From a57aadae84aca27e5f02ac0bd64fd0ea34a64b61 Mon Sep 17 00:00:00 2001 From: Takuya UESHIN <ueshin@happy-camper.st> Date: Thu, 12 May 2016 12:36:18 -0700 Subject: [PATCH] [SPARK-13902][SCHEDULER] Make DAGScheduler not to create duplicate stage. ## What changes were proposed in this pull request? `DAGScheduler`sometimes generate incorrect stage graph. Suppose you have the following DAG: ``` [A] <--(s_A)-- [B] <--(s_B)-- [C] <--(s_C)-- [D] \ / <------------- ``` Note: [] means an RDD, () means a shuffle dependency. Here, RDD `B` has a shuffle dependency on RDD `A`, and RDD `C` has shuffle dependency on both `B` and `A`. The shuffle dependency IDs are numbers in the `DAGScheduler`, but to make the example easier to understand, let's call the shuffled data from `A` shuffle dependency ID `s_A` and the shuffled data from `B` shuffle dependency ID `s_B`. The `getAncestorShuffleDependencies` method in `DAGScheduler` (incorrectly) does not check for duplicates when it's adding ShuffleDependencies to the parents data structure, so for this DAG, when `getAncestorShuffleDependencies` gets called on `C` (previous of the final RDD), `getAncestorShuffleDependencies` will return `s_A`, `s_B`, `s_A` (`s_A` gets added twice: once when the method "visit"s RDD `C`, and once when the method "visit"s RDD `B`). This is problematic because this line of code: https://github.com/apache/spark/blob/8ef3399/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala#L289 then generates a new shuffle stage for each dependency returned by `getAncestorShuffleDependencies`, resulting in duplicate map stages that compute the map output from RDD `A`. As a result, `DAGScheduler` generates the following stages and their parents for each shuffle: | | stage | parents | |----|----|----| | s_A | ShuffleMapStage 2 | List() | | s_B | ShuffleMapStage 1 | List(ShuffleMapStage 0) | | s_C | ShuffleMapStage 3 | List(ShuffleMapStage 1, ShuffleMapStage 2) | | - | ResultStage 4 | List(ShuffleMapStage 3) | The stage for s_A should be `ShuffleMapStage 0`, but the stage for `s_A` is generated twice as `ShuffleMapStage 2` and `ShuffleMapStage 0` is overwritten by `ShuffleMapStage 2`, and the stage `ShuffleMap Stage1` keeps referring the old stage `ShuffleMapStage 0`. This patch is fixing it. ## How was this patch tested? I added the sample RDD graph to show the illegal stage graph to `DAGSchedulerSuite`. Author: Takuya UESHIN <ueshin@happy-camper.st> Closes #12655 from ueshin/issues/SPARK-13902. --- .../apache/spark/scheduler/DAGScheduler.scala | 4 +- .../spark/scheduler/DAGSchedulerSuite.scala | 47 +++++++++++++++++++ 2 files changed, 50 insertions(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala index 4dfd532e93..5291b66366 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala @@ -286,7 +286,9 @@ class DAGScheduler( case None => // We are going to register ancestor shuffle dependencies getAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep => - shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId) + if (!shuffleToMapStage.contains(dep.shuffleId)) { + shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId) + } } // Then register current shuffleDep val stage = newOrUsedShuffleStage(shuffleDep, firstJobId) diff --git a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala index e3ed079e4e..088a476086 100644 --- a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala +++ b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala @@ -325,6 +325,53 @@ class DAGSchedulerSuite extends SparkFunSuite with LocalSparkContext with Timeou assert(sparkListener.stageByOrderOfExecution(0) < sparkListener.stageByOrderOfExecution(1)) } + /** + * This test ensures that DAGScheduler build stage graph correctly. + * + * Suppose you have the following DAG: + * + * [A] <--(s_A)-- [B] <--(s_B)-- [C] <--(s_C)-- [D] + * \ / + * <------------- + * + * Here, RDD B has a shuffle dependency on RDD A, and RDD C has shuffle dependency on both + * B and A. The shuffle dependency IDs are numbers in the DAGScheduler, but to make the example + * easier to understand, let's call the shuffled data from A shuffle dependency ID s_A and the + * shuffled data from B shuffle dependency ID s_B. + * + * Note: [] means an RDD, () means a shuffle dependency. + */ + test("[SPARK-13902] Ensure no duplicate stages are created") { + val rddA = new MyRDD(sc, 1, Nil) + val shuffleDepA = new ShuffleDependency(rddA, new HashPartitioner(1)) + val s_A = shuffleDepA.shuffleId + + val rddB = new MyRDD(sc, 1, List(shuffleDepA), tracker = mapOutputTracker) + val shuffleDepB = new ShuffleDependency(rddB, new HashPartitioner(1)) + val s_B = shuffleDepB.shuffleId + + val rddC = new MyRDD(sc, 1, List(shuffleDepA, shuffleDepB), tracker = mapOutputTracker) + val shuffleDepC = new ShuffleDependency(rddC, new HashPartitioner(1)) + val s_C = shuffleDepC.shuffleId + + val rddD = new MyRDD(sc, 1, List(shuffleDepC), tracker = mapOutputTracker) + + submit(rddD, Array(0)) + + assert(scheduler.shuffleToMapStage.size === 3) + assert(scheduler.activeJobs.size === 1) + + val mapStageA = scheduler.shuffleToMapStage(s_A) + val mapStageB = scheduler.shuffleToMapStage(s_B) + val mapStageC = scheduler.shuffleToMapStage(s_C) + val finalStage = scheduler.activeJobs.head.finalStage + + assert(mapStageA.parents.isEmpty) + assert(mapStageB.parents === List(mapStageA)) + assert(mapStageC.parents === List(mapStageA, mapStageB)) + assert(finalStage.parents === List(mapStageC)) + } + test("zero split job") { var numResults = 0 var failureReason: Option[Exception] = None -- GitLab