator(100) + val messages = Map("foo" -> 200) + kafkaTestUtils.sendMessages(topic, messages) + + val sparkConf = new SparkConf() + // Safe, even with streaming, because we're using the direct API. + // Using 1 core is useful to make the test more predictable. + .setMaster("local[1]") + .setAppName(this.getClass.getSimpleName) + .set("spark.streaming.kafka.maxRatePerPartition", "100") + + // Setup the streaming context + ssc = new StreamingContext(sparkConf, Milliseconds(batchIntervalMilliseconds)) + + val kafkaStream = withClue("Error creating direct stream") { + new DirectKafkaInputDStream[String, String]( + ssc, preferredHosts, Subscribe[String, String](List(topic), kafkaParams.asScala)) { + override protected[streaming] val rateController = + Some(new DirectKafkaRateController(id, estimator)) + }.map(r => (r.key, r.value)) + } + + val collectedData = new ConcurrentLinkedQueue[Array[String]]() + + // Used for assertion failure messages. + def dataToString: String = + collectedData.asScala.map(_.mkString("[", ",", "]")).mkString("{", ", ", "}") + + // This is to collect the raw data received from Kafka + kafkaStream.foreachRDD { (rdd: RDD[(String, String)], time: Time) => + val data = rdd.map { _._2 }.collect() + collectedData.add(data) + } + + ssc.start() + + // Try different rate limits. + // Wait for arrays of data to appear matching the rate. + Seq(100, 50, 20).foreach { rate => + collectedData.clear() // Empty this buffer on each pass. + estimator.updateRate(rate) // Set a new rate. + // Expect blocks of data equal to "rate", scaled by the interval length in secs. + val expectedSize = Math.round(rate * batchIntervalMilliseconds * 0.001) + eventually(timeout(5.seconds), interval(batchIntervalMilliseconds.milliseconds)) { + // Assert that rate estimator values are used to determine maxMessagesPerPartition. + // Funky "-" in message makes the complete assertion message read better. + assert(collectedData.asScala.exists(_.size == expectedSize), + s" - No arrays of size $expectedSize for rate $rate found in $dataToString") + } + } + + ssc.stop() + } + + /** Get the generated offset ranges from the DirectKafkaStream */ + private def getOffsetRanges[K, V]( + kafkaStream: DStream[ConsumerRecord[K, V]]): Seq[(Time, Array[OffsetRange])] = { + kafkaStream.generatedRDDs.mapValues { rdd => + rdd.asInstanceOf[HasOffsetRanges].offsetRanges + }.toSeq.sortBy { _._1 } + } + + private def getDirectKafkaStream(topic: String, mockRateController: Option[RateController]) = { + val batchIntervalMilliseconds = 100 + + val sparkConf = new SparkConf() + .setMaster("local[1]") + .setAppName(this.getClass.getSimpleName) + .set("spark.streaming.kafka.maxRatePerPartition", "100") + + // Setup the streaming context + ssc = new StreamingContext(sparkConf, Milliseconds(batchIntervalMilliseconds)) + + val kafkaParams = getKafkaParams("auto.offset.reset" -> "earliest") + val ekp = new JHashMap[String, Object](kafkaParams) + KafkaUtils.fixKafkaParams(ekp) + + val s = new DirectKafkaInputDStream[String, String]( + ssc, + preferredHosts, + new ConsumerStrategy[String, String] { + def executorKafkaParams = ekp + def onStart(currentOffsets: Map[TopicPartition, Long]): Consumer[String, String] = { + val consumer = new KafkaConsumer[String, String](kafkaParams) + val tps = List(new TopicPartition(topic, 0), new TopicPartition(topic, 1)) + consumer.assign(Arrays.asList(tps: _*)) + tps.foreach(tp => consumer.seek(tp, 0)) + consumer + } + } + ) { + override protected[streaming] val rateController = mockRateController + } + // manual start necessary because we arent consuming the stream, just checking its state + s.start() + s + } +} + +object DirectKafkaStreamSuite { + val total = new AtomicLong(-1L) + + class InputInfoCollector extends StreamingListener { + val numRecordsSubmitted = new AtomicLong(0L) + val numRecordsStarted = new AtomicLong(0L) + val numRecordsCompleted = new AtomicLong(0L) + + override def onBatchSubmitted(batchSubmitted: StreamingListenerBatchSubmitted): Unit = { + numRecordsSubmitted.addAndGet(batchSubmitted.batchInfo.numRecords) + } + + override def onBatchStarted(batchStarted: StreamingListenerBatchStarted): Unit = { + numRecordsStarted.addAndGet(batchStarted.batchInfo.numRecords) + } + + override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted): Unit = { + numRecordsCompleted.addAndGet(batchCompleted.batchInfo.numRecords) + } + } +} + +private[streaming] class ConstantEstimator(@volatile private var rate: Long) + extends RateEstimator { + + def updateRate(newRate: Long): Unit = { + rate = newRate + } + + def compute( + time: Long, + elements: Long, + processingDelay: Long, + schedulingDelay: Long): Option[Double] = Some(rate) +} + +private[streaming] class ConstantRateController(id: Int, estimator: RateEstimator, rate: Long) + extends RateController(id, estimator) { + override def publish(rate: Long): Unit = () + override def getLatestRate(): Long = rate +} diff --git a/external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/KafkaRDDSuite.scala b/external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/KafkaRDDSuite.scala new file mode 100644 index 0000000000..3d2546ddd9 --- /dev/null +++ b/external/kafka-0-10/src/test/scala/org/apache/spark/streaming/kafka010/KafkaRDDSuite.scala @@ -0,0 +1,169 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.kafka010 + +import java.{ util => ju } + +import scala.collection.JavaConverters._ +import scala.util.Random + +import org.apache.kafka.common.TopicPartition +import org.apache.kafka.common.serialization.StringDeserializer +import org.scalatest.BeforeAndAfterAll + +import org.apache.spark._ +import org.apache.spark.scheduler.ExecutorCacheTaskLocation + +class KafkaRDDSuite extends SparkFunSuite with BeforeAndAfterAll { + + private var kafkaTestUtils: KafkaTestUtils = _ + + private val sparkConf = new SparkConf().setMaster("local[4]") + .setAppName(this.getClass.getSimpleName) + private var sc: SparkContext = _ + + override def beforeAll { + sc = new SparkContext(sparkConf) + kafkaTestUtils = new KafkaTestUtils + kafkaTestUtils.setup() + } + + override def afterAll { + if (sc != null) { + sc.stop + sc = null + } + + if (kafkaTestUtils != null) { + kafkaTestUtils.teardown() + kafkaTestUtils = null + } + } + + private def getKafkaParams() = Map[String, Object]( + "bootstrap.servers" -> kafkaTestUtils.brokerAddress, + "key.deserializer" -> classOf[StringDeserializer], + "value.deserializer" -> classOf[StringDeserializer], + "group.id" -> s"test-consumer-${Random.nextInt}-${System.currentTimeMillis}" + ).asJava + + private val preferredHosts = PreferConsistent + + test("basic usage") { + val topic = s"topicbasic-${Random.nextInt}-${System.currentTimeMillis}" + kafkaTestUtils.createTopic(topic) + val messages = Array("the", "quick", "brown", "fox") + kafkaTestUtils.sendMessages(topic, messages) + + val kafkaParams = getKafkaParams() + + val offsetRanges = Array(OffsetRange(topic, 0, 0, messages.size)) + + val rdd = KafkaUtils.createRDD[String, String](sc, kafkaParams, offsetRanges, preferredHosts) + .map(_.value) + + val received = rdd.collect.toSet + assert(received === messages.toSet) + + // size-related method optimizations return sane results + assert(rdd.count === messages.size) + assert(rdd.countApprox(0).getFinalValue.mean === messages.size) + assert(!rdd.isEmpty) + assert(rdd.take(1).size === 1) + assert(rdd.take(1).head === messages.head) + assert(rdd.take(messages.size + 10).size === messages.size) + + val emptyRdd = KafkaUtils.createRDD[String, String]( + sc, kafkaParams, Array(OffsetRange(topic, 0, 0, 0)), preferredHosts) + + assert(emptyRdd.isEmpty) + + // invalid offset ranges throw exceptions + val badRanges = Array(OffsetRange(topic, 0, 0, messages.size + 1)) + intercept[SparkException] { + val result = KafkaUtils.createRDD[String, String](sc, kafkaParams, badRanges, preferredHosts) + .map(_.value) + .collect() + } + } + + test("iterator boundary conditions") { + // the idea is to find e.g. off-by-one errors between what kafka has available and the rdd + val topic = s"topicboundary-${Random.nextInt}-${System.currentTimeMillis}" + val sent = Map("a" -> 5, "b" -> 3, "c" -> 10) + kafkaTestUtils.createTopic(topic) + + val kafkaParams = getKafkaParams() + + // this is the "lots of messages" case + kafkaTestUtils.sendMessages(topic, sent) + var sentCount = sent.values.sum + + val rdd = KafkaUtils.createRDD[String, String](sc, kafkaParams, + Array(OffsetRange(topic, 0, 0, sentCount)), preferredHosts) + + val ranges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges + val rangeCount = ranges.map(o => o.untilOffset - o.fromOffset).sum + + assert(rangeCount === sentCount, "offset range didn't include all sent messages") + assert(rdd.map(_.offset).collect.sorted === (0 until sentCount).toArray, + "didn't get all sent messages") + + // this is the "0 messages" case + val rdd2 = KafkaUtils.createRDD[String, String](sc, kafkaParams, + Array(OffsetRange(topic, 0, sentCount, sentCount)), preferredHosts) + + // shouldn't get anything, since message is sent after rdd was defined + val sentOnlyOne = Map("d" -> 1) + + kafkaTestUtils.sendMessages(topic, sentOnlyOne) + + assert(rdd2.map(_.value).collect.size === 0, "got messages when there shouldn't be any") + + // this is the "exactly 1 message" case, namely the single message from sentOnlyOne above + val rdd3 = KafkaUtils.createRDD[String, String](sc, kafkaParams, + Array(OffsetRange(topic, 0, sentCount, sentCount + 1)), preferredHosts) + + // send lots of messages after rdd was defined, they shouldn't show up + kafkaTestUtils.sendMessages(topic, Map("extra" -> 22)) + + assert(rdd3.map(_.value).collect.head === sentOnlyOne.keys.head, + "didn't get exactly one message") + } + + test("executor sorting") { + val kafkaParams = new ju.HashMap[String, Object](getKafkaParams()) + kafkaParams.put("auto.offset.reset", "none") + val rdd = new KafkaRDD[String, String]( + sc, + kafkaParams, + Array(OffsetRange("unused", 0, 1, 2)), + ju.Collections.emptyMap[TopicPartition, String](), + true) + val a3 = ExecutorCacheTaskLocation("a", "3") + val a4 = ExecutorCacheTaskLocation("a", "4") + val b1 = ExecutorCacheTaskLocation("b", "1") + val b2 = ExecutorCacheTaskLocation("b", "2") + + val correct = Array(b2, b1, a4, a3) + + correct.permutations.foreach { p => + assert(p.sortWith(rdd.compareExecutors) === correct) + } + } +} diff --git a/pom.xml b/pom.xml index 89ed87ff9e..c99d786b14 100644 --- a/pom.xml +++ b/pom.xml @@ -109,6 +109,8 @@ <module>launcher</module> <module>external/kafka-0-8</module> <module>external/kafka-0-8-assembly</module> + <module>external/kafka-0-10</module> + <module>external/kafka-0-10-assembly</module> </modules> <properties> diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 4c01ad3c33..8e3dcc2f38 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -44,9 +44,9 @@ object BuildCommons { ).map(ProjectRef(buildLocation, _)) val streamingProjects@Seq( - streaming, streamingFlumeSink, streamingFlume, streamingKafka + streaming, streamingFlumeSink, streamingFlume, streamingKafka, streamingKafka010 ) = Seq( - "streaming", "streaming-flume-sink", "streaming-flume", "streaming-kafka-0-8" + "streaming", "streaming-flume-sink", "streaming-flume", "streaming-kafka-0-8", "streaming-kafka-0-10" ).map(ProjectRef(buildLocation, _)) val allProjects@Seq( @@ -61,8 +61,8 @@ object BuildCommons { Seq("yarn", "java8-tests", "ganglia-lgpl", "streaming-kinesis-asl", "docker-integration-tests").map(ProjectRef(buildLocation, _)) - val assemblyProjects@Seq(networkYarn, streamingFlumeAssembly, streamingKafkaAssembly, streamingKinesisAslAssembly) = - Seq("network-yarn", "streaming-flume-assembly", "streaming-kafka-0-8-assembly", "streaming-kinesis-asl-assembly") + val assemblyProjects@Seq(networkYarn, streamingFlumeAssembly, streamingKafkaAssembly, streamingKafka010Assembly, streamingKinesisAslAssembly) = + Seq("network-yarn", "streaming-flume-assembly", "streaming-kafka-0-8-assembly", "streaming-kafka-0-10-assembly", "streaming-kinesis-asl-assembly") .map(ProjectRef(buildLocation, _)) val copyJarsProjects@Seq(assembly, examples) = Seq("assembly", "examples") @@ -352,7 +352,7 @@ object SparkBuild extends PomBuild { val mimaProjects = allProjects.filterNot { x => Seq( spark, hive, hiveThriftServer, catalyst, repl, networkCommon, networkShuffle, networkYarn, - unsafe, tags, sketch, mllibLocal + unsafe, tags, sketch, mllibLocal, streamingKafka010 ).contains(x) } @@ -608,7 +608,7 @@ object Assembly { .getOrElse(SbtPomKeys.effectivePom.value.getProperties.get("hadoop.version").asInstanceOf[String]) }, jarName in assembly <<= (version, moduleName, hadoopVersion) map { (v, mName, hv) => - if (mName.contains("streaming-flume-assembly") || mName.contains("streaming-kafka-0-8-assembly") || mName.contains("streaming-kinesis-asl-assembly")) { + if (mName.contains("streaming-flume-assembly") || mName.contains("streaming-kafka-0-8-assembly") || mName.contains("streaming-kafka-0-10-assembly") || mName.contains("streaming-kinesis-asl-assembly")) { // This must match the same name used in maven (see external/kafka-0-8-assembly/pom.xml) s"${mName}-${v}.jar" } else { -- GitLab