From cd32d5e4dee1291e4509e5965322b7ffe620b1f3 Mon Sep 17 00:00:00 2001
From: Matei Zaharia <matei@databricks.com>
Date: Sun, 23 Feb 2014 23:45:48 -0800
Subject: [PATCH] SPARK-1124: Fix infinite retries of reduce stage when a map
 stage failed

In the previous code, if you had a failing map stage and then tried to
run reduce stages on it repeatedly, the first reduce stage would fail
correctly, but the later ones would mistakenly believe that all map
outputs are available and start failing infinitely with fetch failures
from "null".
---
 .../apache/spark/scheduler/DAGScheduler.scala | 31 ++++++++++---------
 .../scala/org/apache/spark/FailureSuite.scala | 13 ++++++++
 2 files changed, 30 insertions(+), 14 deletions(-)

diff --git a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala
index 729f518b89..789d5e6699 100644
--- a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala
+++ b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala
@@ -272,8 +272,10 @@ class DAGScheduler(
     if (mapOutputTracker.has(shuffleDep.shuffleId)) {
       val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)
       val locs = MapOutputTracker.deserializeMapStatuses(serLocs)
-      for (i <- 0 until locs.size) stage.outputLocs(i) = List(locs(i))
-      stage.numAvailableOutputs = locs.size
+      for (i <- 0 until locs.size) {
+        stage.outputLocs(i) = Option(locs(i)).toList   // locs(i) will be null if missing
+      }
+      stage.numAvailableOutputs = locs.count(_ != null)
     } else {
       // Kind of ugly: need to register RDDs with the cache and map output tracker here
       // since we can't do it in the RDD constructor because # of partitions is unknown
@@ -373,25 +375,26 @@ class DAGScheduler(
           } else {
             def removeStage(stageId: Int) {
               // data structures based on Stage
-              stageIdToStage.get(stageId).foreach { s =>
-                if (running.contains(s)) {
+              for (stage <- stageIdToStage.get(stageId)) {
+                if (running.contains(stage)) {
                   logDebug("Removing running stage %d".format(stageId))
-                  running -= s
+                  running -= stage
+                }
+                stageToInfos -= stage
+                for (shuffleDep <- stage.shuffleDep) {
+                  shuffleToMapStage.remove(shuffleDep.shuffleId)
                 }
-                stageToInfos -= s
-                shuffleToMapStage.keys.filter(shuffleToMapStage(_) == s).foreach(shuffleId =>
-                  shuffleToMapStage.remove(shuffleId))
-                if (pendingTasks.contains(s) && !pendingTasks(s).isEmpty) {
+                if (pendingTasks.contains(stage) && !pendingTasks(stage).isEmpty) {
                   logDebug("Removing pending status for stage %d".format(stageId))
                 }
-                pendingTasks -= s
-                if (waiting.contains(s)) {
+                pendingTasks -= stage
+                if (waiting.contains(stage)) {
                   logDebug("Removing stage %d from waiting set.".format(stageId))
-                  waiting -= s
+                  waiting -= stage
                 }
-                if (failed.contains(s)) {
+                if (failed.contains(stage)) {
                   logDebug("Removing stage %d from failed set.".format(stageId))
-                  failed -= s
+                  failed -= stage
                 }
               }
               // data structures based on StageId
diff --git a/core/src/test/scala/org/apache/spark/FailureSuite.scala b/core/src/test/scala/org/apache/spark/FailureSuite.scala
index ac3c86778d..f3fb64d87a 100644
--- a/core/src/test/scala/org/apache/spark/FailureSuite.scala
+++ b/core/src/test/scala/org/apache/spark/FailureSuite.scala
@@ -81,6 +81,19 @@ class FailureSuite extends FunSuite with LocalSparkContext {
     FailureSuiteState.clear()
   }
 
+  // Run a map-reduce job in which the map stage always fails.
+  test("failure in a map stage") {
+    sc = new SparkContext("local", "test")
+    val data = sc.makeRDD(1 to 3).map(x => { throw new Exception; (x, x) }).groupByKey(3)
+    intercept[SparkException] {
+      data.collect()
+    }
+    // Make sure that running new jobs with the same map stage also fails
+    intercept[SparkException] {
+      data.collect()
+    }
+  }
+
   test("failure because task results are not serializable") {
     sc = new SparkContext("local[1,1]", "test")
     val results = sc.makeRDD(1 to 3).map(x => new NonSerializable)
-- 
GitLab