diff --git a/.gitignore b/.gitignore
index 00fbff6a2ca9169a8fa23ba501ab90d2922eb8ac..e1f64a113390a488f42cd590bf21c54119f85980 100644
--- a/.gitignore
+++ b/.gitignore
@@ -40,3 +40,4 @@ checkpoint
 derby.log
 dist/
 spark-*-bin.tar.gz
+unit-tests.log
diff --git a/README.md b/README.md
index e5f527b84a941795dc0b2819faa34bc5c63f2d7e..89b5a0abfd7f17044a656dc2c58ed559642a9940 100644
--- a/README.md
+++ b/README.md
@@ -16,20 +16,20 @@ Spark requires Scala 2.9.3 (Scala 2.10 is not yet supported). The project is
 built using Simple Build Tool (SBT), which is packaged with it. To build
 Spark and its example programs, run:
 
-    sbt/sbt package assembly
+    sbt/sbt assembly
 
 Spark also supports building using Maven. If you would like to build using Maven,
 see the [instructions for building Spark with Maven](http://spark-project.org/docs/latest/building-with-maven.html)
-in the spark documentation..
+in the Spark documentation..
 
 To run Spark, you will need to have Scala's bin directory in your `PATH`, or
 you will need to set the `SCALA_HOME` environment variable to point to where
 you've installed Scala. Scala must be accessible through one of these
 methods on your cluster's worker nodes as well as its master.
 
-To run one of the examples, use `./run <class> <params>`. For example:
+To run one of the examples, use `./run-example <class> <params>`. For example:
 
-    ./run spark.examples.SparkLR local[2]
+    ./run-example spark.examples.SparkLR local[2]
 
 will run the Logistic Regression example locally on 2 CPUs.
 
@@ -52,19 +52,19 @@ For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop
 versions without YARN, use:
 
     # Apache Hadoop 1.2.1
-    $ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt package assembly
+    $ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly
 
     # Cloudera CDH 4.2.0 with MapReduce v1
-    $ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt package assembly
+    $ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly
 
 For Apache Hadoop 2.x, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions
 with YARN, also set `SPARK_WITH_YARN=true`:
 
     # Apache Hadoop 2.0.5-alpha
-    $ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_WITH_YARN=true sbt/sbt package assembly
+    $ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_WITH_YARN=true sbt/sbt assembly
 
     # Cloudera CDH 4.2.0 with MapReduce v2
-    $ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_WITH_YARN=true sbt/sbt package assembly
+    $ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_WITH_YARN=true sbt/sbt assembly
 
 For convenience, these variables may also be set through the `conf/spark-env.sh` file
 described below.
diff --git a/assembly/lib/PY4J_LICENSE.txt b/assembly/lib/PY4J_LICENSE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a70279ca14ae3cdfd3f166871eb888f4d6e112ac
--- /dev/null
+++ b/assembly/lib/PY4J_LICENSE.txt
@@ -0,0 +1,27 @@
+
+Copyright (c) 2009-2011, Barthelemy Dagenais All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+- Redistributions of source code must retain the above copyright notice, this
+list of conditions and the following disclaimer.
+
+- Redistributions in binary form must reproduce the above copyright notice,
+this list of conditions and the following disclaimer in the documentation
+and/or other materials provided with the distribution.
+
+- The name of the author may not be used to endorse or promote products
+derived from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
diff --git a/assembly/lib/PY4J_VERSION.txt b/assembly/lib/PY4J_VERSION.txt
new file mode 100644
index 0000000000000000000000000000000000000000..04a0cd52a8d9c0bff32eb2d907f09b41969232ed
--- /dev/null
+++ b/assembly/lib/PY4J_VERSION.txt
@@ -0,0 +1 @@
+b7924aabe9c5e63f0a4d8bbd17019534c7ec014e
diff --git a/python/lib/py4j0.7.jar b/assembly/lib/net/sf/py4j/py4j/0.7/py4j-0.7.jar
similarity index 100%
rename from python/lib/py4j0.7.jar
rename to assembly/lib/net/sf/py4j/py4j/0.7/py4j-0.7.jar
diff --git a/assembly/lib/net/sf/py4j/py4j/0.7/py4j-0.7.pom b/assembly/lib/net/sf/py4j/py4j/0.7/py4j-0.7.pom
new file mode 100644
index 0000000000000000000000000000000000000000..1c730e19b4b2fff945777cbd089dbfe2f70450c6
--- /dev/null
+++ b/assembly/lib/net/sf/py4j/py4j/0.7/py4j-0.7.pom
@@ -0,0 +1,9 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
+    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
+  <modelVersion>4.0.0</modelVersion>
+  <groupId>net.sf.py4j</groupId>
+  <artifactId>py4j</artifactId>
+  <version>0.7</version>
+  <description>POM was created from install:install-file</description>
+</project>
diff --git a/assembly/lib/net/sf/py4j/py4j/maven-metadata-local.xml b/assembly/lib/net/sf/py4j/py4j/maven-metadata-local.xml
new file mode 100644
index 0000000000000000000000000000000000000000..6942ff45e75f194509598c9204752ea4560fdf7e
--- /dev/null
+++ b/assembly/lib/net/sf/py4j/py4j/maven-metadata-local.xml
@@ -0,0 +1,12 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<metadata>
+  <groupId>net.sf.py4j</groupId>
+  <artifactId>py4j</artifactId>
+  <versioning>
+    <release>0.7</release>
+    <versions>
+      <version>0.7</version>
+    </versions>
+    <lastUpdated>20130828020333</lastUpdated>
+  </versioning>
+</metadata>
diff --git a/assembly/pom.xml b/assembly/pom.xml
index ca20ccadba8de54bdfe299cb714348afdd7753fa..74990b636120de1fff01842fe478aea9127bae5a 100644
--- a/assembly/pom.xml
+++ b/assembly/pom.xml
@@ -1,4 +1,21 @@
 <?xml version="1.0" encoding="UTF-8"?>
+<!--
+  ~ Licensed to the Apache Software Foundation (ASF) under one or more
+  ~ contributor license agreements.  See the NOTICE file distributed with
+  ~ this work for additional information regarding copyright ownership.
+  ~ The ASF licenses this file to You under the Apache License, Version 2.0
+  ~ (the "License"); you may not use this file except in compliance with
+  ~ the License.  You may obtain a copy of the License at
+  ~
+  ~    http://www.apache.org/licenses/LICENSE-2.0
+  ~
+  ~ Unless required by applicable law or agreed to in writing, software
+  ~ distributed under the License is distributed on an "AS IS" BASIS,
+  ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+  ~ See the License for the specific language governing permissions and
+  ~ limitations under the License.
+  -->
+
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
   <modelVersion>4.0.0</modelVersion>
   <parent>
@@ -13,29 +30,13 @@
   <name>Spark Project Assembly</name>
   <url>http://spark-project.org/</url>
 
-  <build>
-    <plugins>
-      <plugin>
-        <groupId>org.apache.maven.plugins</groupId>
-        <artifactId>maven-assembly-plugin</artifactId>
-        <version>2.4</version>
-        <executions>
-          <execution>
-          <id>dist</id>
-          <phase>package</phase>
-          <goals>
-            <goal>single</goal>
-          </goals>
-          <configuration>
-            <descriptors>
-              <descriptor>src/main/assembly/assembly.xml</descriptor>
-            </descriptors>
-          </configuration>
-          </execution>
-        </executions>
-      </plugin>
-    </plugins>
-  </build>
+  <repositories>
+    <!-- A repository in the local filesystem for the Py4J JAR, which is not in Maven central -->
+    <repository>
+      <id>lib</id>
+      <url>file://${project.basedir}/lib</url>
+    </repository>
+  </repositories>
 
   <dependencies>
     <dependency>
@@ -63,5 +64,96 @@
       <artifactId>spark-streaming</artifactId>
       <version>${project.version}</version>
     </dependency>
+    <dependency>
+      <groupId>net.sf.py4j</groupId>
+      <artifactId>py4j</artifactId>
+      <version>0.7</version>
+    </dependency>
   </dependencies>
+
+  <build>
+    <plugins>
+      <!-- Use the shade plugin to create a big JAR with all the dependencies -->
+      <plugin>
+        <groupId>org.apache.maven.plugins</groupId>
+        <artifactId>maven-shade-plugin</artifactId>
+        <configuration>
+          <shadedArtifactAttached>false</shadedArtifactAttached>
+          <outputFile>${project.build.directory}/scala-${scala.version}/${project.artifactId}-${project.version}-hadoop${hadoop.version}.jar</outputFile>
+          <artifactSet>
+            <includes>
+              <include>*:*</include>
+            </includes>
+          </artifactSet>
+          <filters>
+            <filter>
+              <artifact>*:*</artifact>
+              <excludes>
+                <exclude>META-INF/*.SF</exclude>
+                <exclude>META-INF/*.DSA</exclude>
+                <exclude>META-INF/*.RSA</exclude>
+              </excludes>
+            </filter>
+          </filters>
+        </configuration>
+        <executions>
+          <execution>
+            <phase>package</phase>
+            <goals>
+              <goal>shade</goal>
+            </goals>
+            <configuration>
+              <transformers>
+                <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
+                <transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
+                  <resource>reference.conf</resource>
+                </transformer>
+              </transformers>
+            </configuration>
+          </execution>
+        </executions>
+      </plugin>
+    </plugins>
+  </build>
+
+  <profiles>
+    <profile>
+      <id>hadoop2-yarn</id>
+      <dependencies>
+        <dependency>
+          <groupId>org.spark-project</groupId>
+          <artifactId>spark-yarn</artifactId>
+          <version>${project.version}</version>
+        </dependency>
+      </dependencies>
+    </profile>
+    <profile>
+      <id>bigtop-dist</id>
+      <!-- This profile uses the assembly plugin to create a special "dist" package for BigTop
+           that contains Spark but not the Hadoop JARs it depends on. -->
+      <build>
+        <plugins>
+          <plugin>
+            <groupId>org.apache.maven.plugins</groupId>
+            <artifactId>maven-assembly-plugin</artifactId>
+            <version>2.4</version>
+            <executions>
+              <execution>
+                <id>dist</id>
+                <phase>package</phase>
+                <goals>
+                  <goal>single</goal>
+                </goals>
+                <configuration>
+                  <descriptors>
+                    <descriptor>src/main/assembly/assembly.xml</descriptor>
+                  </descriptors>
+                </configuration>
+              </execution>
+            </executions>
+          </plugin>
+        </plugins>
+      </build>
+    </profile>
+  </profiles>
 </project>
diff --git a/assembly/src/main/assembly/assembly.xml b/assembly/src/main/assembly/assembly.xml
index 14485b7181e90ad901548c0e4ff96c41b6c2a6ba..4543b52c93176182300f03b67e9da8d056d531d3 100644
--- a/assembly/src/main/assembly/assembly.xml
+++ b/assembly/src/main/assembly/assembly.xml
@@ -1,3 +1,19 @@
+<!--
+  ~ Licensed to the Apache Software Foundation (ASF) under one or more
+  ~ contributor license agreements.  See the NOTICE file distributed with
+  ~ this work for additional information regarding copyright ownership.
+  ~ The ASF licenses this file to You under the Apache License, Version 2.0
+  ~ (the "License"); you may not use this file except in compliance with
+  ~ the License.  You may obtain a copy of the License at
+  ~
+  ~    http://www.apache.org/licenses/LICENSE-2.0
+  ~
+  ~ Unless required by applicable law or agreed to in writing, software
+  ~ distributed under the License is distributed on an "AS IS" BASIS,
+  ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+  ~ See the License for the specific language governing permissions and
+  ~ limitations under the License.
+  -->
 <assembly>
   <id>dist</id>
   <formats>
@@ -36,7 +52,8 @@
       </directory>
       <outputDirectory>/bin</outputDirectory>
       <includes>
-        <include>run*</include>
+        <include>run-example*</include>
+        <include>spark-class*</include>
         <include>spark-shell*</include>
         <include>spark-executor*</include>
       </includes>
diff --git a/bin/compute-classpath.sh b/bin/compute-classpath.sh
index 7a21b3c4a140e4f7f006cba08097523be4923e57..c7819d49324042f9ecd54cf90c5b0cc66984d5be 100755
--- a/bin/compute-classpath.sh
+++ b/bin/compute-classpath.sh
@@ -30,79 +30,25 @@ if [ -e $FWDIR/conf/spark-env.sh ] ; then
   . $FWDIR/conf/spark-env.sh
 fi
 
-CORE_DIR="$FWDIR/core"
-REPL_DIR="$FWDIR/repl"
-REPL_BIN_DIR="$FWDIR/repl-bin"
-EXAMPLES_DIR="$FWDIR/examples"
-BAGEL_DIR="$FWDIR/bagel"
-MLLIB_DIR="$FWDIR/mllib"
-TOOLS_DIR="$FWDIR/tools"
-YARN_DIR="$FWDIR/yarn"
-STREAMING_DIR="$FWDIR/streaming"
-PYSPARK_DIR="$FWDIR/python"
-
 # Build up classpath
-CLASSPATH="$SPARK_CLASSPATH"
-
-function dev_classpath {
-  CLASSPATH="$CLASSPATH:$FWDIR/conf"
-  CLASSPATH="$CLASSPATH:$CORE_DIR/target/scala-$SCALA_VERSION/classes"
-  if [ -n "$SPARK_TESTING" ] ; then
-    CLASSPATH="$CLASSPATH:$CORE_DIR/target/scala-$SCALA_VERSION/test-classes"
-    CLASSPATH="$CLASSPATH:$STREAMING_DIR/target/scala-$SCALA_VERSION/test-classes"
-  fi
-  CLASSPATH="$CLASSPATH:$CORE_DIR/src/main/resources"
-  CLASSPATH="$CLASSPATH:$REPL_DIR/target/scala-$SCALA_VERSION/classes"
-  CLASSPATH="$CLASSPATH:$EXAMPLES_DIR/target/scala-$SCALA_VERSION/classes"
-  CLASSPATH="$CLASSPATH:$STREAMING_DIR/target/scala-$SCALA_VERSION/classes"
-  CLASSPATH="$CLASSPATH:$STREAMING_DIR/lib/org/apache/kafka/kafka/0.7.2-spark/*" # <-- our in-project Kafka Jar
-  if [ -e "$FWDIR/lib_managed" ]; then
-    CLASSPATH="$CLASSPATH:$FWDIR/lib_managed/jars/*"
-    CLASSPATH="$CLASSPATH:$FWDIR/lib_managed/bundles/*"
-  fi
-  CLASSPATH="$CLASSPATH:$REPL_DIR/lib/*"
-  # Add the shaded JAR for Maven builds
-  if [ -e $REPL_BIN_DIR/target ]; then
-    for jar in `find "$REPL_BIN_DIR/target" -name 'spark-repl-*-shaded.jar'`; do
-      CLASSPATH="$CLASSPATH:$jar"
-    done
-    # The shaded JAR doesn't contain examples, so include those separately
-    for jar in `find "$EXAMPLES_DIR/target" -name 'spark-examples*[0-9T].jar'`; do
-      CLASSPATH="$CLASSPATH:$jar"
-    done
-  fi
-  CLASSPATH="$CLASSPATH:$BAGEL_DIR/target/scala-$SCALA_VERSION/classes"
-  CLASSPATH="$CLASSPATH:$MLLIB_DIR/target/scala-$SCALA_VERSION/classes"
-  CLASSPATH="$CLASSPATH:$TOOLS_DIR/target/scala-$SCALA_VERSION/classes"
-  CLASSPATH="$CLASSPATH:$YARN_DIR/target/scala-$SCALA_VERSION/classes"
-  for jar in `find $PYSPARK_DIR/lib -name '*jar'`; do
-    CLASSPATH="$CLASSPATH:$jar"
-  done
-
-  # Add Scala standard library
-  if [ -z "$SCALA_LIBRARY_PATH" ]; then
-    if [ -z "$SCALA_HOME" ]; then
-      echo "SCALA_HOME is not set" >&2
-      exit 1
-    fi
-    SCALA_LIBRARY_PATH="$SCALA_HOME/lib"
-  fi
-  CLASSPATH="$CLASSPATH:$SCALA_LIBRARY_PATH/scala-library.jar"
-  CLASSPATH="$CLASSPATH:$SCALA_LIBRARY_PATH/scala-compiler.jar"
-  CLASSPATH="$CLASSPATH:$SCALA_LIBRARY_PATH/jline.jar"
-}
-
-function release_classpath {
-  CLASSPATH="$CLASSPATH:$FWDIR/jars/*"
-}
-
+CLASSPATH="$SPARK_CLASSPATH:$FWDIR/conf"
 if [ -f "$FWDIR/RELEASE" ]; then
-  release_classpath
+  ASSEMBLY_JAR=`ls "$FWDIR"/jars/spark-assembly*.jar`
 else
-  dev_classpath
+  ASSEMBLY_JAR=`ls "$FWDIR"/assembly/target/scala-$SCALA_VERSION/spark-assembly*hadoop*.jar`
+fi
+CLASSPATH="$CLASSPATH:$ASSEMBLY_JAR"
+
+# Add test classes if we're running from SBT or Maven with SPARK_TESTING set to 1
+if [[ $SPARK_TESTING == 1 ]]; then
+  CLASSPATH="$CLASSPATH:$FWDIR/core/target/scala-$SCALA_VERSION/test-classes"
+  CLASSPATH="$CLASSPATH:$FWDIR/repl/target/scala-$SCALA_VERSION/test-classes"
+  CLASSPATH="$CLASSPATH:$FWDIR/mllib/target/scala-$SCALA_VERSION/test-classes"
+  CLASSPATH="$CLASSPATH:$FWDIR/bagel/target/scala-$SCALA_VERSION/test-classes"
+  CLASSPATH="$CLASSPATH:$FWDIR/streaming/target/scala-$SCALA_VERSION/test-classes"
 fi
 
-# Add hadoop conf dir - else FileSystem.*, etc fail !
+# Add hadoop conf dir if given -- otherwise FileSystem.*, etc fail !
 # Note, this assumes that there is either a HADOOP_CONF_DIR or YARN_CONF_DIR which hosts
 # the configurtion files.
 if [ "x" != "x$HADOOP_CONF_DIR" ]; then
diff --git a/bin/spark-daemon.sh b/bin/spark-daemon.sh
index 96c71e66caebdb7307be4eb29c36560841e99d08..eac0774669e125b1dd4fbd5c215883301aaebbb1 100755
--- a/bin/spark-daemon.sh
+++ b/bin/spark-daemon.sh
@@ -87,7 +87,7 @@ TEST_LOG_DIR=$?
 if [ "${TEST_LOG_DIR}" = "0" ]; then
   rm -f $SPARK_LOG_DIR/.spark_test
 else
-  chown $SPARK_IDENT_STRING $SPARK_LOG_DIR 
+  chown $SPARK_IDENT_STRING $SPARK_LOG_DIR
 fi
 
 if [ "$SPARK_PID_DIR" = "" ]; then
@@ -109,7 +109,7 @@ fi
 case $startStop in
 
   (start)
-    
+
     mkdir -p "$SPARK_PID_DIR"
 
     if [ -f $pid ]; then
@@ -128,11 +128,11 @@ case $startStop in
     echo starting $command, logging to $log
     echo "Spark Daemon: $command" > $log
     cd "$SPARK_PREFIX"
-    nohup nice -n $SPARK_NICENESS "$SPARK_PREFIX"/run $command "$@" >> "$log" 2>&1 < /dev/null &
+    nohup nice -n $SPARK_NICENESS "$SPARK_PREFIX"/spark-class $command "$@" >> "$log" 2>&1 < /dev/null &
     echo $! > $pid
     sleep 1; head "$log"
     ;;
-          
+
   (stop)
 
     if [ -f $pid ]; then
diff --git a/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala b/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala
index 5e53d95ac2f364dd01e601200e4d361b4a0596f2..34665ce451a4a1c1e891e08b7493456a44c3272e 100644
--- a/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala
+++ b/core/src/main/scala/spark/deploy/worker/ExecutorRunner.scala
@@ -153,6 +153,7 @@ private[spark] class ExecutorRunner(
 
       // Launch the process
       val command = buildCommandSeq()
+      logInfo("Launch command: " + command.mkString("\"", "\" \"", "\""))
       val builder = new ProcessBuilder(command: _*).directory(executorDir)
       val env = builder.environment()
       for ((key, value) <- appDesc.command.environment) {
diff --git a/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala b/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala
index 6ebbb5ec9b2643964f4c338babbebee38ca08a8b..eef3ee142519f0ac9b6cdf6e62bc576090fa208e 100644
--- a/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala
+++ b/core/src/main/scala/spark/scheduler/mesos/CoarseMesosSchedulerBackend.scala
@@ -125,14 +125,14 @@ private[spark] class CoarseMesosSchedulerBackend(
       StandaloneSchedulerBackend.ACTOR_NAME)
     val uri = System.getProperty("spark.executor.uri")
     if (uri == null) {
-      val runScript = new File(sparkHome, "run").getCanonicalPath
+      val runScript = new File(sparkHome, "spark-class").getCanonicalPath
       command.setValue("\"%s\" spark.executor.StandaloneExecutorBackend %s %s %s %d".format(
         runScript, driverUrl, offer.getSlaveId.getValue, offer.getHostname, numCores))
     } else {
       // Grab everything to the first '.'. We'll use that and '*' to
       // glob the directory "correctly".
       val basename = uri.split('/').last.split('.').head
-      command.setValue("cd %s*; ./run spark.executor.StandaloneExecutorBackend %s %s %s %d".format(
+      command.setValue("cd %s*; ./spark-class spark.executor.StandaloneExecutorBackend %s %s %s %d".format(
         basename, driverUrl, offer.getSlaveId.getValue, offer.getHostname, numCores))
       command.addUris(CommandInfo.URI.newBuilder().setValue(uri))
     }
diff --git a/core/src/main/scala/spark/ui/UIWorkloadGenerator.scala b/core/src/main/scala/spark/ui/UIWorkloadGenerator.scala
index f96419520fb8bf19a0ebfab5680f2310ceaf77e2..5ff0572f0a33b37e8c6d4a9579ef871bd923cabf 100644
--- a/core/src/main/scala/spark/ui/UIWorkloadGenerator.scala
+++ b/core/src/main/scala/spark/ui/UIWorkloadGenerator.scala
@@ -35,7 +35,7 @@ private[spark] object UIWorkloadGenerator {
 
   def main(args: Array[String]) {
     if (args.length < 2) {
-      println("usage: ./run spark.ui.UIWorkloadGenerator [master] [FIFO|FAIR]")
+      println("usage: ./spark-class spark.ui.UIWorkloadGenerator [master] [FIFO|FAIR]")
       System.exit(1)
     }
     val master = args(0)
diff --git a/core/src/test/scala/spark/DriverSuite.scala b/core/src/test/scala/spark/DriverSuite.scala
index ed16b9d8efd176b6887e6b5957eaf32988033d28..553c0309f66fa5d4c5ca58202e3f4723d5fdd018 100644
--- a/core/src/test/scala/spark/DriverSuite.scala
+++ b/core/src/test/scala/spark/DriverSuite.scala
@@ -34,7 +34,7 @@ class DriverSuite extends FunSuite with Timeouts {
     val masters = Table(("master"), ("local"), ("local-cluster[2,1,512]"))
     forAll(masters) { (master: String) =>
       failAfter(30 seconds) {
-        Utils.execute(Seq("./run", "spark.DriverWithoutCleanup", master),
+        Utils.execute(Seq("./spark-class", "spark.DriverWithoutCleanup", master),
           new File(System.getenv("SPARK_HOME")))
       }
     }
diff --git a/docs/bagel-programming-guide.md b/docs/bagel-programming-guide.md
index 8a0fa42d946011218d89a2f3b041e3a7f37cd29b..c526da3ca0bca75d0919f9655fb09e353073b285 100644
--- a/docs/bagel-programming-guide.md
+++ b/docs/bagel-programming-guide.md
@@ -158,4 +158,4 @@ trait Message[K] {
 
 ## Where to Go from Here
 
-Two example jobs, PageRank and shortest path, are included in `bagel/src/main/scala/spark/bagel/examples`. You can run them by passing the class name to the `run` script included in Spark -- for example, `./run spark.bagel.examples.WikipediaPageRank`. Each example program prints usage help when run without any arguments.
+Two example jobs, PageRank and shortest path, are included in `examples/src/main/scala/spark/examples/bagel`. You can run them by passing the class name to the `run-example` script included in Spark -- for example, `./run-example spark.examples.bagel.WikipediaPageRank`. Each example program prints usage help when run without any arguments.
diff --git a/docs/building-with-maven.md b/docs/building-with-maven.md
index a9f2cb8a7ae1828401b9e8998d81a61070a0b396..7ecb601dddc48cf9755179af58d0e4400ab814b0 100644
--- a/docs/building-with-maven.md
+++ b/docs/building-with-maven.md
@@ -8,53 +8,51 @@ title: Building Spark with Maven
 
 Building Spark using Maven Requires Maven 3 (the build process is tested with Maven 3.0.4) and Java 1.6 or newer.
 
-## Specifying the Hadoop version ##
 
-To enable support for HDFS and other Hadoop-supported storage systems, specify the exact Hadoop version by setting the "hadoop.version" property. If unset, Spark will build against Hadoop 1.0.4 by default.
+## Setting up Maven's Memory Usage ##
 
-For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:
+You'll need to configure Maven to use more memory than usual by setting `MAVEN_OPTS`. We recommend the following settings:
 
-    # Apache Hadoop 1.2.1
-    $ mvn -Dhadoop.version=1.2.1 clean install
+    export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"
 
-    # Cloudera CDH 4.2.0 with MapReduce v1
-    $ mvn -Dhadoop.version=2.0.0-mr1-cdh4.2.0 clean install
+If you don't run this, you may see errors like the following:
 
-For Apache Hadoop 2.x, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, enable the "hadoop2-yarn" profile:
-
-    # Apache Hadoop 2.0.5-alpha
-    $ mvn -Phadoop2-yarn -Dhadoop.version=2.0.5-alpha clean install
+    [INFO] Compiling 203 Scala sources and 9 Java sources to /Users/me/Development/spark/core/target/scala-{{site.SCALA_VERSION}}/classes...
+    [ERROR] PermGen space -> [Help 1]
 
-    # Cloudera CDH 4.2.0 with MapReduce v2
-    $ mvn -Phadoop2-yarn -Dhadoop.version=2.0.0-cdh4.2.0 clean install
+    [INFO] Compiling 203 Scala sources and 9 Java sources to /Users/me/Development/spark/core/target/scala-{{site.SCALA_VERSION}}/classes...
+    [ERROR] Java heap space -> [Help 1]
 
+You can fix this by setting the `MAVEN_OPTS` variable as discussed before.
 
-## Spark Tests in Maven ##
+## Specifying the Hadoop version ##
 
-Tests are run by default via the scalatest-maven-plugin. With this you can do things like:
+Because HDFS is not protocol-compatible across versions, if you want to read from HDFS, you'll need to build Spark against the specific HDFS version in your environment. You can do this through the "hadoop.version" property. If unset, Spark will build against Hadoop 1.0.4 by default.
 
-Skip test execution (but not compilation):
+For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:
 
-    $ mvn -Dhadoop.version=... -DskipTests clean install
+    # Apache Hadoop 1.2.1
+    $ mvn -Dhadoop.version=1.2.1 -DskipTests clean package
 
-To run a specific test suite:
+    # Cloudera CDH 4.2.0 with MapReduce v1
+    $ mvn -Dhadoop.version=2.0.0-mr1-cdh4.2.0 -DskipTests clean package
 
-    $ mvn -Dhadoop.version=... -Dsuites=spark.repl.ReplSuite test
+For Apache Hadoop 2.x, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, you should also enable the "hadoop2-yarn" profile:
 
+    # Apache Hadoop 2.0.5-alpha
+    $ mvn -Phadoop2-yarn -Dhadoop.version=2.0.5-alpha -DskipTests clean package
 
-## Setting up JVM Memory Usage Via Maven ##
+    # Cloudera CDH 4.2.0 with MapReduce v2
+    $ mvn -Phadoop2-yarn -Dhadoop.version=2.0.0-cdh4.2.0 -DskipTests clean package
 
-You might run into the following errors if you're using a vanilla installation of Maven:
 
-    [INFO] Compiling 203 Scala sources and 9 Java sources to /Users/me/Development/spark/core/target/scala-{{site.SCALA_VERSION}}/classes...
-    [ERROR] PermGen space -> [Help 1]
+## Spark Tests in Maven ##
 
-    [INFO] Compiling 203 Scala sources and 9 Java sources to /Users/me/Development/spark/core/target/scala-{{site.SCALA_VERSION}}/classes...
-    [ERROR] Java heap space -> [Help 1]
+Tests are run by default via the [ScalaTest Maven plugin](http://www.scalatest.org/user_guide/using_the_scalatest_maven_plugin). Some of the require Spark to be packaged first, so always run `mvn package` with `-DskipTests` the first time. You can then run the tests with `mvn -Dhadoop.version=... test`.
 
-To fix these, you can do the following:
+The ScalaTest plugin also supports running only a specific test suite as follows:
 
-    export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=128M"
+    $ mvn -Dhadoop.version=... -Dsuites=spark.repl.ReplSuite test
 
 
 ## Continuous Compilation ##
@@ -63,8 +61,7 @@ We use the scala-maven-plugin which supports incremental and continuous compilat
 
     $ mvn scala:cc
 
-…should run continuous compilation (i.e. wait for changes). However, this has not been tested extensively.
-
+should run continuous compilation (i.e. wait for changes). However, this has not been tested extensively.
 
 ## Using With IntelliJ IDEA ##
 
@@ -72,8 +69,8 @@ This setup works fine in IntelliJ IDEA 11.1.4. After opening the project via the
 
 ## Building Spark Debian Packages ##
 
-It includes support for building a Debian package containing a 'fat-jar' which includes the repl, the examples and bagel. This can be created by specifying the deb profile:
+It includes support for building a Debian package containing a 'fat-jar' which includes the repl, the examples and bagel. This can be created by specifying the following profiles:
 
-    $ mvn -Pdeb clean install
+    $ mvn -Prepl-bin -Pdeb clean package
 
 The debian package can then be found under repl/target. We added the short commit hash to the file name so that we can distinguish individual packages build for SNAPSHOT versions.
diff --git a/docs/index.md b/docs/index.md
index 0c4add45dcd2adb6a5b4783a670afb985a6b8ce0..ec9c7dd4f30eb2e380b3573433b4952ad84b4780 100644
--- a/docs/index.md
+++ b/docs/index.md
@@ -20,16 +20,16 @@ of these methods on slave nodes on your cluster.
 
 Spark uses [Simple Build Tool](http://www.scala-sbt.org), which is bundled with it. To compile the code, go into the top-level Spark directory and run
 
-    sbt/sbt package
+    sbt/sbt assembly
 
 Spark also supports building using Maven. If you would like to build using Maven, see the [instructions for building Spark with Maven](building-with-maven.html).
 
 # Testing the Build
 
 Spark comes with a number of sample programs in the `examples` directory.
-To run one of the samples, use `./run <class> <params>` in the top-level Spark directory
+To run one of the samples, use `./run-example <class> <params>` in the top-level Spark directory
 (the `run` script sets up the appropriate paths and launches that program).
-For example, `./run spark.examples.SparkPi` will run a sample program that estimates Pi. Each of the
+For example, `./run-example spark.examples.SparkPi` will run a sample program that estimates Pi. Each of the
 examples prints usage help if no params are given.
 
 Note that all of the sample programs take a `<master>` parameter specifying the cluster URL
diff --git a/docs/java-programming-guide.md b/docs/java-programming-guide.md
index ae8257b53938e0672efc1cb35d4f77893a7a1ec2..dd19a5f0c970cdd96c5d9be0acc3255f7689d933 100644
--- a/docs/java-programming-guide.md
+++ b/docs/java-programming-guide.md
@@ -190,6 +190,6 @@ We hope to generate documentation with Java-style syntax in the future.
 
 Spark includes several sample programs using the Java API in
 [`examples/src/main/java`](https://github.com/mesos/spark/tree/master/examples/src/main/java/spark/examples).  You can run them by passing the class name to the
-`run` script included in Spark -- for example, `./run
+`run-example` script included in Spark -- for example, `./run-example
 spark.examples.JavaWordCount`.  Each example program prints usage help when run
 without any arguments.
diff --git a/docs/python-programming-guide.md b/docs/python-programming-guide.md
index 794bff56474c6b7331ba6906a09f64fa93de5b39..15d3ebfcae60c776f8d45ef7ce3e1ea2e5ca0780 100644
--- a/docs/python-programming-guide.md
+++ b/docs/python-programming-guide.md
@@ -70,7 +70,7 @@ The script automatically adds the `pyspark` package to the `PYTHONPATH`.
 The `pyspark` script launches a Python interpreter that is configured to run PySpark jobs. To use `pyspark` interactively, first build Spark, then launch it directly from the command line without any options:
 
 {% highlight bash %}
-$ sbt/sbt package
+$ sbt/sbt assembly
 $ ./pyspark
 {% endhighlight %}
 
diff --git a/docs/quick-start.md b/docs/quick-start.md
index 335643536aac959386cf8a915f5912d393a06d2f..4e9deadbaa8a39660219e553747c1ccc8b7ba2ce 100644
--- a/docs/quick-start.md
+++ b/docs/quick-start.md
@@ -12,7 +12,7 @@ See the [programming guide](scala-programming-guide.html) for a more complete re
 To follow along with this guide, you only need to have successfully built Spark on one machine. Simply go into your Spark directory and run:
 
 {% highlight bash %}
-$ sbt/sbt package
+$ sbt/sbt assembly
 {% endhighlight %}
 
 # Interactive Analysis with the Spark Shell
diff --git a/docs/running-on-yarn.md b/docs/running-on-yarn.md
index 1a0afd19d43597f932f4fefe2be6c7630f40aaa9..678cd57abac4c4deefef6000397316b58fe8ee4b 100644
--- a/docs/running-on-yarn.md
+++ b/docs/running-on-yarn.md
@@ -15,9 +15,9 @@ We need a consolidated spark core jar (which bundles all the required dependenci
 This can be built either through sbt or via maven.
 
 -   Building spark assembled jar via sbt.
-Enable YARN support by setting `SPARK_WITH_YARN=true` when invoking sbt:
+Enable YARN support by setting `SPARK_YARN=true` when invoking sbt:
 
-    SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_WITH_YARN=true ./sbt/sbt clean assembly
+    SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true ./sbt/sbt clean assembly
 
 The assembled jar would typically be something like :
 `./yarn/target/spark-yarn-assembly-0.8.0-SNAPSHOT.jar`
@@ -55,7 +55,7 @@ This would be used to connect to the cluster, write to the dfs and submit jobs t
 
 The command to launch the YARN Client is as follows:
 
-    SPARK_JAR=<SPARK_YARN_JAR_FILE> ./run spark.deploy.yarn.Client \
+    SPARK_JAR=<SPARK_YARN_JAR_FILE> ./spark-class spark.deploy.yarn.Client \
       --jar <YOUR_APP_JAR_FILE> \
       --class <APP_MAIN_CLASS> \
       --args <APP_MAIN_ARGUMENTS> \
@@ -67,7 +67,7 @@ The command to launch the YARN Client is as follows:
 
 For example:
 
-    SPARK_JAR=./yarn/target/spark-yarn-assembly-{{site.SPARK_VERSION}}.jar ./run spark.deploy.yarn.Client \
+    SPARK_JAR=./yarn/target/spark-yarn-assembly-{{site.SPARK_VERSION}}.jar ./spark-class spark.deploy.yarn.Client \
       --jar examples/target/scala-{{site.SCALA_VERSION}}/spark-examples_{{site.SCALA_VERSION}}-{{site.SPARK_VERSION}}.jar \
       --class spark.examples.SparkPi \
       --args yarn-standalone \
diff --git a/docs/scala-programming-guide.md b/docs/scala-programming-guide.md
index e9cf9ef36fcc4b7abb0468b81517292ae54b3ec2..db584d2096e79a111c613f4ea2ea8e2fc00f31b1 100644
--- a/docs/scala-programming-guide.md
+++ b/docs/scala-programming-guide.md
@@ -356,7 +356,7 @@ res2: Int = 10
 # Where to Go from Here
 
 You can see some [example Spark programs](http://www.spark-project.org/examples.html) on the Spark website.
-In addition, Spark includes several sample programs in `examples/src/main/scala`. Some of them have both Spark versions and local (non-parallel) versions, allowing you to see what had to be changed to make the program run on a cluster. You can run them using by passing the class name to the `run` script included in Spark -- for example, `./run spark.examples.SparkPi`. Each example program prints usage help when run without any arguments.
+In addition, Spark includes several sample programs in `examples/src/main/scala`. Some of them have both Spark versions and local (non-parallel) versions, allowing you to see what had to be changed to make the program run on a cluster. You can run them using by passing the class name to the `run-example` script included in Spark -- for example, `./run-example spark.examples.SparkPi`. Each example program prints usage help when run without any arguments.
 
 For help on optimizing your program, the [configuration](configuration.html) and
 [tuning](tuning.html) guides provide information on best practices. They are especially important for
diff --git a/docs/spark-standalone.md b/docs/spark-standalone.md
index 7463844a4e36aba77ff99f63fbdabbebe32d2df0..bb8be276c53c62ff8d798133f0e569ba541e34f8 100644
--- a/docs/spark-standalone.md
+++ b/docs/spark-standalone.md
@@ -20,7 +20,7 @@ Compile Spark with `sbt package` as described in the [Getting Started Guide](ind
 
 You can start a standalone master server by executing:
 
-    ./run spark.deploy.master.Master
+    ./spark-class spark.deploy.master.Master
 
 Once started, the master will print out a `spark://IP:PORT` URL for itself, which you can use to connect workers to it,
 or pass as the "master" argument to `SparkContext` to connect a job to the cluster. You can also find this URL on
@@ -28,7 +28,7 @@ the master's web UI, which is [http://localhost:8080](http://localhost:8080) by
 
 Similarly, you can start one or more workers and connect them to the master via:
 
-    ./run spark.deploy.worker.Worker spark://IP:PORT
+    ./spark-class spark.deploy.worker.Worker spark://IP:PORT
 
 Once you have started a worker, look at the master's web UI ([http://localhost:8080](http://localhost:8080) by default).
 You should see the new node listed there, along with its number of CPUs and memory (minus one gigabyte left for the OS).
diff --git a/docs/streaming-programming-guide.md b/docs/streaming-programming-guide.md
index a74c17bdb7a0ae20965e4d24bd2727fe6710d84a..3330e635986d805da2bcc1954943ffcb5e52ad5c 100644
--- a/docs/streaming-programming-guide.md
+++ b/docs/streaming-programming-guide.md
@@ -234,7 +234,7 @@ $ nc -lk 9999
 Then, in a different terminal, you can start NetworkWordCount by using
 
 {% highlight bash %}
-$ ./run spark.streaming.examples.NetworkWordCount local[2] localhost 9999
+$ ./run-example spark.streaming.examples.NetworkWordCount local[2] localhost 9999
 {% endhighlight %}
 
 This will make NetworkWordCount connect to the netcat server. Any lines typed in the terminal running the netcat server will be counted and printed on screen.
@@ -272,7 +272,7 @@ Time: 1357008430000 ms
 </td>
 </table>
 
-You can find more examples in `<Spark repo>/streaming/src/main/scala/spark/streaming/examples/`. They can be run in the similar manner using `./run spark.streaming.examples....` . Executing without any parameter would give the required parameter list. Further explanation to run them can be found in comments in the files.
+You can find more examples in `<Spark repo>/streaming/src/main/scala/spark/streaming/examples/`. They can be run in the similar manner using `./run-example spark.streaming.examples....` . Executing without any parameter would give the required parameter list. Further explanation to run them can be found in comments in the files.
 
 # DStream Persistence
 Similar to RDDs, DStreams also allow developers to persist the stream's data in memory. That is, using `persist()` method on a DStream would automatically persist every RDD of that DStream in memory. This is useful if the data in the DStream will be computed multiple times (e.g., multiple operations on the same data). For window-based operations like `reduceByWindow` and `reduceByKeyAndWindow` and state-based operations like `updateStateByKey`, this is implicitly true. Hence, DStreams generated by window-based operations are automatically persisted in memory, without the developer calling `persist()`.
diff --git a/examples/pom.xml b/examples/pom.xml
index 0db52b8691cbe2499b8f756529e3016abf3cd4ed..687fbcca8f34cf3b7b003fd2b8a2d3f72d71d032 100644
--- a/examples/pom.xml
+++ b/examples/pom.xml
@@ -36,16 +36,25 @@
       <groupId>org.spark-project</groupId>
       <artifactId>spark-core</artifactId>
       <version>${project.version}</version>
+      <scope>provided</scope>
     </dependency>
     <dependency>
       <groupId>org.spark-project</groupId>
       <artifactId>spark-streaming</artifactId>
       <version>${project.version}</version>
+      <scope>provided</scope>
     </dependency>
     <dependency>
       <groupId>org.spark-project</groupId>
       <artifactId>spark-mllib</artifactId>
       <version>${project.version}</version>
+      <scope>provided</scope>
+    </dependency>
+    <dependency>
+      <groupId>org.spark-project</groupId>
+      <artifactId>spark-bagel</artifactId>
+      <version>${project.version}</version>
+      <scope>provided</scope>
     </dependency>
     <dependency>
       <groupId>org.apache.hbase</groupId>
@@ -62,10 +71,6 @@
         </exclusion>
       </exclusions>
     </dependency>
-    <dependency>
-      <groupId>org.scala-lang</groupId>
-      <artifactId>scala-library</artifactId>
-    </dependency>
     <dependency>
       <groupId>org.eclipse.jetty</groupId>
       <artifactId>jetty-server</artifactId>
@@ -121,13 +126,63 @@
       </exclusions>
     </dependency>
   </dependencies>
+
+  <profiles>
+    <profile>
+      <id>hadoop2-yarn</id>
+      <dependencies>
+        <dependency>
+          <groupId>org.spark-project</groupId>
+          <artifactId>spark-yarn</artifactId>
+          <version>${project.version}</version>
+          <scope>provided</scope>
+        </dependency>
+      </dependencies>
+    </profile>
+  </profiles>
+
   <build>
     <outputDirectory>target/scala-${scala.version}/classes</outputDirectory>
     <testOutputDirectory>target/scala-${scala.version}/test-classes</testOutputDirectory>
     <plugins>
       <plugin>
-        <groupId>org.scalatest</groupId>
-        <artifactId>scalatest-maven-plugin</artifactId>
+        <groupId>org.apache.maven.plugins</groupId>
+        <artifactId>maven-shade-plugin</artifactId>
+        <configuration>
+          <shadedArtifactAttached>false</shadedArtifactAttached>
+          <outputFile>${project.build.directory}/scala-${scala.version}/${project.artifactId}-assembly-${project.version}.jar</outputFile>
+          <artifactSet>
+            <includes>
+              <include>*:*</include>
+            </includes>
+          </artifactSet>
+          <filters>
+            <filter>
+              <artifact>*:*</artifact>
+              <excludes>
+                <exclude>META-INF/*.SF</exclude>
+                <exclude>META-INF/*.DSA</exclude>
+                <exclude>META-INF/*.RSA</exclude>
+              </excludes>
+            </filter>
+          </filters>
+        </configuration>
+        <executions>
+          <execution>
+            <phase>package</phase>
+            <goals>
+              <goal>shade</goal>
+            </goals>
+            <configuration>
+              <transformers>
+                <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
+                <transformer implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
+                  <resource>reference.conf</resource>
+                </transformer>
+              </transformers>
+            </configuration>
+          </execution>
+        </executions>
       </plugin>
     </plugins>
   </build>
diff --git a/bagel/src/main/scala/spark/bagel/examples/PageRankUtils.scala b/examples/src/main/scala/spark/examples/bagel/PageRankUtils.scala
similarity index 99%
rename from bagel/src/main/scala/spark/bagel/examples/PageRankUtils.scala
rename to examples/src/main/scala/spark/examples/bagel/PageRankUtils.scala
index de65e27fe0ece661bbce0376707970c8e1113dbe..c23ee9895f2b73f139a551ce542d2da1dbfafe7f 100644
--- a/bagel/src/main/scala/spark/bagel/examples/PageRankUtils.scala
+++ b/examples/src/main/scala/spark/examples/bagel/PageRankUtils.scala
@@ -15,7 +15,7 @@
  * limitations under the License.
  */
 
-package spark.bagel.examples
+package spark.examples.bagel
 
 import spark._
 import spark.SparkContext._
diff --git a/bagel/src/main/scala/spark/bagel/examples/WikipediaPageRank.scala b/examples/src/main/scala/spark/examples/bagel/WikipediaPageRank.scala
similarity index 99%
rename from bagel/src/main/scala/spark/bagel/examples/WikipediaPageRank.scala
rename to examples/src/main/scala/spark/examples/bagel/WikipediaPageRank.scala
index a0c5ac9c183463bb09310424afca51c125fda46d..00635a7ffa2f7471c3db86fe3d31d1aea91d9de4 100644
--- a/bagel/src/main/scala/spark/bagel/examples/WikipediaPageRank.scala
+++ b/examples/src/main/scala/spark/examples/bagel/WikipediaPageRank.scala
@@ -15,7 +15,7 @@
  * limitations under the License.
  */
 
-package spark.bagel.examples
+package spark.examples.bagel
 
 import spark._
 import spark.SparkContext._
diff --git a/bagel/src/main/scala/spark/bagel/examples/WikipediaPageRankStandalone.scala b/examples/src/main/scala/spark/examples/bagel/WikipediaPageRankStandalone.scala
similarity index 99%
rename from bagel/src/main/scala/spark/bagel/examples/WikipediaPageRankStandalone.scala
rename to examples/src/main/scala/spark/examples/bagel/WikipediaPageRankStandalone.scala
index 3c54a85f425dfd02626759edf1c4c333a9526f97..c416ddbc584bdb2d20b9b5b5abb55231762f325d 100644
--- a/bagel/src/main/scala/spark/bagel/examples/WikipediaPageRankStandalone.scala
+++ b/examples/src/main/scala/spark/examples/bagel/WikipediaPageRankStandalone.scala
@@ -15,7 +15,7 @@
  * limitations under the License.
  */
 
-package spark.bagel.examples
+package spark.examples.bagel
 
 import spark._
 import serializer.{DeserializationStream, SerializationStream, SerializerInstance}
diff --git a/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala b/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala
index f97174aeaeaf1e1764687bb8e5b1132661ad1a4d..05d3176478130301d34db93c81de5c5d268ee279 100644
--- a/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala
+++ b/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala
@@ -132,9 +132,9 @@ object FeederActor {
  *   <hostname> and <port> describe the AkkaSystem that Spark Sample feeder is running on.
  *
  * To run this example locally, you may run Feeder Actor as
- *    `$ ./run spark.streaming.examples.FeederActor 127.0.1.1 9999`
+ *    `$ ./run-example spark.streaming.examples.FeederActor 127.0.1.1 9999`
  * and then run the example
- *    `$ ./run spark.streaming.examples.ActorWordCount local[2] 127.0.1.1 9999`
+ *    `$ ./run-example spark.streaming.examples.ActorWordCount local[2] 127.0.1.1 9999`
  */
 object ActorWordCount {
   def main(args: Array[String]) {
diff --git a/examples/src/main/scala/spark/streaming/examples/HdfsWordCount.scala b/examples/src/main/scala/spark/streaming/examples/HdfsWordCount.scala
index f5baec242dadf7b4e9104ae1eb7b013742cb2069..30af01a26f42e4243fde65782dda231134d45c9e 100644
--- a/examples/src/main/scala/spark/streaming/examples/HdfsWordCount.scala
+++ b/examples/src/main/scala/spark/streaming/examples/HdfsWordCount.scala
@@ -28,7 +28,7 @@ import spark.streaming.StreamingContext._
  *   <directory> is the directory that Spark Streaming will use to find and read new text files.
  *
  * To run this on your local machine on directory `localdir`, run this example
- *    `$ ./run spark.streaming.examples.HdfsWordCount local[2] localdir`
+ *    `$ ./run-example spark.streaming.examples.HdfsWordCount local[2] localdir`
  * Then create a text file in `localdir` and the words in the file will get counted.
  */
 object HdfsWordCount {
diff --git a/examples/src/main/scala/spark/streaming/examples/KafkaWordCount.scala b/examples/src/main/scala/spark/streaming/examples/KafkaWordCount.scala
index 4929703ba2f0d7fd0c97ac4a052f96569da9a3af..d9c76d1a33bf6c1da810bd4d4fca354d45fa2518 100644
--- a/examples/src/main/scala/spark/streaming/examples/KafkaWordCount.scala
+++ b/examples/src/main/scala/spark/streaming/examples/KafkaWordCount.scala
@@ -37,7 +37,7 @@ import spark.streaming.util.RawTextHelper._
  *   <numThreads> is the number of threads the kafka consumer should use
  *
  * Example:
- *    `./run spark.streaming.examples.KafkaWordCount local[2] zoo01,zoo02,zoo03 my-consumer-group topic1,topic2 1`
+ *    `./run-example spark.streaming.examples.KafkaWordCount local[2] zoo01,zoo02,zoo03 my-consumer-group topic1,topic2 1`
  */
 object KafkaWordCount {
   def main(args: Array[String]) {
diff --git a/examples/src/main/scala/spark/streaming/examples/NetworkWordCount.scala b/examples/src/main/scala/spark/streaming/examples/NetworkWordCount.scala
index 150fb5eb9c35ad3e96be5c8cf1ba18f58919dddc..b29d79aac53d7fd71d1f9de36452a992eb7999e7 100644
--- a/examples/src/main/scala/spark/streaming/examples/NetworkWordCount.scala
+++ b/examples/src/main/scala/spark/streaming/examples/NetworkWordCount.scala
@@ -29,7 +29,7 @@ import spark.streaming.StreamingContext._
  * To run this on your local machine, you need to first run a Netcat server
  *    `$ nc -lk 9999`
  * and then run the example
- *    `$ ./run spark.streaming.examples.NetworkWordCount local[2] localhost 9999`
+ *    `$ ./run-example spark.streaming.examples.NetworkWordCount local[2] localhost 9999`
  */
 object NetworkWordCount {
   def main(args: Array[String]) {
diff --git a/examples/src/main/scala/spark/streaming/examples/StatefulNetworkWordCount.scala b/examples/src/main/scala/spark/streaming/examples/StatefulNetworkWordCount.scala
index 33ab324732c06d57f27b6758fa2e682b4da22074..b709fc3c87ca1487163cafcf4b9232674fea5f10 100644
--- a/examples/src/main/scala/spark/streaming/examples/StatefulNetworkWordCount.scala
+++ b/examples/src/main/scala/spark/streaming/examples/StatefulNetworkWordCount.scala
@@ -29,7 +29,7 @@ import spark.streaming.StreamingContext._
  * To run this on your local machine, you need to first run a Netcat server
  *    `$ nc -lk 9999`
  * and then run the example
- *    `$ ./run spark.streaming.examples.StatefulNetworkWordCount local[2] localhost 9999`
+ *    `$ ./run-example spark.streaming.examples.StatefulNetworkWordCount local[2] localhost 9999`
  */
 object StatefulNetworkWordCount {
   def main(args: Array[String]) {
diff --git a/examples/src/main/scala/spark/streaming/examples/ZeroMQWordCount.scala b/examples/src/main/scala/spark/streaming/examples/ZeroMQWordCount.scala
index e264fae6097d9e6cc5509ecf4be95dfcb46b4459..a0cae06c3093fbae6bf73fad450a72390b6c640d 100644
--- a/examples/src/main/scala/spark/streaming/examples/ZeroMQWordCount.scala
+++ b/examples/src/main/scala/spark/streaming/examples/ZeroMQWordCount.scala
@@ -60,9 +60,9 @@ object SimpleZeroMQPublisher {
  *   <zeroMQurl> and <topic> describe where zeroMq publisher is running.
  *
  * To run this example locally, you may run publisher as
- *    `$ ./run spark.streaming.examples.SimpleZeroMQPublisher tcp://127.0.1.1:1234 foo.bar`
+ *    `$ ./run-example spark.streaming.examples.SimpleZeroMQPublisher tcp://127.0.1.1:1234 foo.bar`
  * and run the example as
- *    `$ ./run spark.streaming.examples.ZeroMQWordCount local[2] tcp://127.0.1.1:1234 foo`
+ *    `$ ./run-example spark.streaming.examples.ZeroMQWordCount local[2] tcp://127.0.1.1:1234 foo`
  */
 object ZeroMQWordCount {
   def main(args: Array[String]) {
diff --git a/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewGenerator.scala b/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewGenerator.scala
index 375d5c9d220fd0211e4317677d8779ab870f4a0a..dd36bbbf3207ccc8823b0df989ba546c0fac37f0 100644
--- a/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewGenerator.scala
+++ b/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewGenerator.scala
@@ -37,8 +37,8 @@ object PageView {
 /** Generates streaming events to simulate page views on a website.
   *
   * This should be used in tandem with PageViewStream.scala. Example:
-  * $ ./run spark.streaming.examples.clickstream.PageViewGenerator 44444 10
-  * $ ./run spark.streaming.examples.clickstream.PageViewStream errorRatePerZipCode localhost 44444
+  * $ ./run-example spark.streaming.examples.clickstream.PageViewGenerator 44444 10
+  * $ ./run-example spark.streaming.examples.clickstream.PageViewStream errorRatePerZipCode localhost 44444
   * */
 object PageViewGenerator {
   val pages = Map("http://foo.com/"        -> .7,
diff --git a/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewStream.scala b/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewStream.scala
index a24342bebf9c0f6dbc8fa903887de1451b1654bd..152da2348989051fb00fb3d68a25953163975d1c 100644
--- a/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewStream.scala
+++ b/examples/src/main/scala/spark/streaming/examples/clickstream/PageViewStream.scala
@@ -25,9 +25,9 @@ import spark.SparkContext._
   * operators available in Spark streaming.
   *
   * This should be used in tandem with PageViewStream.scala. Example:
-  * $ ./run spark.streaming.examples.clickstream.PageViewGenerator 44444 10
-  * $ ./run spark.streaming.examples.clickstream.PageViewStream errorRatePerZipCode localhost 44444
-  * */
+  * $ ./run-example spark.streaming.examples.clickstream.PageViewGenerator 44444 10
+  * $ ./run-example spark.streaming.examples.clickstream.PageViewStream errorRatePerZipCode localhost 44444
+  */
 object PageViewStream {
   def main(args: Array[String]) {
     if (args.length != 3) {
diff --git a/make-distribution.sh b/make-distribution.sh
index 70aff418c709267cceb059a09a49a71b4ac30120..91f62784912bc2f90e92ec6553e9230d5e1184f7 100755
--- a/make-distribution.sh
+++ b/make-distribution.sh
@@ -47,7 +47,7 @@ VERSION=$($FWDIR/sbt/sbt "show version" | tail -1 | cut -f 2 | sed 's/^\([a-zA-Z
 
 # Initialize defaults
 SPARK_HADOOP_VERSION=1.0.4
-SPARK_WITH_YARN=false
+SPARK_YARN=false
 MAKE_TGZ=false
 
 # Parse arguments
@@ -58,7 +58,7 @@ while (( "$#" )); do
       shift
       ;;
     --with-yarn)
-      SPARK_WITH_YARN=true
+      SPARK_YARN=true
       ;;
     --tgz)
       MAKE_TGZ=true
@@ -74,7 +74,7 @@ else
 fi
 
 echo "Hadoop version set to $SPARK_HADOOP_VERSION"
-if [ "$SPARK_WITH_YARN" == "true" ]; then
+if [ "$SPARK_YARN" == "true" ]; then
   echo "YARN enabled"
 else
   echo "YARN disabled"
@@ -82,22 +82,26 @@ fi
 
 # Build fat JAR
 export SPARK_HADOOP_VERSION
-export SPARK_WITH_YARN
-"$FWDIR/sbt/sbt" "repl/assembly"
+export SPARK_YARN
+"$FWDIR/sbt/sbt" "assembly/assembly"
 
 # Make directories
 rm -rf "$DISTDIR"
 mkdir -p "$DISTDIR/jars"
-echo "$VERSION" > "$DISTDIR/RELEASE"
+echo "Spark $VERSION built for Hadoop $SPARK_HADOOP_VERSION" > "$DISTDIR/RELEASE"
 
 # Copy jars
-cp $FWDIR/repl/target/*.jar "$DISTDIR/jars/"
+cp $FWDIR/assembly/target/scala*/*assembly*hadoop*.jar "$DISTDIR/jars/"
 
 # Copy other things
+mkdir "$DISTDIR"/conf
+cp -r "$FWDIR/conf/*.template" "$DISTDIR"
 cp -r "$FWDIR/bin" "$DISTDIR"
-cp -r "$FWDIR/conf" "$DISTDIR"
-cp "$FWDIR/run" "$FWDIR/spark-shell" "$DISTDIR"
+cp -r "$FWDIR/python" "$DISTDIR"
+cp "$FWDIR/spark-class" "$DISTDIR"
+cp "$FWDIR/spark-shell" "$DISTDIR"
 cp "$FWDIR/spark-executor" "$DISTDIR"
+cp "$FWDIR/pyspark" "$DISTDIR"
 
 
 if [ "$MAKE_TGZ" == "true" ]; then
diff --git a/pom.xml b/pom.xml
index 85bcd8696c2faacff5398bbd479bf6eaed7bf522..e2fd54a9660aeb84919467a8bc3f96a1be6e509b 100644
--- a/pom.xml
+++ b/pom.xml
@@ -62,6 +62,7 @@
     <module>tools</module>
     <module>streaming</module>
     <module>repl</module>
+    <module>assembly</module>
   </modules>
 
   <properties>
@@ -75,7 +76,7 @@
     <slf4j.version>1.7.2</slf4j.version>
     <log4j.version>1.2.17</log4j.version>
     <hadoop.version>1.0.4</hadoop.version>
-    <!-- <hadoop.version>2.0.0-mr1-cdh4.1.2</hadoop.version> -->
+    <hbase.version>0.94.6</hbase.version>
 
     <PermGen>64m</PermGen>
     <MaxPermGen>512m</MaxPermGen>
@@ -492,7 +493,7 @@
             <reportsDirectory>${project.build.directory}/surefire-reports</reportsDirectory>
             <junitxml>.</junitxml>
             <filereports>${project.build.directory}/SparkTestSuite.txt</filereports>
-            <argLine>-Xms64m -Xmx1024m</argLine>
+            <argLine>-Xms64m -Xmx3g</argLine>
             <stderr/>
           </configuration>
           <executions>
@@ -743,21 +744,10 @@
       </dependencyManagement>
     </profile>
     <profile>
-      <id>assembly</id>
+      <id>repl-bin</id>
       <activation>
         <activeByDefault>false</activeByDefault>
       </activation>
-      <modules>
-        <module>assembly</module>
-      </modules>
-    </profile>
-    <profile>
-      <id>expensive-modules</id>
-      <activation>
-        <property>
-          <name>!noExpensive</name>
-        </property>
-      </activation>
       <modules>
         <module>repl-bin</module>
       </modules>
diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala
index 5fdcf19b62401e7fb742bd545b75da0fb5c1819a..2e2681267137ca5bd29df9469ba27dae869eb288 100644
--- a/project/SparkBuild.scala
+++ b/project/SparkBuild.scala
@@ -26,30 +26,35 @@ import AssemblyKeys._
 object SparkBuild extends Build {
   // Hadoop version to build against. For example, "1.0.4" for Apache releases, or
   // "2.0.0-mr1-cdh4.2.0" for Cloudera Hadoop. Note that these variables can be set
-  // through the environment variables SPARK_HADOOP_VERSION and SPARK_WITH_YARN.
+  // through the environment variables SPARK_HADOOP_VERSION and SPARK_YARN.
   val DEFAULT_HADOOP_VERSION = "1.0.4"
-  val DEFAULT_WITH_YARN = false
+  val DEFAULT_YARN = false
 
   // HBase version; set as appropriate.
   val HBASE_VERSION = "0.94.6"
 
-  lazy val root = Project("root", file("."), settings = rootSettings) aggregate(allProjects:_*)
+  lazy val root = Project("root", file("."), settings = rootSettings) aggregate(allProjects: _*)
 
   lazy val core = Project("core", file("core"), settings = coreSettings)
 
-  lazy val repl = Project("repl", file("repl"), settings = replSettings) dependsOn(core) dependsOn(bagel) dependsOn(mllib) dependsOn(maybeYarn:_*)
+  lazy val repl = Project("repl", file("repl"), settings = replSettings)
+    .dependsOn(core, bagel, mllib) dependsOn(maybeYarn: _*)
 
-  lazy val examples = Project("examples", file("examples"), settings = examplesSettings) dependsOn (core) dependsOn (streaming) dependsOn(mllib)
+  lazy val examples = Project("examples", file("examples"), settings = examplesSettings)
+    .dependsOn(core, mllib, bagel, streaming) dependsOn(maybeYarn: _*)
 
-  lazy val tools = Project("tools", file("tools"), settings = examplesSettings) dependsOn (core) dependsOn (streaming)
+  lazy val tools = Project("tools", file("tools"), settings = toolsSettings) dependsOn(core) dependsOn(streaming)
 
-  lazy val bagel = Project("bagel", file("bagel"), settings = bagelSettings) dependsOn (core)
+  lazy val bagel = Project("bagel", file("bagel"), settings = bagelSettings) dependsOn(core)
 
-  lazy val streaming = Project("streaming", file("streaming"), settings = streamingSettings) dependsOn (core)
+  lazy val streaming = Project("streaming", file("streaming"), settings = streamingSettings) dependsOn(core)
 
-  lazy val mllib = Project("mllib", file("mllib"), settings = mllibSettings) dependsOn (core)
+  lazy val mllib = Project("mllib", file("mllib"), settings = mllibSettings) dependsOn(core)
 
-  lazy val yarn = Project("yarn", file("yarn"), settings = yarnSettings) dependsOn (core)
+  lazy val yarn = Project("yarn", file("yarn"), settings = yarnSettings) dependsOn(core)
+
+  lazy val assemblyProj = Project("assembly", file("assembly"), settings = assemblyProjSettings)
+    .dependsOn(core, bagel, mllib, repl, streaming) dependsOn(maybeYarn: _*)
 
   // A configuration to set an alternative publishLocalConfiguration
   lazy val MavenCompile = config("m2r") extend(Compile)
@@ -57,15 +62,16 @@ object SparkBuild extends Build {
 
   // Allows build configuration to be set through environment variables
   lazy val hadoopVersion = scala.util.Properties.envOrElse("SPARK_HADOOP_VERSION", DEFAULT_HADOOP_VERSION)
-  lazy val isYarnEnabled = scala.util.Properties.envOrNone("SPARK_WITH_YARN") match {
-    case None => DEFAULT_WITH_YARN
+  lazy val isYarnEnabled = scala.util.Properties.envOrNone("SPARK_YARN") match {
+    case None => DEFAULT_YARN
     case Some(v) => v.toBoolean
   }
 
   // Conditionally include the yarn sub-project
   lazy val maybeYarn = if(isYarnEnabled) Seq[ClasspathDependency](yarn) else Seq[ClasspathDependency]()
   lazy val maybeYarnRef = if(isYarnEnabled) Seq[ProjectReference](yarn) else Seq[ProjectReference]()
-  lazy val allProjects = Seq[ProjectReference](core, repl, examples, bagel, streaming, mllib, tools) ++ maybeYarnRef
+  lazy val allProjects = Seq[ProjectReference](
+    core, repl, examples, bagel, streaming, mllib, tools, assemblyProj) ++ maybeYarnRef
 
   def sharedSettings = Defaults.defaultSettings ++ Seq(
     organization := "org.spark-project",
@@ -80,7 +86,7 @@ object SparkBuild extends Build {
 
     // Fork new JVMs for tests and set Java options for those
     fork := true,
-    javaOptions += "-Xmx2500m",
+    javaOptions += "-Xmx3g",
 
     // Only allow one test at a time, even across projects, since they run in the same JVM
     concurrentRestrictions in Global += Tags.limit(Tags.Test, 1),
@@ -100,8 +106,8 @@ object SparkBuild extends Build {
       <url>http://spark-project.org/</url>
       <licenses>
         <license>
-          <name>BSD License</name>
-          <url>https://github.com/mesos/spark/blob/master/LICENSE</url>
+          <name>Apache 2.0 License</name>
+          <url>http://www.apache.org/licenses/LICENSE-2.0.html</url>
           <distribution>repo</distribution>
         </license>
       </licenses>
@@ -195,7 +201,7 @@ object SparkBuild extends Build {
       "com.twitter" % "chill_2.9.3" % "0.3.1",
       "com.twitter" % "chill-java" % "0.3.1"
     )
-  ) ++ assemblySettings ++ extraAssemblySettings
+  )
 
   def rootSettings = sharedSettings ++ Seq(
     publish := {}
@@ -204,7 +210,7 @@ object SparkBuild extends Build {
   def replSettings = sharedSettings ++ Seq(
     name := "spark-repl",
     libraryDependencies <+= scalaVersion("org.scala-lang" % "scala-compiler" % _)
-  ) ++ assemblySettings ++ extraAssemblySettings
+  )
 
   def examplesSettings = sharedSettings ++ Seq(
     name := "spark-examples",
@@ -223,7 +229,7 @@ object SparkBuild extends Build {
         exclude("org.apache.cassandra.deps", "avro")
         excludeAll(excludeSnappy)
     )
-  )
+  ) ++ assemblySettings ++ extraAssemblySettings
 
   def toolsSettings = sharedSettings ++ Seq(
     name := "spark-tools"
@@ -251,11 +257,11 @@ object SparkBuild extends Build {
       "org.twitter4j" % "twitter4j-stream" % "3.0.3" excludeAll(excludeNetty),
       "com.typesafe.akka" % "akka-zeromq" % "2.0.5" excludeAll(excludeNetty)
     )
-  ) ++ assemblySettings ++ extraAssemblySettings
+  )
 
   def yarnSettings = sharedSettings ++ Seq(
     name := "spark-yarn"
-  ) ++ extraYarnSettings ++ assemblySettings ++ extraAssemblySettings
+  ) ++ extraYarnSettings
 
   // Conditionally include the YARN dependencies because some tools look at all sub-projects and will complain
   // if we refer to nonexistent dependencies (e.g. hadoop-yarn-api from a Hadoop version without YARN).
@@ -271,7 +277,13 @@ object SparkBuild extends Build {
     )
   )
 
-  def extraAssemblySettings() = Seq(test in assembly := {}) ++ Seq(
+  def assemblyProjSettings = sharedSettings ++ Seq(
+    name := "spark-assembly",
+    jarName in assembly <<= version map { v => "spark-assembly-" + v + "-hadoop" + hadoopVersion + ".jar" }
+  ) ++ assemblySettings ++ extraAssemblySettings
+
+  def extraAssemblySettings() = Seq(
+    test in assembly := {},
     mergeStrategy in assembly := {
       case m if m.toLowerCase.endsWith("manifest.mf") => MergeStrategy.discard
       case m if m.toLowerCase.matches("meta-inf.*\\.sf$") => MergeStrategy.discard
diff --git a/project/build.properties b/project/build.properties
index 08e17131f64d180a386b9f77693d988ba6c5b0ca..96472771622d8e2ef4519ff645d6d195c1f9cdd6 100644
--- a/project/build.properties
+++ b/project/build.properties
@@ -15,4 +15,4 @@
 # limitations under the License.
 #
 
-sbt.version=0.12.3
+sbt.version=0.12.4
diff --git a/project/plugins.sbt b/project/plugins.sbt
index 783b40d4f5d903fa411638142f6ac1f3ffa8e8f7..cfcd85082a8cc5c60b9b850710028f154b3682e5 100644
--- a/project/plugins.sbt
+++ b/project/plugins.sbt
@@ -4,7 +4,7 @@ resolvers += "Typesafe Repository" at "http://repo.typesafe.com/typesafe/release
 
 resolvers += "Spray Repository" at "http://repo.spray.cc/"
 
-addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.8.5")
+addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.9.1")
 
 addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "2.2.0")
 
diff --git a/pyspark b/pyspark
index 801239c108b6672f90da71bdfa5dc550054e5b03..2dba2ceb21c50a37469b3ff3257b5331e7f9f35f 100755
--- a/pyspark
+++ b/pyspark
@@ -23,11 +23,17 @@ FWDIR="$(cd `dirname $0`; pwd)"
 # Export this as SPARK_HOME
 export SPARK_HOME="$FWDIR"
 
+SCALA_VERSION=2.9.3
+
 # Exit if the user hasn't compiled Spark
-if [ ! -e "$SPARK_HOME/repl/target" ]; then
-  echo "Failed to find Spark classes in $SPARK_HOME/repl/target" >&2
-  echo "You need to compile Spark before running this program" >&2
-  exit 1
+if [ ! -f "$FWDIR/RELEASE" ]; then
+  # Exit if the user hasn't compiled Spark
+  ls "$FWDIR"/assembly/target/scala-$SCALA_VERSION/spark-assembly*hadoop*.jar >& /dev/null
+  if [[ $? != 0 ]]; then
+    echo "Failed to find Spark assembly in $FWDIR/assembly/target" >&2
+    echo "You need to compile Spark before running this program" >&2
+    exit 1
+  fi
 fi
 
 # Load environment variables from conf/spark-env.sh, if it exists
@@ -48,11 +54,6 @@ export PYTHONPATH=$SPARK_HOME/python/:$PYTHONPATH
 export OLD_PYTHONSTARTUP=$PYTHONSTARTUP
 export PYTHONSTARTUP=$FWDIR/python/pyspark/shell.py
 
-# Launch with `scala` by default:
-if [[ "$SPARK_LAUNCH_WITH_SCALA" != "0" ]] ; then
-    export SPARK_LAUNCH_WITH_SCALA=1
-fi
-
 if [ -n "$IPYTHON_OPTS" ]; then
   IPYTHON=1
 fi
diff --git a/python/pyspark/java_gateway.py b/python/pyspark/java_gateway.py
index e503fb7621e0dd0d9a06a9b303749e892ff470e3..18011c0dc9c83e172e65640aaa22993de93dd2f5 100644
--- a/python/pyspark/java_gateway.py
+++ b/python/pyspark/java_gateway.py
@@ -28,7 +28,7 @@ SPARK_HOME = os.environ["SPARK_HOME"]
 def launch_gateway():
     # Launch the Py4j gateway using Spark's run command so that we pick up the
     # proper classpath and SPARK_MEM settings from spark-env.sh
-    command = [os.path.join(SPARK_HOME, "run"), "py4j.GatewayServer",
+    command = [os.path.join(SPARK_HOME, "spark-class"), "py4j.GatewayServer",
                "--die-on-broken-pipe", "0"]
     proc = Popen(command, stdout=PIPE, stdin=PIPE)
     # Determine which ephemeral port the server started on:
diff --git a/run-example b/run-example
new file mode 100755
index 0000000000000000000000000000000000000000..ccd4356bdf1f99fa3529becf9daab2f6ec1e03a1
--- /dev/null
+++ b/run-example
@@ -0,0 +1,81 @@
+#!/usr/bin/env bash
+
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+SCALA_VERSION=2.9.3
+
+# Figure out where the Scala framework is installed
+FWDIR="$(cd `dirname $0`; pwd)"
+
+# Export this as SPARK_HOME
+export SPARK_HOME="$FWDIR"
+
+# Load environment variables from conf/spark-env.sh, if it exists
+if [ -e $FWDIR/conf/spark-env.sh ] ; then
+  . $FWDIR/conf/spark-env.sh
+fi
+
+if [ -z "$1" ]; then
+  echo "Usage: run-example <example-class> [<args>]" >&2
+  exit 1
+fi
+
+# Figure out the JAR file that our examples were packaged into. This includes a bit of a hack
+# to avoid the -sources and -doc packages that are built by publish-local.
+EXAMPLES_DIR="$FWDIR"/examples
+SPARK_EXAMPLES_JAR=""
+if [ -e "$EXAMPLES_DIR"/target/scala-$SCALA_VERSION/*assembly*[0-9T].jar ]; then
+  # Use the JAR from the SBT build
+  export SPARK_EXAMPLES_JAR=`ls "$EXAMPLES_DIR"/target/scala-$SCALA_VERSION/*assembly*[0-9T].jar`
+fi
+if [ -e "$EXAMPLES_DIR"/target/spark-examples*[0-9T].jar ]; then
+  # Use the JAR from the Maven build
+  # TODO: this also needs to become an assembly!
+  export SPARK_EXAMPLES_JAR=`ls "$EXAMPLES_DIR"/target/spark-examples*[0-9T].jar`
+fi
+if [[ -z $SPARK_EXAMPLES_JAR ]]; then
+  echo "Failed to find Spark examples assembly in $FWDIR/examples/target" >&2
+  echo "You need to compile Spark before running this program" >&2
+  exit 1
+fi
+
+# Since the examples JAR ideally shouldn't include spark-core (that dependency should be
+# "provided"), also add our standard Spark classpath, built using compute-classpath.sh.
+CLASSPATH=`$FWDIR/bin/compute-classpath.sh`
+CLASSPATH="$SPARK_EXAMPLES_JAR:$CLASSPATH"
+
+# Find java binary
+if [ -n "${JAVA_HOME}" ]; then
+  RUNNER="${JAVA_HOME}/bin/java"
+else
+  if [ `command -v java` ]; then
+    RUNNER="java"
+  else
+    echo "JAVA_HOME is not set" >&2
+    exit 1
+  fi
+fi
+
+if [ "$SPARK_PRINT_LAUNCH_COMMAND" == "1" ]; then
+  echo -n "Spark Command: "
+  echo "$RUNNER" -cp "$CLASSPATH" "$@"
+  echo "========================================"
+  echo
+fi
+
+exec "$RUNNER" -cp "$CLASSPATH" "$@"
diff --git a/sbt/sbt b/sbt/sbt
index 2227bc469693849b5246d8ee909788f5d7ff207a..c31a0280ff9deedde84f337ba9623fddb62bcaa8 100755
--- a/sbt/sbt
+++ b/sbt/sbt
@@ -25,4 +25,4 @@ fi
 export SPARK_HOME=$(cd "$(dirname $0)/.." 2>&1 >/dev/null ; pwd)
 export SPARK_TESTING=1  # To put test classes on classpath
 
-java -Xmx1200m -XX:MaxPermSize=350m -XX:ReservedCodeCacheSize=256m $EXTRA_ARGS $SBT_OPTS -jar $SPARK_HOME/sbt/sbt-launch-*.jar "$@"
+java -Xmx1200m -XX:MaxPermSize=350m -XX:ReservedCodeCacheSize=256m $EXTRA_ARGS $SBT_OPTS -jar "$SPARK_HOME"/sbt/sbt-launch-*.jar "$@"
diff --git a/run b/spark-class
similarity index 52%
rename from run
rename to spark-class
index 715bbf93d5537b4771d5a4f802978e919bf4835e..5ef3de977371e4dd589668a700e99b9a4bd825ed 100755
--- a/run
+++ b/spark-class
@@ -66,51 +66,27 @@ case "$1" in
     ;;
 esac
 
-# Figure out whether to run our class with java or with the scala launcher.
-# In most cases, we'd prefer to execute our process with java because scala
-# creates a shell script as the parent of its Java process, which makes it
-# hard to kill the child with stuff like Process.destroy(). However, for
-# the Spark shell, the wrapper is necessary to properly reset the terminal
-# when we exit, so we allow it to set a variable to launch with scala.
-# We still fall back on java for the shell if this is a "release" created
-# from make-distribution.sh since it's possible scala is not installed
-# but we have everything we need to run the shell.
-if [[ "$SPARK_LAUNCH_WITH_SCALA" == "1" && ! -f "$FWDIR/RELEASE" ]]; then
-  if [ "$SCALA_HOME" ]; then
-    RUNNER="${SCALA_HOME}/bin/scala"
-  else
-    if [ `command -v scala` ]; then
-      RUNNER="scala"
-    else
-      echo "SCALA_HOME is not set and scala is not in PATH" >&2
-      exit 1
-    fi
-  fi
+# Find the java binary
+if [ -n "${JAVA_HOME}" ]; then
+  RUNNER="${JAVA_HOME}/bin/java"
 else
-  if [ -n "${JAVA_HOME}" ]; then
-    RUNNER="${JAVA_HOME}/bin/java"
+  if [ `command -v java` ]; then
+    RUNNER="java"
   else
-    if [ `command -v java` ]; then
-      RUNNER="java"
-    else
-      echo "JAVA_HOME is not set" >&2
-      exit 1
-    fi
+    echo "JAVA_HOME is not set" >&2
+    exit 1
   fi
-  if [[ ! -f "$FWDIR/RELEASE" && -z "$SCALA_LIBRARY_PATH" ]]; then
-    if [ -z "$SCALA_HOME" ]; then
-      echo "SCALA_HOME is not set" >&2
-      exit 1
-    fi
-    SCALA_LIBRARY_PATH="$SCALA_HOME/lib"
+fi
+if [[ ! -f "$FWDIR/RELEASE" && -z "$SCALA_LIBRARY_PATH" ]]; then
+  if [ -z "$SCALA_HOME" ]; then
+    echo "SCALA_HOME is not set" >&2
+    exit 1
   fi
+  SCALA_LIBRARY_PATH="$SCALA_HOME/lib"
 fi
 
-# Figure out how much memory to use per executor and set it as an environment
-# variable so that our process sees it and can report it to Mesos
-if [ -z "$SPARK_MEM" ] ; then
-  SPARK_MEM="512m"
-fi
+# Set SPARK_MEM if it isn't already set since we also use it for this process
+SPARK_MEM=${SPARK_MEM:-512m}
 export SPARK_MEM
 
 # Set JAVA_OPTS to be able to load native libraries and to set heap size
@@ -125,51 +101,24 @@ export JAVA_OPTS
 # Attention: when changing the way the JAVA_OPTS are assembled, the change must be reflected in ExecutorRunner.scala!
 
 if [ ! -f "$FWDIR/RELEASE" ]; then
-  CORE_DIR="$FWDIR/core"
-  EXAMPLES_DIR="$FWDIR/examples"
-  REPL_DIR="$FWDIR/repl"
-
   # Exit if the user hasn't compiled Spark
-  if [ ! -e "$CORE_DIR/target" ]; then
-    echo "Failed to find Spark classes in $CORE_DIR/target" >&2
+  ls "$FWDIR"/assembly/target/scala-$SCALA_VERSION/spark-assembly*.jar >& /dev/null
+  if [[ $? != 0 ]]; then
+    echo "Failed to find Spark assembly in $FWDIR/assembly/target" >&2
     echo "You need to compile Spark before running this program" >&2
     exit 1
   fi
-
-  if [[ "$@" = *repl* && ! -e "$REPL_DIR/target" ]]; then
-    echo "Failed to find Spark classes in $REPL_DIR/target" >&2
-    echo "You need to compile Spark repl module before running this program" >&2
-    exit 1
-  fi
-
-  # Figure out the JAR file that our examples were packaged into. This includes a bit of a hack
-  # to avoid the -sources and -doc packages that are built by publish-local.
-  if [ -e "$EXAMPLES_DIR/target/scala-$SCALA_VERSION/spark-examples"*[0-9T].jar ]; then
-    # Use the JAR from the SBT build
-    export SPARK_EXAMPLES_JAR=`ls "$EXAMPLES_DIR/target/scala-$SCALA_VERSION/spark-examples"*[0-9T].jar`
-  fi
-  if [ -e "$EXAMPLES_DIR/target/spark-examples"*[0-9T].jar ]; then
-    # Use the JAR from the Maven build
-    export SPARK_EXAMPLES_JAR=`ls "$EXAMPLES_DIR/target/spark-examples"*[0-9T].jar`
-  fi
 fi
 
 # Compute classpath using external script
 CLASSPATH=`$FWDIR/bin/compute-classpath.sh`
 export CLASSPATH
 
-if [ "$SPARK_LAUNCH_WITH_SCALA" == "1" ]; then
-  EXTRA_ARGS=""     # Java options will be passed to scala as JAVA_OPTS
-else
-  # The JVM doesn't read JAVA_OPTS by default so we need to pass it in
-  EXTRA_ARGS="$JAVA_OPTS"
-fi
-
-command="$RUNNER -cp \"$CLASSPATH\" $EXTRA_ARGS $@"
 if [ "$SPARK_PRINT_LAUNCH_COMMAND" == "1" ]; then
-  echo "Spark Command: $command"
+  echo -n "Spark Command: "
+  echo "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@"
   echo "========================================"
   echo
 fi
 
-exec "$RUNNER" -cp "$CLASSPATH" $EXTRA_ARGS "$@"
+exec "$RUNNER" -cp "$CLASSPATH" $JAVA_OPTS "$@"
diff --git a/spark-executor b/spark-executor
index feccbf5cc2aaf4547ead01eae80d367856691920..63692bd46c939428ee598b43ea8a041cce808fd6 100755
--- a/spark-executor
+++ b/spark-executor
@@ -19,4 +19,4 @@
 
 FWDIR="`dirname $0`"
 echo "Running spark-executor with framework dir = $FWDIR"
-exec $FWDIR/run spark.executor.MesosExecutorBackend
+exec $FWDIR/spark-class spark.executor.MesosExecutorBackend
diff --git a/spark-shell b/spark-shell
index 62fc18550dfa5e270937d9698452d11432b9d22e..4d379c5cfb9f3adbabe28d9d0db881143d24bd0d 100755
--- a/spark-shell
+++ b/spark-shell
@@ -79,8 +79,7 @@ if [[ ! $? ]]; then
   saved_stty=""
 fi
 
-export SPARK_LAUNCH_WITH_SCALA=${SPARK_LAUNCH_WITH_SCALA:-1}
-$FWDIR/run $OPTIONS spark.repl.Main "$@"
+$FWDIR/spark-class $OPTIONS spark.repl.Main "$@"
 
 # record the exit status lest it be overwritten:
 # then reenable echo and propagate the code.