diff --git a/mllib/src/main/scala/org/apache/spark/ml/evaluation/Evaluator.scala b/mllib/src/main/scala/org/apache/spark/ml/evaluation/Evaluator.scala index 5f765c071b9cd0bef1f207035c76da36d7795762..dfbc3e5222c2f5ea005a96059f64cce6daf57aad 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/evaluation/Evaluator.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/evaluation/Evaluator.scala @@ -30,7 +30,8 @@ import org.apache.spark.sql.Dataset abstract class Evaluator extends Params { /** - * Evaluates model output and returns a scalar metric (larger is better). + * Evaluates model output and returns a scalar metric. + * The value of [[isLargerBetter]] specifies whether larger values are better. * * @param dataset a dataset that contains labels/observations and predictions. * @param paramMap parameter map that specifies the input columns and output metrics @@ -42,7 +43,9 @@ abstract class Evaluator extends Params { } /** - * Evaluates the output. + * Evaluates model output and returns a scalar metric. + * The value of [[isLargerBetter]] specifies whether larger values are better. + * * @param dataset a dataset that contains labels/observations and predictions. * @return metric */ diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala index 7b03f0c0f341e5b13161781cb0de06818c059106..9ed8d83324cf6ec7e06ee42fe79c83777dabcb8d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala @@ -78,9 +78,9 @@ private[feature] trait MinMaxScalerParams extends Params with HasInputCol with H * statistics, which is also known as min-max normalization or Rescaling. The rescaled value for * feature E is calculated as, * - * Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min + * `Rescaled(e_i) = \frac{e_i - E_{min}}{E_{max} - E_{min}} * (max - min) + min` * - * For the case E_{max} == E_{min}, Rescaled(e_i) = 0.5 * (max + min) + * For the case `E_{max} == E_{min}`, `Rescaled(e_i) = 0.5 * (max + min)`. * Note that since zero values will probably be transformed to non-zero values, output of the * transformer will be DenseVector even for sparse input. */ diff --git a/mllib/src/main/scala/org/apache/spark/ml/linalg/dataTypes.scala b/mllib/src/main/scala/org/apache/spark/ml/linalg/SQLDataTypes.scala similarity index 92% rename from mllib/src/main/scala/org/apache/spark/ml/linalg/dataTypes.scala rename to mllib/src/main/scala/org/apache/spark/ml/linalg/SQLDataTypes.scala index 52a6fd25e2fa7cfbffe9c73b4b6bb8f23952589d..a66ba27a7b9c51378ec732923c690eb2497612f0 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/linalg/dataTypes.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/linalg/SQLDataTypes.scala @@ -17,15 +17,16 @@ package org.apache.spark.ml.linalg -import org.apache.spark.annotation.DeveloperApi +import org.apache.spark.annotation.{DeveloperApi, Since} import org.apache.spark.sql.types.DataType /** * :: DeveloperApi :: * SQL data types for vectors and matrices. */ +@Since("2.0.0") @DeveloperApi -object sqlDataTypes { +object SQLDataTypes { /** Data type for [[Vector]]. */ val VectorType: DataType = new VectorUDT diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala index a23e90d9e125992575299348b49796d043135781..2bdc09e1db246222791622a4c92bc68d02daae3c 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala @@ -376,7 +376,7 @@ object GeneralizedLinearRegression extends DefaultParamsReadable[GeneralizedLine def deviance(y: Double, mu: Double, weight: Double): Double /** - * Akaike's 'An Information Criterion'(AIC) value of the family for a given dataset. + * Akaike Information Criterion (AIC) value of the family for a given dataset. * * @param predictions an RDD of (y, mu, weight) of instances in evaluation dataset * @param deviance the deviance for the fitted model in evaluation dataset @@ -702,13 +702,13 @@ class GeneralizedLinearRegressionModel private[ml] ( import GeneralizedLinearRegression._ - lazy val familyObj = Family.fromName($(family)) - lazy val linkObj = if (isDefined(link)) { + private lazy val familyObj = Family.fromName($(family)) + private lazy val linkObj = if (isDefined(link)) { Link.fromName($(link)) } else { familyObj.defaultLink } - lazy val familyAndLink = new FamilyAndLink(familyObj, linkObj) + private lazy val familyAndLink = new FamilyAndLink(familyObj, linkObj) override protected def predict(features: Vector): Double = { val eta = predictLink(features) @@ -1021,7 +1021,7 @@ class GeneralizedLinearRegressionSummary private[regression] ( rss / degreesOfFreedom } - /** Akaike's "An Information Criterion"(AIC) for the fitted model. */ + /** Akaike Information Criterion (AIC) for the fitted model. */ @Since("2.0.0") lazy val aic: Double = { val w = weightCol diff --git a/mllib/src/test/java/org/apache/spark/ml/linalg/JavaSQLDataTypesSuite.java b/mllib/src/test/java/org/apache/spark/ml/linalg/JavaSQLDataTypesSuite.java index b09e13112f124f02991abc32ca9653dd90979e8e..bd64a7186eac06fde938c0876212de8c95dd3116 100644 --- a/mllib/src/test/java/org/apache/spark/ml/linalg/JavaSQLDataTypesSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/linalg/JavaSQLDataTypesSuite.java @@ -20,7 +20,7 @@ package org.apache.spark.ml.linalg; import org.junit.Assert; import org.junit.Test; -import static org.apache.spark.ml.linalg.sqlDataTypes.*; +import static org.apache.spark.ml.linalg.SQLDataTypes.*; public class JavaSQLDataTypesSuite { @Test diff --git a/mllib/src/test/scala/org/apache/spark/ml/linalg/SQLDataTypesSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/linalg/SQLDataTypesSuite.scala index 13bf3d3015f6480843439cdded25cf7047a4bd01..0bd0c32f19d043d24e4dba0d42ba26d862285864 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/linalg/SQLDataTypesSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/linalg/SQLDataTypesSuite.scala @@ -21,7 +21,7 @@ import org.apache.spark.SparkFunSuite class SQLDataTypesSuite extends SparkFunSuite { test("sqlDataTypes") { - assert(sqlDataTypes.VectorType === new VectorUDT) - assert(sqlDataTypes.MatrixType === new MatrixUDT) + assert(SQLDataTypes.VectorType === new VectorUDT) + assert(SQLDataTypes.MatrixType === new MatrixUDT) } }