diff --git a/bagel/src/main/scala/spark/bagel/Bagel.scala b/bagel/src/main/scala/spark/bagel/Bagel.scala
index 094e57dacb7cc313735c3f80556248c8d58f2e20..e10c03f6bad1c8640143afc8808c90afb16ca7d6 100644
--- a/bagel/src/main/scala/spark/bagel/Bagel.scala
+++ b/bagel/src/main/scala/spark/bagel/Bagel.scala
@@ -4,8 +4,38 @@ import spark._
 import spark.SparkContext._
 
 import scala.collection.mutable.ArrayBuffer
+import storage.StorageLevel
 
 object Bagel extends Logging {
+
+  val DEFAULT_STORAGE_LEVEL  = StorageLevel.MEMORY_ONLY
+
+  /**
+   * Runs a Bagel program.
+   * @param sc [[spark.SparkContext]] to use for the program.
+   * @param vertices vertices of the graph represented as an RDD of (Key, Vertex) pairs. Often the Key will be
+   *                 the vertex id.
+   * @param messages initial set of messages represented as an RDD of (Key, Message) pairs. Often this will be an
+   *                 empty array, i.e. sc.parallelize(Array[K, Message]()).
+   * @param combiner [[spark.bagel.Combiner]] combines multiple individual messages to a given vertex into one
+   *                message before sending (which often involves network I/O).
+   * @param aggregator [[spark.bagel.Aggregator]] performs a reduce across all vertices after each superstep,
+   *                  and provides the result to each vertex in the next superstep.
+   * @param partitioner [[spark.Partitioner]] partitions values by key
+   * @param numPartitions number of partitions across which to split the graph.
+   *                      Default is the default parallelism of the SparkContext
+   * @param storageLevel [[spark.storage.StorageLevel]] to use for caching of intermediate RDDs in each superstep.
+   *                    Defaults to caching in memory.
+   * @param compute function that takes a Vertex, optional set of (possibly combined) messages to the Vertex,
+   *                optional Aggregator and the current superstep,
+   *                and returns a set of (Vertex, outgoing Messages) pairs
+   * @tparam K key
+   * @tparam V vertex type
+   * @tparam M message type
+   * @tparam C combiner
+   * @tparam A aggregator
+   * @return an RDD of (K, V) pairs representing the graph after completion of the program
+   */
   def run[K: Manifest, V <: Vertex : Manifest, M <: Message[K] : Manifest,
           C: Manifest, A: Manifest](
     sc: SparkContext,
@@ -14,7 +44,8 @@ object Bagel extends Logging {
     combiner: Combiner[M, C],
     aggregator: Option[Aggregator[V, A]],
     partitioner: Partitioner,
-    numPartitions: Int
+    numPartitions: Int,
+    storageLevel: StorageLevel = DEFAULT_STORAGE_LEVEL
   )(
     compute: (V, Option[C], Option[A], Int) => (V, Array[M])
   ): RDD[(K, V)] = {
@@ -33,7 +64,7 @@ object Bagel extends Logging {
         combiner.createCombiner _, combiner.mergeMsg _, combiner.mergeCombiners _, partitioner)
       val grouped = combinedMsgs.groupWith(verts)
       val (processed, numMsgs, numActiveVerts) =
-        comp[K, V, M, C](sc, grouped, compute(_, _, aggregated, superstep))
+        comp[K, V, M, C](sc, grouped, compute(_, _, aggregated, superstep), storageLevel)
 
       val timeTaken = System.currentTimeMillis - startTime
       logInfo("Superstep %d took %d s".format(superstep, timeTaken / 1000))
@@ -50,6 +81,7 @@ object Bagel extends Logging {
     verts
   }
 
+  /** Runs a Bagel program with no [[spark.bagel.Aggregator]] and the default storage level */
   def run[K: Manifest, V <: Vertex : Manifest, M <: Message[K] : Manifest, C: Manifest](
     sc: SparkContext,
     vertices: RDD[(K, V)],
@@ -59,12 +91,29 @@ object Bagel extends Logging {
     numPartitions: Int
   )(
     compute: (V, Option[C], Int) => (V, Array[M])
+  ): RDD[(K, V)] = run(sc, vertices, messages, combiner, numPartitions, DEFAULT_STORAGE_LEVEL)(compute)
+
+  /** Runs a Bagel program with no [[spark.bagel.Aggregator]] */
+  def run[K: Manifest, V <: Vertex : Manifest, M <: Message[K] : Manifest, C: Manifest](
+    sc: SparkContext,
+    vertices: RDD[(K, V)],
+    messages: RDD[(K, M)],
+    combiner: Combiner[M, C],
+    partitioner: Partitioner,
+    numPartitions: Int,
+    storageLevel: StorageLevel
+  )(
+    compute: (V, Option[C], Int) => (V, Array[M])
   ): RDD[(K, V)] = {
     run[K, V, M, C, Nothing](
-      sc, vertices, messages, combiner, None, partitioner, numPartitions)(
+      sc, vertices, messages, combiner, None, partitioner, numPartitions, storageLevel)(
       addAggregatorArg[K, V, M, C](compute))
   }
 
+  /**
+   * Runs a Bagel program with no [[spark.bagel.Aggregator]], default [[spark.HashPartitioner]]
+   * and default storage level
+   */
   def run[K: Manifest, V <: Vertex : Manifest, M <: Message[K] : Manifest, C: Manifest](
     sc: SparkContext,
     vertices: RDD[(K, V)],
@@ -73,13 +122,29 @@ object Bagel extends Logging {
     numPartitions: Int
   )(
     compute: (V, Option[C], Int) => (V, Array[M])
+  ): RDD[(K, V)] = run(sc, vertices, messages, combiner, numPartitions, DEFAULT_STORAGE_LEVEL)(compute)
+
+  /** Runs a Bagel program with no [[spark.bagel.Aggregator]] and the default [[spark.HashPartitioner]]*/
+  def run[K: Manifest, V <: Vertex : Manifest, M <: Message[K] : Manifest, C: Manifest](
+    sc: SparkContext,
+    vertices: RDD[(K, V)],
+    messages: RDD[(K, M)],
+    combiner: Combiner[M, C],
+    numPartitions: Int,
+    storageLevel: StorageLevel
+  )(
+    compute: (V, Option[C], Int) => (V, Array[M])
   ): RDD[(K, V)] = {
     val part = new HashPartitioner(numPartitions)
     run[K, V, M, C, Nothing](
-      sc, vertices, messages, combiner, None, part, numPartitions)(
+      sc, vertices, messages, combiner, None, part, numPartitions, storageLevel)(
       addAggregatorArg[K, V, M, C](compute))
   }
 
+  /**
+   * Runs a Bagel program with no [[spark.bagel.Aggregator]], default [[spark.HashPartitioner]],
+   * [[spark.bagel.DefaultCombiner]] and the default storage level
+   */
   def run[K: Manifest, V <: Vertex : Manifest, M <: Message[K] : Manifest](
     sc: SparkContext,
     vertices: RDD[(K, V)],
@@ -87,10 +152,24 @@ object Bagel extends Logging {
     numPartitions: Int
   )(
     compute: (V, Option[Array[M]], Int) => (V, Array[M])
-  ): RDD[(K, V)] = {
+  ): RDD[(K, V)] = run(sc, vertices, messages, numPartitions, DEFAULT_STORAGE_LEVEL)(compute)
+
+  /**
+   * Runs a Bagel program with no [[spark.bagel.Aggregator]], the default [[spark.HashPartitioner]]
+   * and [[spark.bagel.DefaultCombiner]]
+   */
+  def run[K: Manifest, V <: Vertex : Manifest, M <: Message[K] : Manifest](
+    sc: SparkContext,
+    vertices: RDD[(K, V)],
+    messages: RDD[(K, M)],
+    numPartitions: Int,
+    storageLevel: StorageLevel
+   )(
+    compute: (V, Option[Array[M]], Int) => (V, Array[M])
+   ): RDD[(K, V)] = {
     val part = new HashPartitioner(numPartitions)
     run[K, V, M, Array[M], Nothing](
-      sc, vertices, messages, new DefaultCombiner(), None, part, numPartitions)(
+      sc, vertices, messages, new DefaultCombiner(), None, part, numPartitions, storageLevel)(
       addAggregatorArg[K, V, M, Array[M]](compute))
   }
 
@@ -117,7 +196,8 @@ object Bagel extends Logging {
   private def comp[K: Manifest, V <: Vertex, M <: Message[K], C](
     sc: SparkContext,
     grouped: RDD[(K, (Seq[C], Seq[V]))],
-    compute: (V, Option[C]) => (V, Array[M])
+    compute: (V, Option[C]) => (V, Array[M]),
+    storageLevel: StorageLevel
   ): (RDD[(K, (V, Array[M]))], Int, Int) = {
     var numMsgs = sc.accumulator(0)
     var numActiveVerts = sc.accumulator(0)
@@ -135,7 +215,7 @@ object Bagel extends Logging {
           numActiveVerts += 1
 
         Some((newVert, newMsgs))
-    }.cache
+    }.persist(storageLevel)
 
     // Force evaluation of processed RDD for accurate performance measurements
     processed.foreach(x => {})
@@ -166,6 +246,7 @@ trait Aggregator[V, A] {
   def mergeAggregators(a: A, b: A): A
 }
 
+/** Default combiner that simply appends messages together (i.e. performs no aggregation) */
 class DefaultCombiner[M: Manifest] extends Combiner[M, Array[M]] with Serializable {
   def createCombiner(msg: M): Array[M] =
     Array(msg)
diff --git a/bagel/src/test/scala/bagel/BagelSuite.scala b/bagel/src/test/scala/bagel/BagelSuite.scala
index 47829a431e871489b622ae0ea5e050163e0b1427..25db395c22128013d259aae8722d567e3c0ff76f 100644
--- a/bagel/src/test/scala/bagel/BagelSuite.scala
+++ b/bagel/src/test/scala/bagel/BagelSuite.scala
@@ -7,6 +7,7 @@ import org.scalatest.time.SpanSugar._
 import scala.collection.mutable.ArrayBuffer
 
 import spark._
+import storage.StorageLevel
 
 class TestVertex(val active: Boolean, val age: Int) extends Vertex with Serializable
 class TestMessage(val targetId: String) extends Message[String] with Serializable
@@ -79,4 +80,21 @@ class BagelSuite extends FunSuite with Assertions with BeforeAndAfter with Timeo
       }
     }
   }
+
+  test("using non-default persistence level") {
+    failAfter(10 seconds) {
+      sc = new SparkContext("local", "test")
+      val verts = sc.parallelize((1 to 4).map(id => (id.toString, new TestVertex(true, 0))))
+      val msgs = sc.parallelize(Array[(String, TestMessage)]())
+      val numSupersteps = 50
+      val result =
+        Bagel.run(sc, verts, msgs, sc.defaultParallelism, StorageLevel.DISK_ONLY) {
+          (self: TestVertex, msgs: Option[Array[TestMessage]], superstep: Int) =>
+            (new TestVertex(superstep < numSupersteps - 1, self.age + 1), Array[TestMessage]())
+        }
+      for ((id, vert) <- result.collect) {
+        assert(vert.age === numSupersteps)
+      }
+    }
+  }
 }