diff --git a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala index c4e5fd8e461fc5e05ca61654ed17fe2d905b645c..555da8c7e7ab385899e2b64130ea7f1788d113cb 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala @@ -624,6 +624,21 @@ class PythonMLLibAPI extends Serializable { RG.normalRDD(jsc.sc, size, parts, s) } + /** + * Java stub for Python mllib RandomRDDGenerators.logNormalRDD() + */ + def logNormalRDD(jsc: JavaSparkContext, + mean: Double, + std: Double, + size: Long, + numPartitions: java.lang.Integer, + seed: java.lang.Long): JavaRDD[Double] = { + val parts = getNumPartitionsOrDefault(numPartitions, jsc) + val s = getSeedOrDefault(seed) + RG.logNormalRDD(jsc.sc, mean, std, size, parts, s) + } + + /** * Java stub for Python mllib RandomRDDGenerators.poissonRDD() */ @@ -637,6 +652,33 @@ class PythonMLLibAPI extends Serializable { RG.poissonRDD(jsc.sc, mean, size, parts, s) } + /** + * Java stub for Python mllib RandomRDDGenerators.exponentialRDD() + */ + def exponentialRDD(jsc: JavaSparkContext, + mean: Double, + size: Long, + numPartitions: java.lang.Integer, + seed: java.lang.Long): JavaRDD[Double] = { + val parts = getNumPartitionsOrDefault(numPartitions, jsc) + val s = getSeedOrDefault(seed) + RG.exponentialRDD(jsc.sc, mean, size, parts, s) + } + + /** + * Java stub for Python mllib RandomRDDGenerators.gammaRDD() + */ + def gammaRDD(jsc: JavaSparkContext, + shape: Double, + scale: Double, + size: Long, + numPartitions: java.lang.Integer, + seed: java.lang.Long): JavaRDD[Double] = { + val parts = getNumPartitionsOrDefault(numPartitions, jsc) + val s = getSeedOrDefault(seed) + RG.gammaRDD(jsc.sc, shape, scale, size, parts, s) + } + /** * Java stub for Python mllib RandomRDDGenerators.uniformVectorRDD() */ @@ -663,6 +705,22 @@ class PythonMLLibAPI extends Serializable { RG.normalVectorRDD(jsc.sc, numRows, numCols, parts, s) } + /** + * Java stub for Python mllib RandomRDDGenerators.logNormalVectorRDD() + */ + def logNormalVectorRDD(jsc: JavaSparkContext, + mean: Double, + std: Double, + numRows: Long, + numCols: Int, + numPartitions: java.lang.Integer, + seed: java.lang.Long): JavaRDD[Vector] = { + val parts = getNumPartitionsOrDefault(numPartitions, jsc) + val s = getSeedOrDefault(seed) + RG.logNormalVectorRDD(jsc.sc, mean, std, numRows, numCols, parts, s) + } + + /** * Java stub for Python mllib RandomRDDGenerators.poissonVectorRDD() */ @@ -677,6 +735,36 @@ class PythonMLLibAPI extends Serializable { RG.poissonVectorRDD(jsc.sc, mean, numRows, numCols, parts, s) } + /** + * Java stub for Python mllib RandomRDDGenerators.exponentialVectorRDD() + */ + def exponentialVectorRDD(jsc: JavaSparkContext, + mean: Double, + numRows: Long, + numCols: Int, + numPartitions: java.lang.Integer, + seed: java.lang.Long): JavaRDD[Vector] = { + val parts = getNumPartitionsOrDefault(numPartitions, jsc) + val s = getSeedOrDefault(seed) + RG.exponentialVectorRDD(jsc.sc, mean, numRows, numCols, parts, s) + } + + /** + * Java stub for Python mllib RandomRDDGenerators.gammaVectorRDD() + */ + def gammaVectorRDD(jsc: JavaSparkContext, + shape: Double, + scale: Double, + numRows: Long, + numCols: Int, + numPartitions: java.lang.Integer, + seed: java.lang.Long): JavaRDD[Vector] = { + val parts = getNumPartitionsOrDefault(numPartitions, jsc) + val s = getSeedOrDefault(seed) + RG.gammaVectorRDD(jsc.sc, shape, scale, numRows, numCols, parts, s) + } + + } /** diff --git a/python/pyspark/mllib/rand.py b/python/pyspark/mllib/rand.py index cb4304f92152bcbaafd6366e878054cebe30429a..20ee9d78bf5b0db3497972460aa729154112a028 100644 --- a/python/pyspark/mllib/rand.py +++ b/python/pyspark/mllib/rand.py @@ -99,6 +99,38 @@ class RandomRDDs(object): """ return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed) + @staticmethod + def logNormalRDD(sc, mean, std, size, numPartitions=None, seed=None): + """ + Generates an RDD comprised of i.i.d. samples from the log normal + distribution with the input mean and standard distribution. + + :param sc: SparkContext used to create the RDD. + :param mean: mean for the log Normal distribution + :param std: std for the log Normal distribution + :param size: Size of the RDD. + :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). + :param seed: Random seed (default: a random long integer). + :return: RDD of float comprised of i.i.d. samples ~ log N(mean, std). + + >>> from math import sqrt, exp + >>> mean = 0.0 + >>> std = 1.0 + >>> expMean = exp(mean + 0.5 * std * std) + >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) + >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2L) + >>> stats = x.stats() + >>> stats.count() + 1000L + >>> abs(stats.mean() - expMean) < 0.5 + True + >>> from math import sqrt + >>> abs(stats.stdev() - expStd) < 0.5 + True + """ + return callMLlibFunc("logNormalRDD", sc._jsc, float(mean), float(std), + size, numPartitions, seed) + @staticmethod def poissonRDD(sc, mean, size, numPartitions=None, seed=None): """ @@ -125,6 +157,63 @@ class RandomRDDs(object): """ return callMLlibFunc("poissonRDD", sc._jsc, float(mean), size, numPartitions, seed) + @staticmethod + def exponentialRDD(sc, mean, size, numPartitions=None, seed=None): + """ + Generates an RDD comprised of i.i.d. samples from the Exponential + distribution with the input mean. + + :param sc: SparkContext used to create the RDD. + :param mean: Mean, or 1 / lambda, for the Exponential distribution. + :param size: Size of the RDD. + :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). + :param seed: Random seed (default: a random long integer). + :return: RDD of float comprised of i.i.d. samples ~ Exp(mean). + + >>> mean = 2.0 + >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2L) + >>> stats = x.stats() + >>> stats.count() + 1000L + >>> abs(stats.mean() - mean) < 0.5 + True + >>> from math import sqrt + >>> abs(stats.stdev() - sqrt(mean)) < 0.5 + True + """ + return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions, seed) + + @staticmethod + def gammaRDD(sc, shape, scale, size, numPartitions=None, seed=None): + """ + Generates an RDD comprised of i.i.d. samples from the Gamma + distribution with the input shape and scale. + + :param sc: SparkContext used to create the RDD. + :param shape: shape (> 0) parameter for the Gamma distribution + :param scale: scale (> 0) parameter for the Gamma distribution + :param size: Size of the RDD. + :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). + :param seed: Random seed (default: a random long integer). + :return: RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale). + + >>> from math import sqrt + >>> shape = 1.0 + >>> scale = 2.0 + >>> expMean = shape * scale + >>> expStd = sqrt(shape * scale * scale) + >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2L) + >>> stats = x.stats() + >>> stats.count() + 1000L + >>> abs(stats.mean() - expMean) < 0.5 + True + >>> abs(stats.stdev() - expStd) < 0.5 + True + """ + return callMLlibFunc("gammaRDD", sc._jsc, float(shape), + float(scale), size, numPartitions, seed) + @staticmethod @toArray def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None): @@ -175,6 +264,40 @@ class RandomRDDs(object): """ return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed) + @staticmethod + @toArray + def logNormalVectorRDD(sc, mean, std, numRows, numCols, numPartitions=None, seed=None): + """ + Generates an RDD comprised of vectors containing i.i.d. samples drawn + from the log normal distribution. + + :param sc: SparkContext used to create the RDD. + :param mean: Mean of the log normal distribution + :param std: Standard Deviation of the log normal distribution + :param numRows: Number of Vectors in the RDD. + :param numCols: Number of elements in each Vector. + :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). + :param seed: Random seed (default: a random long integer). + :return: RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`. + + >>> import numpy as np + >>> from math import sqrt, exp + >>> mean = 0.0 + >>> std = 1.0 + >>> expMean = exp(mean + 0.5 * std * std) + >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) + >>> mat = np.matrix(RandomRDDs.logNormalVectorRDD(sc, mean, std, \ + 100, 100, seed=1L).collect()) + >>> mat.shape + (100, 100) + >>> abs(mat.mean() - expMean) < 0.1 + True + >>> abs(mat.std() - expStd) < 0.1 + True + """ + return callMLlibFunc("logNormalVectorRDD", sc._jsc, float(mean), float(std), + numRows, numCols, numPartitions, seed) + @staticmethod @toArray def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None): @@ -205,6 +328,70 @@ class RandomRDDs(object): return callMLlibFunc("poissonVectorRDD", sc._jsc, float(mean), numRows, numCols, numPartitions, seed) + @staticmethod + @toArray + def exponentialVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None): + """ + Generates an RDD comprised of vectors containing i.i.d. samples drawn + from the Exponential distribution with the input mean. + + :param sc: SparkContext used to create the RDD. + :param mean: Mean, or 1 / lambda, for the Exponential distribution. + :param numRows: Number of Vectors in the RDD. + :param numCols: Number of elements in each Vector. + :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`) + :param seed: Random seed (default: a random long integer). + :return: RDD of Vector with vectors containing i.i.d. samples ~ Exp(mean). + + >>> import numpy as np + >>> mean = 0.5 + >>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1L) + >>> mat = np.mat(rdd.collect()) + >>> mat.shape + (100, 100) + >>> abs(mat.mean() - mean) < 0.5 + True + >>> from math import sqrt + >>> abs(mat.std() - sqrt(mean)) < 0.5 + True + """ + return callMLlibFunc("exponentialVectorRDD", sc._jsc, float(mean), numRows, numCols, + numPartitions, seed) + + @staticmethod + @toArray + def gammaVectorRDD(sc, shape, scale, numRows, numCols, numPartitions=None, seed=None): + """ + Generates an RDD comprised of vectors containing i.i.d. samples drawn + from the Gamma distribution. + + :param sc: SparkContext used to create the RDD. + :param shape: Shape (> 0) of the Gamma distribution + :param scale: Scale (> 0) of the Gamma distribution + :param numRows: Number of Vectors in the RDD. + :param numCols: Number of elements in each Vector. + :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`). + :param seed: Random seed (default: a random long integer). + :return: RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale). + + >>> import numpy as np + >>> from math import sqrt + >>> shape = 1.0 + >>> scale = 2.0 + >>> expMean = shape * scale + >>> expStd = sqrt(shape * scale * scale) + >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, \ + 100, 100, seed=1L).collect()) + >>> mat.shape + (100, 100) + >>> abs(mat.mean() - expMean) < 0.1 + True + >>> abs(mat.std() - expStd) < 0.1 + True + """ + return callMLlibFunc("gammaVectorRDD", sc._jsc, float(shape), float(scale), + numRows, numCols, numPartitions, seed) + def _test(): import doctest