diff --git a/R/pkg/NAMESPACE b/R/pkg/NAMESPACE
index 1432ab8a9d1ce3567627ed348c881ae4e1ba305d..239ad065d09ad67696997d19566a59778a20640d 100644
--- a/R/pkg/NAMESPACE
+++ b/R/pkg/NAMESPACE
@@ -47,6 +47,7 @@ exportMethods("arrange",
               "covar_pop",
               "crosstab",
               "dapply",
+              "dapplyCollect",
               "describe",
               "dim",
               "distinct",
diff --git a/R/pkg/R/DataFrame.R b/R/pkg/R/DataFrame.R
index 43c46b847446b17be2119b351c512e6990c1b863..0c2a194483b0f93b4a34e6e676b6b44c67b7a20e 100644
--- a/R/pkg/R/DataFrame.R
+++ b/R/pkg/R/DataFrame.R
@@ -1153,9 +1153,27 @@ setMethod("summarize",
             agg(x, ...)
           })
 
+dapplyInternal <- function(x, func, schema) {
+  packageNamesArr <- serialize(.sparkREnv[[".packages"]],
+                               connection = NULL)
+
+  broadcastArr <- lapply(ls(.broadcastNames),
+                         function(name) { get(name, .broadcastNames) })
+
+  sdf <- callJStatic(
+           "org.apache.spark.sql.api.r.SQLUtils",
+           "dapply",
+           x@sdf,
+           serialize(cleanClosure(func), connection = NULL),
+           packageNamesArr,
+           broadcastArr,
+           if (is.null(schema)) { schema } else { schema$jobj })
+  dataFrame(sdf)
+}
+
 #' dapply
 #'
-#' Apply a function to each partition of a DataFrame.
+#' Apply a function to each partition of a SparkDataFrame.
 #'
 #' @param x A SparkDataFrame
 #' @param func A function to be applied to each partition of the SparkDataFrame.
@@ -1197,21 +1215,57 @@ setMethod("summarize",
 setMethod("dapply",
           signature(x = "SparkDataFrame", func = "function", schema = "structType"),
           function(x, func, schema) {
-            packageNamesArr <- serialize(.sparkREnv[[".packages"]],
-                                         connection = NULL)
-
-            broadcastArr <- lapply(ls(.broadcastNames),
-                                   function(name) { get(name, .broadcastNames) })
-
-            sdf <- callJStatic(
-                     "org.apache.spark.sql.api.r.SQLUtils",
-                     "dapply",
-                     x@sdf,
-                     serialize(cleanClosure(func), connection = NULL),
-                     packageNamesArr,
-                     broadcastArr,
-                     schema$jobj)
-            dataFrame(sdf)
+            dapplyInternal(x, func, schema)
+          })
+
+#' dapplyCollect
+#'
+#' Apply a function to each partition of a SparkDataFrame and collect the result back
+#’ to R as a data.frame.
+#'
+#' @param x A SparkDataFrame
+#' @param func A function to be applied to each partition of the SparkDataFrame.
+#'             func should have only one parameter, to which a data.frame corresponds
+#'             to each partition will be passed.
+#'             The output of func should be a data.frame.
+#' @family SparkDataFrame functions
+#' @rdname dapply
+#' @name dapplyCollect
+#' @export
+#' @examples
+#' \dontrun{
+#'   df <- createDataFrame (sqlContext, iris)
+#'   ldf <- dapplyCollect(df, function(x) { x })
+#'
+#'   # filter and add a column
+#'   df <- createDataFrame (
+#'           sqlContext, 
+#'           list(list(1L, 1, "1"), list(2L, 2, "2"), list(3L, 3, "3")),
+#'           c("a", "b", "c"))
+#'   ldf <- dapplyCollect(
+#'            df,
+#'            function(x) {
+#'              y <- x[x[1] > 1, ]
+#'              y <- cbind(y, y[1] + 1L)
+#'            })
+#'   # the result
+#'   #       a b c d
+#'   #       2 2 2 3
+#'   #       3 3 3 4
+#' }
+setMethod("dapplyCollect",
+          signature(x = "SparkDataFrame", func = "function"),
+          function(x, func) {
+            df <- dapplyInternal(x, func, NULL)
+
+            content <- callJMethod(df@sdf, "collect")
+            # content is a list of items of struct type. Each item has a single field
+            # which is a serialized data.frame corresponds to one partition of the
+            # SparkDataFrame.
+            ldfs <- lapply(content, function(x) { unserialize(x[[1]]) })
+            ldf <- do.call(rbind, ldfs)
+            row.names(ldf) <- NULL
+            ldf
           })
 
 ############################## RDD Map Functions ##################################
diff --git a/R/pkg/R/generics.R b/R/pkg/R/generics.R
index 8563be1e649838379d4c56142bb26aa9517675f2..ed76ad6b73c8bfd321466d6439b2de7d365b43df 100644
--- a/R/pkg/R/generics.R
+++ b/R/pkg/R/generics.R
@@ -450,6 +450,10 @@ setGeneric("covar_pop", function(col1, col2) {standardGeneric("covar_pop") })
 #' @export
 setGeneric("dapply", function(x, func, schema) { standardGeneric("dapply") })
 
+#' @rdname dapply
+#' @export
+setGeneric("dapplyCollect", function(x, func) { standardGeneric("dapplyCollect") })
+
 #' @rdname summary
 #' @export
 setGeneric("describe", function(x, col, ...) { standardGeneric("describe") })
diff --git a/R/pkg/inst/tests/testthat/test_sparkSQL.R b/R/pkg/inst/tests/testthat/test_sparkSQL.R
index 0f67bc2e331d1e7f73d840b957badb9f2518496b..6a99b43e5aa5920df522e9c6fdf2f927f8df1497 100644
--- a/R/pkg/inst/tests/testthat/test_sparkSQL.R
+++ b/R/pkg/inst/tests/testthat/test_sparkSQL.R
@@ -2043,7 +2043,7 @@ test_that("Histogram", {
   expect_equal(histogram(df, "x")$counts, c(4, 0, 0, 0, 0, 0, 0, 0, 0, 1))
 })
 
-test_that("dapply() on a DataFrame", {
+test_that("dapply() and dapplyCollect() on a DataFrame", {
   df <- createDataFrame (
           sqlContext,
           list(list(1L, 1, "1"), list(2L, 2, "2"), list(3L, 3, "3")),
@@ -2053,6 +2053,8 @@ test_that("dapply() on a DataFrame", {
   result <- collect(df1)
   expect_identical(ldf, result)
 
+  result <- dapplyCollect(df, function(x) { x })
+  expect_identical(ldf, result)
 
   # Filter and add a column
   schema <- structType(structField("a", "integer"), structField("b", "double"),
@@ -2070,6 +2072,16 @@ test_that("dapply() on a DataFrame", {
   rownames(expected) <- NULL
   expect_identical(expected, result)
 
+  result <- dapplyCollect(
+              df,
+              function(x) {
+                y <- x[x$a > 1, ]
+                y <- cbind(y, y$a + 1L)
+              })
+  expected1 <- expected
+  names(expected1) <- names(result)
+  expect_identical(expected1, result)
+
   # Remove the added column
   df2 <- dapply(
            df1,
@@ -2080,6 +2092,13 @@ test_that("dapply() on a DataFrame", {
   result <- collect(df2)
   expected <- expected[, c("a", "b", "c")]
   expect_identical(expected, result)
+
+  result <- dapplyCollect(
+              df1,
+              function(x) {
+               x[, c("a", "b", "c")]
+              })
+  expect_identical(expected, result)
 })
 
 test_that("repartition by columns on DataFrame", {