diff --git a/python/pyspark/ml/tests.py b/python/pyspark/ml/tests.py index 4eb17bfdcca90bd9bb92880d54b8eba8c7afe00d..9ea639dc4f96039c16ff564800d8c6672f2eaa69 100644 --- a/python/pyspark/ml/tests.py +++ b/python/pyspark/ml/tests.py @@ -394,6 +394,7 @@ class CrossValidatorTests(PySparkTestCase): if __name__ == "__main__": + from pyspark.ml.tests import * if xmlrunner: unittest.main(testRunner=xmlrunner.XMLTestRunner(output='target/test-reports')) else: diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py index 32ed48e10388e3d09d7ad0b0fd126f6f0bca72a6..ea7d297cba2ae0d48b203f26d7a13465e75fba59 100644 --- a/python/pyspark/mllib/tests.py +++ b/python/pyspark/mllib/tests.py @@ -77,21 +77,24 @@ except: pass ser = PickleSerializer() -sc = SparkContext('local[4]', "MLlib tests") class MLlibTestCase(unittest.TestCase): def setUp(self): - self.sc = sc + self.sc = SparkContext('local[4]', "MLlib tests") + + def tearDown(self): + self.sc.stop() class MLLibStreamingTestCase(unittest.TestCase): def setUp(self): - self.sc = sc + self.sc = SparkContext('local[4]', "MLlib tests") self.ssc = StreamingContext(self.sc, 1.0) def tearDown(self): self.ssc.stop(False) + self.sc.stop() @staticmethod def _eventually(condition, timeout=30.0, catch_assertions=False): @@ -1166,7 +1169,7 @@ class StreamingKMeansTest(MLLibStreamingTestCase): clusterWeights=[1.0, 1.0, 1.0, 1.0]) predict_data = [[[1.5, 1.5]], [[-1.5, 1.5]], [[-1.5, -1.5]], [[1.5, -1.5]]] - predict_data = [sc.parallelize(batch, 1) for batch in predict_data] + predict_data = [self.sc.parallelize(batch, 1) for batch in predict_data] predict_stream = self.ssc.queueStream(predict_data) predict_val = stkm.predictOn(predict_stream) @@ -1197,7 +1200,7 @@ class StreamingKMeansTest(MLLibStreamingTestCase): # classification based in the initial model would have been 0 # proving that the model is updated. batches = [[[-0.5], [0.6], [0.8]], [[0.2], [-0.1], [0.3]]] - batches = [sc.parallelize(batch) for batch in batches] + batches = [self.sc.parallelize(batch) for batch in batches] input_stream = self.ssc.queueStream(batches) predict_results = [] @@ -1230,7 +1233,7 @@ class LinearDataGeneratorTests(MLlibTestCase): self.assertEqual(len(point.features), 3) linear_data = LinearDataGenerator.generateLinearRDD( - sc=sc, nexamples=6, nfeatures=2, eps=0.1, + sc=self.sc, nexamples=6, nfeatures=2, eps=0.1, nParts=2, intercept=0.0).collect() self.assertEqual(len(linear_data), 6) for point in linear_data: @@ -1406,7 +1409,7 @@ class StreamingLinearRegressionWithTests(MLLibStreamingTestCase): for i in range(10): batch = LinearDataGenerator.generateLinearInput( 0.0, [10.0, 10.0], xMean, xVariance, 100, 42 + i, 0.1) - batches.append(sc.parallelize(batch)) + batches.append(self.sc.parallelize(batch)) input_stream = self.ssc.queueStream(batches) slr.trainOn(input_stream) @@ -1430,7 +1433,7 @@ class StreamingLinearRegressionWithTests(MLLibStreamingTestCase): for i in range(10): batch = LinearDataGenerator.generateLinearInput( 0.0, [10.0], [0.0], [1.0 / 3.0], 100, 42 + i, 0.1) - batches.append(sc.parallelize(batch)) + batches.append(self.sc.parallelize(batch)) model_weights = [] input_stream = self.ssc.queueStream(batches) @@ -1463,7 +1466,7 @@ class StreamingLinearRegressionWithTests(MLLibStreamingTestCase): 0.0, [10.0, 10.0], [0.0, 0.0], [1.0 / 3.0, 1.0 / 3.0], 100, 42 + i, 0.1) batches.append( - sc.parallelize(batch).map(lambda lp: (lp.label, lp.features))) + self.sc.parallelize(batch).map(lambda lp: (lp.label, lp.features))) input_stream = self.ssc.queueStream(batches) output_stream = slr.predictOnValues(input_stream) @@ -1494,7 +1497,7 @@ class StreamingLinearRegressionWithTests(MLLibStreamingTestCase): for i in range(10): batch = LinearDataGenerator.generateLinearInput( 0.0, [10.0], [0.0], [1.0 / 3.0], 100, 42 + i, 0.1) - batches.append(sc.parallelize(batch)) + batches.append(self.sc.parallelize(batch)) predict_batches = [ b.map(lambda lp: (lp.label, lp.features)) for b in batches] @@ -1580,6 +1583,7 @@ class ALSTests(MLlibTestCase): if __name__ == "__main__": + from pyspark.mllib.tests import * if not _have_scipy: print("NOTE: Skipping SciPy tests as it does not seem to be installed") if xmlrunner: diff --git a/python/pyspark/sql/tests.py b/python/pyspark/sql/tests.py index c03cb9338ae685d72883ccce508054d3acf61c7f..ae8620274dd207523ecc4dc0e6bd8cbc74bdf64c 100644 --- a/python/pyspark/sql/tests.py +++ b/python/pyspark/sql/tests.py @@ -1259,6 +1259,7 @@ class HiveContextSQLTests(ReusedPySparkTestCase): if __name__ == "__main__": + from pyspark.sql.tests import * if xmlrunner: unittest.main(testRunner=xmlrunner.XMLTestRunner(output='target/test-reports')) else: diff --git a/python/pyspark/streaming/tests.py b/python/pyspark/streaming/tests.py index 86b05d9fd2424d2d09b86ae098922903c0e25b36..24b812615cbb455cd63848302c797d0ebfacf33f 100644 --- a/python/pyspark/streaming/tests.py +++ b/python/pyspark/streaming/tests.py @@ -1635,6 +1635,7 @@ kinesis_test_environ_var = "ENABLE_KINESIS_TESTS" are_kinesis_tests_enabled = os.environ.get(kinesis_test_environ_var) == '1' if __name__ == "__main__": + from pyspark.streaming.tests import * kafka_assembly_jar = search_kafka_assembly_jar() flume_assembly_jar = search_flume_assembly_jar() mqtt_assembly_jar = search_mqtt_assembly_jar() diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index 5bd94476597abcd5cb0f615c806470511f06c76a..23720502a82c86065e6a945583084aa187df924c 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -2008,6 +2008,7 @@ class NumPyTests(PySparkTestCase): if __name__ == "__main__": + from pyspark.tests import * if not _have_scipy: print("NOTE: Skipping SciPy tests as it does not seem to be installed") if not _have_numpy: