From b8a1871953058c67b49b7f8455cbb417d5b50ab6 Mon Sep 17 00:00:00 2001
From: Sandy Ryza <sandy@cloudera.com>
Date: Wed, 26 Feb 2014 10:00:02 -0600
Subject: [PATCH] SPARK-1053.  Don't require SPARK_YARN_APP_JAR

It looks this just requires taking out the checks.

I verified that, with the patch, I was able to run spark-shell through yarn without setting the environment variable.

Author: Sandy Ryza <sandy@cloudera.com>

Closes #553 from sryza/sandy-spark-1053 and squashes the following commits:

b037676 [Sandy Ryza] SPARK-1053.  Don't require SPARK_YARN_APP_JAR
---
 docs/running-on-yarn.md                                     | 6 ++----
 .../org/apache/spark/deploy/yarn/ClientArguments.scala      | 4 ++--
 .../scala/org/apache/spark/deploy/yarn/ClientBase.scala     | 3 ++-
 .../scheduler/cluster/YarnClientSchedulerBackend.scala      | 6 +-----
 4 files changed, 7 insertions(+), 12 deletions(-)

diff --git a/docs/running-on-yarn.md b/docs/running-on-yarn.md
index cd4509ede7..ee1d892a3b 100644
--- a/docs/running-on-yarn.md
+++ b/docs/running-on-yarn.md
@@ -99,13 +99,12 @@ With this mode, your application is actually run on the remote machine where the
 
 ## Launch spark application with yarn-client mode.
 
-With yarn-client mode, the application will be launched locally. Just like running application or spark-shell on Local / Mesos / Standalone mode. The launch method is also the similar with them, just make sure that when you need to specify a master url, use "yarn-client" instead. And you also need to export the env value for SPARK_JAR and SPARK_YARN_APP_JAR
+With yarn-client mode, the application will be launched locally. Just like running application or spark-shell on Local / Mesos / Standalone mode. The launch method is also the similar with them, just make sure that when you need to specify a master url, use "yarn-client" instead. And you also need to export the env value for SPARK_JAR.
 
 Configuration in yarn-client mode:
 
 In order to tune worker core/number/memory etc. You need to export environment variables or add them to the spark configuration file (./conf/spark_env.sh). The following are the list of options.
 
-* `SPARK_YARN_APP_JAR`, Path to your application's JAR file (required)
 * `SPARK_WORKER_INSTANCES`, Number of workers to start (Default: 2)
 * `SPARK_WORKER_CORES`, Number of cores for the workers (Default: 1).
 * `SPARK_WORKER_MEMORY`, Memory per Worker (e.g. 1000M, 2G) (Default: 1G)
@@ -118,12 +117,11 @@ In order to tune worker core/number/memory etc. You need to export environment v
 For example:
 
     SPARK_JAR=./assembly/target/scala-{{site.SCALA_BINARY_VERSION}}/spark-assembly-{{site.SPARK_VERSION}}-hadoop2.0.5-alpha.jar \
-    SPARK_YARN_APP_JAR=examples/target/scala-{{site.SCALA_BINARY_VERSION}}/spark-examples-assembly-{{site.SPARK_VERSION}}.jar \
     ./bin/run-example org.apache.spark.examples.SparkPi yarn-client
 
+or
 
     SPARK_JAR=./assembly/target/scala-{{site.SCALA_BINARY_VERSION}}/spark-assembly-{{site.SPARK_VERSION}}-hadoop2.0.5-alpha.jar \
-    SPARK_YARN_APP_JAR=examples/target/scala-{{site.SCALA_BINARY_VERSION}}/spark-examples-assembly-{{site.SPARK_VERSION}}.jar \
     MASTER=yarn-client ./bin/spark-shell
 
 
diff --git a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala
index 1419f215c7..fe37168e5a 100644
--- a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala
+++ b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala
@@ -108,7 +108,7 @@ class ClientArguments(val args: Array[String], val sparkConf: SparkConf) {
           args = tail
 
         case Nil =>
-          if (userJar == null || userClass == null) {
+          if (userClass == null) {
             printUsageAndExit(1)
           }
 
@@ -129,7 +129,7 @@ class ClientArguments(val args: Array[String], val sparkConf: SparkConf) {
     System.err.println(
       "Usage: org.apache.spark.deploy.yarn.Client [options] \n" +
       "Options:\n" +
-      "  --jar JAR_PATH             Path to your application's JAR file (required)\n" +
+      "  --jar JAR_PATH             Path to your application's JAR file (required in yarn-standalone mode)\n" +
       "  --class CLASS_NAME         Name of your application's main class (required)\n" +
       "  --args ARGS                Arguments to be passed to your application's main class.\n" +
       "                             Mutliple invocations are possible, each will be passed in order.\n" +
diff --git a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala
index 2db5744be1..24520bd21b 100644
--- a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala
+++ b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/ClientBase.scala
@@ -68,7 +68,8 @@ trait ClientBase extends Logging {
   def validateArgs() = {
     Map(
       (System.getenv("SPARK_JAR") == null) -> "Error: You must set SPARK_JAR environment variable!",
-      (args.userJar == null) -> "Error: You must specify a user jar!",
+      ((args.userJar == null && args.amClass == classOf[ApplicationMaster].getName) ->
+          "Error: You must specify a user jar when running in standalone mode!"),
       (args.userClass == null) -> "Error: You must specify a user class!",
       (args.numWorkers <= 0) -> "Error: You must specify at least 1 worker!",
       (args.amMemory <= YarnAllocationHandler.MEMORY_OVERHEAD) -> ("Error: AM memory size must be" +
diff --git a/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala b/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala
index 22e55e0c60..e7130d2407 100644
--- a/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala
+++ b/yarn/common/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala
@@ -44,10 +44,6 @@ private[spark] class YarnClientSchedulerBackend(
   override def start() {
     super.start()
 
-    val userJar = System.getenv("SPARK_YARN_APP_JAR")
-    if (userJar == null)
-      throw new SparkException("env SPARK_YARN_APP_JAR is not set")
-
     val driverHost = conf.get("spark.driver.host")
     val driverPort = conf.get("spark.driver.port")
     val hostport = driverHost + ":" + driverPort
@@ -55,7 +51,7 @@ private[spark] class YarnClientSchedulerBackend(
     val argsArrayBuf = new ArrayBuffer[String]()
     argsArrayBuf += (
       "--class", "notused",
-      "--jar", userJar,
+      "--jar", null,
       "--args", hostport,
       "--master-class", "org.apache.spark.deploy.yarn.WorkerLauncher"
     )
-- 
GitLab