From 8f3ac240cbdd678c0c76155b080dcc461355452e Mon Sep 17 00:00:00 2001 From: Prashant Sharma <prashant.s@imaginea.com> Date: Mon, 29 Apr 2013 16:39:13 +0530 Subject: [PATCH] Fixed Warning: ClassManifest -> ClassTag --- .../main/scala/spark/PairRDDFunctions.scala | 31 ++++---- core/src/main/scala/spark/Partitioner.scala | 8 +- core/src/main/scala/spark/RDD.scala | 43 +++++------ .../main/scala/spark/RDDCheckpointData.scala | 6 +- .../spark/SequenceFileRDDFunctions.scala | 9 ++- core/src/main/scala/spark/SparkContext.scala | 61 ++++++++-------- core/src/main/scala/spark/Utils.scala | 9 ++- .../scala/spark/api/java/JavaDoubleRDD.scala | 9 ++- .../scala/spark/api/java/JavaPairRDD.scala | 59 +++++++-------- .../main/scala/spark/api/java/JavaRDD.scala | 14 ++-- .../scala/spark/api/java/JavaRDDLike.scala | 31 ++++---- .../spark/api/java/JavaSparkContext.scala | 65 +++++++++-------- .../api/java/function/FlatMapFunction.scala | 4 +- .../scala/spark/api/python/PythonRDD.scala | 7 +- core/src/main/scala/spark/rdd/BlockRDD.scala | 4 +- .../main/scala/spark/rdd/CartesianRDD.scala | 5 +- .../main/scala/spark/rdd/CheckpointRDD.scala | 3 +- .../main/scala/spark/rdd/CoalescedRDD.scala | 3 +- .../main/scala/spark/rdd/FilteredRDD.scala | 3 +- .../main/scala/spark/rdd/FlatMappedRDD.scala | 3 +- .../src/main/scala/spark/rdd/GlommedRDD.scala | 3 +- .../scala/spark/rdd/MapPartitionsRDD.scala | 3 +- .../spark/rdd/MapPartitionsWithIndexRDD.scala | 3 +- core/src/main/scala/spark/rdd/MappedRDD.scala | 3 +- .../spark/rdd/ParallelCollectionRDD.scala | 8 +- .../scala/spark/rdd/PartitionPruningRDD.scala | 5 +- core/src/main/scala/spark/rdd/PipedRDD.scala | 3 +- .../src/main/scala/spark/rdd/SampledRDD.scala | 5 +- .../main/scala/spark/rdd/SubtractedRDD.scala | 5 +- core/src/main/scala/spark/rdd/UnionRDD.scala | 5 +- core/src/main/scala/spark/rdd/ZippedRDD.scala | 8 +- .../scala/spark/scheduler/DAGScheduler.scala | 9 ++- .../test/scala/spark/CheckpointSuite.scala | 5 +- .../streaming/examples/ActorWordCount.scala | 3 +- .../main/scala/spark/streaming/DStream.scala | 27 +++---- .../streaming/DStreamCheckpointData.scala | 7 +- .../streaming/PairDStreamFunctions.scala | 43 ++++++----- .../spark/streaming/StreamingContext.scala | 35 ++++----- .../streaming/api/java/JavaDStream.scala | 8 +- .../streaming/api/java/JavaDStreamLike.scala | 33 +++++---- .../streaming/api/java/JavaPairDStream.scala | 57 ++++++++------- .../api/java/JavaStreamingContext.scala | 73 ++++++++++--------- .../streaming/dstream/CoGroupedDStream.scala | 4 +- .../dstream/ConstantInputDStream.scala | 6 +- .../streaming/dstream/FileInputDStream.scala | 12 +-- .../streaming/dstream/FilteredDStream.scala | 6 +- .../dstream/FlatMapValuedDStream.scala | 4 +- .../streaming/dstream/FlatMappedDStream.scala | 5 +- .../streaming/dstream/FlumeInputDStream.scala | 3 +- .../streaming/dstream/ForEachDStream.scala | 3 +- .../streaming/dstream/GlommedDStream.scala | 4 +- .../streaming/dstream/InputDStream.scala | 4 +- .../streaming/dstream/KafkaInputDStream.scala | 8 +- .../dstream/MapPartitionedDStream.scala | 5 +- .../streaming/dstream/MapValuedDStream.scala | 5 +- .../streaming/dstream/MappedDStream.scala | 5 +- .../dstream/NetworkInputDStream.scala | 5 +- .../dstream/PluggableInputDStream.scala | 4 +- .../streaming/dstream/QueueInputDStream.scala | 12 +-- .../streaming/dstream/RawInputDStream.scala | 4 +- .../dstream/ReducedWindowedDStream.scala | 10 +-- .../streaming/dstream/ShuffledDStream.scala | 4 +- .../dstream/SocketInputDStream.scala | 6 +- .../streaming/dstream/StateDStream.scala | 4 +- .../dstream/TransformedDStream.scala | 4 +- .../streaming/dstream/UnionDStream.scala | 6 +- .../streaming/dstream/WindowedDStream.scala | 7 +- .../streaming/receivers/ActorReceiver.scala | 14 ++-- .../streaming/receivers/ZeroMQReceiver.scala | 4 +- .../streaming/util/MasterFailureTest.scala | 31 ++++---- .../java/spark/streaming/JavaTestUtils.scala | 22 +++--- .../spark/streaming/CheckpointSuite.scala | 5 +- .../scala/spark/streaming/TestSuiteBase.scala | 25 ++++--- 73 files changed, 531 insertions(+), 438 deletions(-) diff --git a/core/src/main/scala/spark/PairRDDFunctions.scala b/core/src/main/scala/spark/PairRDDFunctions.scala index 07efba9e8d..0453e98e7d 100644 --- a/core/src/main/scala/spark/PairRDDFunctions.scala +++ b/core/src/main/scala/spark/PairRDDFunctions.scala @@ -7,6 +7,7 @@ import scala.collection.Map import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.HashMap import scala.collection.JavaConversions._ +import scala.reflect.{ ClassTag, classTag} import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path @@ -29,7 +30,7 @@ import spark.Partitioner._ * Extra functions available on RDDs of (key, value) pairs through an implicit conversion. * Import `spark.SparkContext._` at the top of your program to use these functions. */ -class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( +class PairRDDFunctions[K: ClassTag, V: ClassTag]( self: RDD[(K, V)]) extends Logging with HadoopMapReduceUtil @@ -394,7 +395,7 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( val cg = new CoGroupedRDD[K]( Seq(self.asInstanceOf[RDD[(K, _)]], other.asInstanceOf[RDD[(K, _)]]), partitioner) - val prfs = new PairRDDFunctions[K, Seq[Seq[_]]](cg)(classManifest[K], Manifests.seqSeqManifest) + val prfs = new PairRDDFunctions[K, Seq[Seq[_]]](cg)(classTag[K], ClassTags.seqSeqClassTag) prfs.mapValues { case Seq(vs, ws) => (vs.asInstanceOf[Seq[V]], ws.asInstanceOf[Seq[W]]) @@ -415,7 +416,7 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( other1.asInstanceOf[RDD[(K, _)]], other2.asInstanceOf[RDD[(K, _)]]), partitioner) - val prfs = new PairRDDFunctions[K, Seq[Seq[_]]](cg)(classManifest[K], Manifests.seqSeqManifest) + val prfs = new PairRDDFunctions[K, Seq[Seq[_]]](cg)(classTag[K], ClassTags.seqSeqClassTag) prfs.mapValues { case Seq(vs, w1s, w2s) => (vs.asInstanceOf[Seq[V]], w1s.asInstanceOf[Seq[W1]], w2s.asInstanceOf[Seq[W2]]) @@ -469,19 +470,19 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( /** * Return an RDD with the pairs from `this` whose keys are not in `other`. - * + * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be <= us. */ - def subtractByKey[W: ClassManifest](other: RDD[(K, W)]): RDD[(K, V)] = + def subtractByKey[W: ClassTag](other: RDD[(K, W)]): RDD[(K, V)] = subtractByKey(other, self.partitioner.getOrElse(new HashPartitioner(self.partitions.size))) /** Return an RDD with the pairs from `this` whose keys are not in `other`. */ - def subtractByKey[W: ClassManifest](other: RDD[(K, W)], numPartitions: Int): RDD[(K, V)] = + def subtractByKey[W: ClassTag](other: RDD[(K, W)], numPartitions: Int): RDD[(K, V)] = subtractByKey(other, new HashPartitioner(numPartitions)) /** Return an RDD with the pairs from `this` whose keys are not in `other`. */ - def subtractByKey[W: ClassManifest](other: RDD[(K, W)], p: Partitioner): RDD[(K, V)] = + def subtractByKey[W: ClassTag](other: RDD[(K, W)], p: Partitioner): RDD[(K, V)] = new SubtractedRDD[K, V, W](self, other, p) /** @@ -510,7 +511,7 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class * supporting the key and value types K and V in this RDD. */ - def saveAsHadoopFile[F <: OutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) { + def saveAsHadoopFile[F <: OutputFormat[K, V]](path: String)(implicit fm: ClassTag[F]) { saveAsHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]]) } @@ -518,7 +519,7 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat` * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD. */ - def saveAsNewAPIHadoopFile[F <: NewOutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) { + def saveAsNewAPIHadoopFile[F <: NewOutputFormat[K, V]](path: String)(implicit fm: ClassTag[F]) { saveAsNewAPIHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]]) } @@ -644,15 +645,15 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( * Return an RDD with the keys of each tuple. */ def keys: RDD[K] = self.map(_._1) - + /** * Return an RDD with the values of each tuple. */ def values: RDD[V] = self.map(_._2) - private[spark] def getKeyClass() = implicitly[ClassManifest[K]].erasure + private[spark] def getKeyClass() = implicitly[ClassTag[K]].erasure - private[spark] def getValueClass() = implicitly[ClassManifest[V]].erasure + private[spark] def getValueClass() = implicitly[ClassTag[V]].erasure } /** @@ -660,7 +661,7 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( * an implicit conversion. Import `spark.SparkContext._` at the top of your program to use these * functions. They will work with any key type that has a `scala.math.Ordered` implementation. */ -class OrderedRDDFunctions[K <% Ordered[K]: ClassManifest, V: ClassManifest]( +class OrderedRDDFunctions[K <% Ordered[K]: ClassTag, V: ClassTag]( self: RDD[(K, V)]) extends Logging with Serializable { @@ -704,6 +705,6 @@ class FlatMappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => TraversableOnce[U] } } -private[spark] object Manifests { - val seqSeqManifest = classManifest[Seq[Seq[_]]] +private[spark] object ClassTags { + val seqSeqClassTag = classTag[Seq[Seq[_]]] } diff --git a/core/src/main/scala/spark/Partitioner.scala b/core/src/main/scala/spark/Partitioner.scala index 6f8cd17c88..fc811d85e1 100644 --- a/core/src/main/scala/spark/Partitioner.scala +++ b/core/src/main/scala/spark/Partitioner.scala @@ -1,5 +1,7 @@ package spark +import scala.reflect.ClassTag + /** * An object that defines how the elements in a key-value pair RDD are partitioned by key. * Maps each key to a partition ID, from 0 to `numPartitions - 1`. @@ -60,7 +62,7 @@ class HashPartitioner(partitions: Int) extends Partitioner { } } } - + override def equals(other: Any): Boolean = other match { case h: HashPartitioner => h.numPartitions == numPartitions @@ -73,10 +75,10 @@ class HashPartitioner(partitions: Int) extends Partitioner { * A [[spark.Partitioner]] that partitions sortable records by range into roughly equal ranges. * Determines the ranges by sampling the RDD passed in. */ -class RangePartitioner[K <% Ordered[K]: ClassManifest, V]( +class RangePartitioner[K <% Ordered[K]: ClassTag, V]( partitions: Int, @transient rdd: RDD[(K,V)], - private val ascending: Boolean = true) + private val ascending: Boolean = true) extends Partitioner { // An array of upper bounds for the first (partitions - 1) partitions diff --git a/core/src/main/scala/spark/RDD.scala b/core/src/main/scala/spark/RDD.scala index ccd9d0364a..e6e0997a59 100644 --- a/core/src/main/scala/spark/RDD.scala +++ b/core/src/main/scala/spark/RDD.scala @@ -8,6 +8,7 @@ import scala.collection.Map import scala.collection.JavaConversions.mapAsScalaMap import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.HashMap +import scala.reflect.{classTag, ClassTag} import org.apache.hadoop.io.BytesWritable import org.apache.hadoop.io.NullWritable @@ -65,7 +66,7 @@ import SparkContext._ * [[http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf Spark paper]] for more details * on RDD internals. */ -abstract class RDD[T: ClassManifest]( +abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @transient private var deps: Seq[Dependency[_]] ) extends Serializable with Logging { @@ -213,13 +214,13 @@ abstract class RDD[T: ClassManifest]( /** * Return a new RDD by applying a function to all elements of this RDD. */ - def map[U: ClassManifest](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f)) + def map[U: ClassTag](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f)) /** * Return a new RDD by first applying a function to all elements of this * RDD, and then flattening the results. */ - def flatMap[U: ClassManifest](f: T => TraversableOnce[U]): RDD[U] = + def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = new FlatMappedRDD(this, sc.clean(f)) /** @@ -307,25 +308,25 @@ abstract class RDD[T: ClassManifest]( * Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of * elements (a, b) where a is in `this` and b is in `other`. */ - def cartesian[U: ClassManifest](other: RDD[U]): RDD[(T, U)] = new CartesianRDD(sc, this, other) + def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)] = new CartesianRDD(sc, this, other) /** * Return an RDD of grouped items. */ - def groupBy[K: ClassManifest](f: T => K): RDD[(K, Seq[T])] = + def groupBy[K: ClassTag](f: T => K): RDD[(K, Seq[T])] = groupBy[K](f, defaultPartitioner(this)) /** * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements * mapping to that key. */ - def groupBy[K: ClassManifest](f: T => K, numPartitions: Int): RDD[(K, Seq[T])] = + def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Seq[T])] = groupBy(f, new HashPartitioner(numPartitions)) /** * Return an RDD of grouped items. */ - def groupBy[K: ClassManifest](f: T => K, p: Partitioner): RDD[(K, Seq[T])] = { + def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Seq[T])] = { val cleanF = sc.clean(f) this.map(t => (cleanF(t), t)).groupByKey(p) } @@ -349,7 +350,7 @@ abstract class RDD[T: ClassManifest]( /** * Return a new RDD by applying a function to each partition of this RDD. */ - def mapPartitions[U: ClassManifest](f: Iterator[T] => Iterator[U], + def mapPartitions[U: ClassTag](f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = new MapPartitionsRDD(this, sc.clean(f), preservesPartitioning) @@ -357,7 +358,7 @@ abstract class RDD[T: ClassManifest]( * Return a new RDD by applying a function to each partition of this RDD, while tracking the index * of the original partition. */ - def mapPartitionsWithIndex[U: ClassManifest]( + def mapPartitionsWithIndex[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = new MapPartitionsWithIndexRDD(this, sc.clean(f), preservesPartitioning) @@ -367,7 +368,7 @@ abstract class RDD[T: ClassManifest]( * of the original partition. */ @deprecated("use mapPartitionsWithIndex", "0.7.0") - def mapPartitionsWithSplit[U: ClassManifest]( + def mapPartitionsWithSplit[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = new MapPartitionsWithIndexRDD(this, sc.clean(f), preservesPartitioning) @@ -377,7 +378,7 @@ abstract class RDD[T: ClassManifest]( * additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ - def mapWith[A: ClassManifest, U: ClassManifest](constructA: Int => A, preservesPartitioning: Boolean = false) + def mapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false) (f:(T, A) => U): RDD[U] = { def iterF(index: Int, iter: Iterator[T]): Iterator[U] = { val a = constructA(index) @@ -391,7 +392,7 @@ abstract class RDD[T: ClassManifest]( * additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ - def flatMapWith[A: ClassManifest, U: ClassManifest](constructA: Int => A, preservesPartitioning: Boolean = false) + def flatMapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false) (f:(T, A) => Seq[U]): RDD[U] = { def iterF(index: Int, iter: Iterator[T]): Iterator[U] = { val a = constructA(index) @@ -405,7 +406,7 @@ abstract class RDD[T: ClassManifest]( * This additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ - def foreachWith[A: ClassManifest](constructA: Int => A) + def foreachWith[A: ClassTag](constructA: Int => A) (f:(T, A) => Unit) { def iterF(index: Int, iter: Iterator[T]): Iterator[T] = { val a = constructA(index) @@ -419,7 +420,7 @@ abstract class RDD[T: ClassManifest]( * additional parameter is produced by constructA, which is called in each * partition with the index of that partition. */ - def filterWith[A: ClassManifest](constructA: Int => A) + def filterWith[A: ClassTag](constructA: Int => A) (p:(T, A) => Boolean): RDD[T] = { def iterF(index: Int, iter: Iterator[T]): Iterator[T] = { val a = constructA(index) @@ -434,7 +435,7 @@ abstract class RDD[T: ClassManifest]( * partitions* and the *same number of elements in each partition* (e.g. one was made through * a map on the other). */ - def zip[U: ClassManifest](other: RDD[U]): RDD[(T, U)] = new ZippedRDD(sc, this, other) + def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)] = new ZippedRDD(sc, this, other) // Actions (launch a job to return a value to the user program) @@ -470,7 +471,7 @@ abstract class RDD[T: ClassManifest]( /** * Return an RDD that contains all matching values by applying `f`. */ - def collect[U: ClassManifest](f: PartialFunction[T, U]): RDD[U] = { + def collect[U: ClassTag](f: PartialFunction[T, U]): RDD[U] = { filter(f.isDefinedAt).map(f) } @@ -560,7 +561,7 @@ abstract class RDD[T: ClassManifest]( * allowed to modify and return their first argument instead of creating a new U to avoid memory * allocation. */ - def aggregate[U: ClassManifest](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = { + def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = { // Clone the zero value since we will also be serializing it as part of tasks var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance()) val cleanSeqOp = sc.clean(seqOp) @@ -607,7 +608,7 @@ abstract class RDD[T: ClassManifest]( * combine step happens locally on the master, equivalent to running a single reduce task. */ def countByValue(): Map[T, Long] = { - if (elementClassManifest.erasure.isArray) { + if (elementClassTag.erasure.isArray) { throw new SparkException("countByValue() does not support arrays") } // TODO: This should perhaps be distributed by default. @@ -638,7 +639,7 @@ abstract class RDD[T: ClassManifest]( timeout: Long, confidence: Double = 0.95 ): PartialResult[Map[T, BoundedDouble]] = { - if (elementClassManifest.erasure.isArray) { + if (elementClassTag.erasure.isArray) { throw new SparkException("countByValueApprox() does not support arrays") } val countPartition: (TaskContext, Iterator[T]) => OLMap[T] = { (ctx, iter) => @@ -751,12 +752,12 @@ abstract class RDD[T: ClassManifest]( /** Record user function generating this RDD. */ private[spark] val origin = Utils.getSparkCallSite - private[spark] def elementClassManifest: ClassManifest[T] = classManifest[T] + private[spark] def elementClassTag: ClassTag[T] = classTag[T] private[spark] var checkpointData: Option[RDDCheckpointData[T]] = None /** Returns the first parent RDD */ - protected[spark] def firstParent[U: ClassManifest] = { + protected[spark] def firstParent[U: ClassTag] = { dependencies.head.rdd.asInstanceOf[RDD[U]] } diff --git a/core/src/main/scala/spark/RDDCheckpointData.scala b/core/src/main/scala/spark/RDDCheckpointData.scala index d00092e984..083ba9b8fa 100644 --- a/core/src/main/scala/spark/RDDCheckpointData.scala +++ b/core/src/main/scala/spark/RDDCheckpointData.scala @@ -1,7 +1,11 @@ package spark +import scala.reflect.ClassTag + import org.apache.hadoop.fs.Path + import rdd.{CheckpointRDD, CoalescedRDD} + import scheduler.{ResultTask, ShuffleMapTask} /** @@ -19,7 +23,7 @@ private[spark] object CheckpointState extends Enumeration { * manages the post-checkpoint state by providing the updated partitions, iterator and preferred locations * of the checkpointed RDD. */ -private[spark] class RDDCheckpointData[T: ClassManifest](rdd: RDD[T]) +private[spark] class RDDCheckpointData[T: ClassTag](rdd: RDD[T]) extends Logging with Serializable { import CheckpointState._ diff --git a/core/src/main/scala/spark/SequenceFileRDDFunctions.scala b/core/src/main/scala/spark/SequenceFileRDDFunctions.scala index 518034e07b..900d73bf42 100644 --- a/core/src/main/scala/spark/SequenceFileRDDFunctions.scala +++ b/core/src/main/scala/spark/SequenceFileRDDFunctions.scala @@ -11,6 +11,7 @@ import java.util.Date import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.Map import scala.collection.mutable.HashMap +import scala.reflect.{ classTag, ClassTag} import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapred.OutputFormat @@ -32,15 +33,15 @@ import spark.SparkContext._ * * Users should import `spark.SparkContext._` at the top of their program to use these functions. */ -class SequenceFileRDDFunctions[K <% Writable: ClassManifest, V <% Writable : ClassManifest]( +class SequenceFileRDDFunctions[K <% Writable: ClassTag, V <% Writable : ClassTag]( self: RDD[(K, V)]) extends Logging with Serializable { - private def getWritableClass[T <% Writable: ClassManifest](): Class[_ <: Writable] = { + private def getWritableClass[T <% Writable: ClassTag](): Class[_ <: Writable] = { val c = { - if (classOf[Writable].isAssignableFrom(classManifest[T].erasure)) { - classManifest[T].erasure + if (classOf[Writable].isAssignableFrom(classTag[T].erasure)) { + classTag[T].erasure } else { // We get the type of the Writable class by looking at the apply method which converts // from T to Writable. Since we have two apply methods we filter out the one which diff --git a/core/src/main/scala/spark/SparkContext.scala b/core/src/main/scala/spark/SparkContext.scala index 4957a54c1b..6bd87bf3ec 100644 --- a/core/src/main/scala/spark/SparkContext.scala +++ b/core/src/main/scala/spark/SparkContext.scala @@ -8,6 +8,7 @@ import scala.collection.Map import scala.collection.generic.Growable import scala.collection.mutable.HashMap import scala.collection.JavaConversions._ +import scala.reflect.{ ClassTag, classTag} import org.apache.hadoop.fs.Path import org.apache.hadoop.conf.Configuration @@ -210,19 +211,19 @@ class SparkContext( // Methods for creating RDDs /** Distribute a local Scala collection to form an RDD. */ - def parallelize[T: ClassManifest](seq: Seq[T], numSlices: Int = defaultParallelism): RDD[T] = { + def parallelize[T: ClassTag](seq: Seq[T], numSlices: Int = defaultParallelism): RDD[T] = { new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]()) } /** Distribute a local Scala collection to form an RDD. */ - def makeRDD[T: ClassManifest](seq: Seq[T], numSlices: Int = defaultParallelism): RDD[T] = { + def makeRDD[T: ClassTag](seq: Seq[T], numSlices: Int = defaultParallelism): RDD[T] = { parallelize(seq, numSlices) } /** Distribute a local Scala collection to form an RDD, with one or more * location preferences (hostnames of Spark nodes) for each object. * Create a new partition for each collection item. */ - def makeRDD[T: ClassManifest](seq: Seq[(T, Seq[String])]): RDD[T] = { + def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = { val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap new ParallelCollectionRDD[T](this, seq.map(_._1), seq.size, indexToPrefs) } @@ -265,7 +266,7 @@ class SparkContext( } /** - * Smarter version of hadoopFile() that uses class manifests to figure out the classes of keys, + * Smarter version of hadoopFile() that uses class tags to figure out the classes of keys, * values and the InputFormat so that users don't need to pass them directly. Instead, callers * can just write, for example, * {{{ @@ -273,7 +274,7 @@ class SparkContext( * }}} */ def hadoopFile[K, V, F <: InputFormat[K, V]](path: String, minSplits: Int) - (implicit km: ClassManifest[K], vm: ClassManifest[V], fm: ClassManifest[F]) + (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]) : RDD[(K, V)] = { hadoopFile(path, fm.erasure.asInstanceOf[Class[F]], @@ -283,7 +284,7 @@ class SparkContext( } /** - * Smarter version of hadoopFile() that uses class manifests to figure out the classes of keys, + * Smarter version of hadoopFile() that uses class tags to figure out the classes of keys, * values and the InputFormat so that users don't need to pass them directly. Instead, callers * can just write, for example, * {{{ @@ -291,12 +292,12 @@ class SparkContext( * }}} */ def hadoopFile[K, V, F <: InputFormat[K, V]](path: String) - (implicit km: ClassManifest[K], vm: ClassManifest[V], fm: ClassManifest[F]): RDD[(K, V)] = + (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = hadoopFile[K, V, F](path, defaultMinSplits) /** Get an RDD for a Hadoop file with an arbitrary new API InputFormat. */ def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]](path: String) - (implicit km: ClassManifest[K], vm: ClassManifest[V], fm: ClassManifest[F]): RDD[(K, V)] = { + (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = { newAPIHadoopFile( path, fm.erasure.asInstanceOf[Class[F]], @@ -359,11 +360,11 @@ class SparkContext( * IntWritable). The most natural thing would've been to have implicit objects for the * converters, but then we couldn't have an object for every subclass of Writable (you can't * have a parameterized singleton object). We use functions instead to create a new converter - * for the appropriate type. In addition, we pass the converter a ClassManifest of its type to + * for the appropriate type. In addition, we pass the converter a ClassTag of its type to * allow it to figure out the Writable class to use in the subclass case. */ def sequenceFile[K, V](path: String, minSplits: Int = defaultMinSplits) - (implicit km: ClassManifest[K], vm: ClassManifest[V], + (implicit km: ClassTag[K], vm: ClassTag[V], kcf: () => WritableConverter[K], vcf: () => WritableConverter[V]) : RDD[(K, V)] = { val kc = kcf() @@ -382,7 +383,7 @@ class SparkContext( * slow if you use the default serializer (Java serialization), though the nice thing about it is * that there's very little effort required to save arbitrary objects. */ - def objectFile[T: ClassManifest]( + def objectFile[T: ClassTag]( path: String, minSplits: Int = defaultMinSplits ): RDD[T] = { @@ -391,17 +392,17 @@ class SparkContext( } - protected[spark] def checkpointFile[T: ClassManifest]( + protected[spark] def checkpointFile[T: ClassTag]( path: String ): RDD[T] = { new CheckpointRDD[T](this, path) } /** Build the union of a list of RDDs. */ - def union[T: ClassManifest](rdds: Seq[RDD[T]]): RDD[T] = new UnionRDD(this, rdds) + def union[T: ClassTag](rdds: Seq[RDD[T]]): RDD[T] = new UnionRDD(this, rdds) /** Build the union of a list of RDDs passed as variable-length arguments. */ - def union[T: ClassManifest](first: RDD[T], rest: RDD[T]*): RDD[T] = + def union[T: ClassTag](first: RDD[T], rest: RDD[T]*): RDD[T] = new UnionRDD(this, Seq(first) ++ rest) // Methods for creating shared variables @@ -569,7 +570,7 @@ class SparkContext( * flag specifies whether the scheduler can run the computation on the driver rather than * shipping it out to the cluster, for short actions like first(). */ - def runJob[T, U: ClassManifest]( + def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], @@ -589,7 +590,7 @@ class SparkContext( * allowLocal flag specifies whether the scheduler can run the computation on the driver rather * than shipping it out to the cluster, for short actions like first(). */ - def runJob[T, U: ClassManifest]( + def runJob[T, U: ClassTag]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], @@ -604,7 +605,7 @@ class SparkContext( * Run a job on a given set of partitions of an RDD, but take a function of type * `Iterator[T] => U` instead of `(TaskContext, Iterator[T]) => U`. */ - def runJob[T, U: ClassManifest]( + def runJob[T, U: ClassTag]( rdd: RDD[T], func: Iterator[T] => U, partitions: Seq[Int], @@ -616,21 +617,21 @@ class SparkContext( /** * Run a job on all partitions in an RDD and return the results in an array. */ - def runJob[T, U: ClassManifest](rdd: RDD[T], func: (TaskContext, Iterator[T]) => U): Array[U] = { + def runJob[T, U: ClassTag](rdd: RDD[T], func: (TaskContext, Iterator[T]) => U): Array[U] = { runJob(rdd, func, 0 until rdd.partitions.size, false) } /** * Run a job on all partitions in an RDD and return the results in an array. */ - def runJob[T, U: ClassManifest](rdd: RDD[T], func: Iterator[T] => U): Array[U] = { + def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = { runJob(rdd, func, 0 until rdd.partitions.size, false) } /** * Run a job on all partitions in an RDD and pass the results to a handler function. */ - def runJob[T, U: ClassManifest]( + def runJob[T, U: ClassTag]( rdd: RDD[T], processPartition: (TaskContext, Iterator[T]) => U, resultHandler: (Int, U) => Unit) @@ -641,7 +642,7 @@ class SparkContext( /** * Run a job on all partitions in an RDD and pass the results to a handler function. */ - def runJob[T, U: ClassManifest]( + def runJob[T, U: ClassTag]( rdd: RDD[T], processPartition: Iterator[T] => U, resultHandler: (Int, U) => Unit) @@ -745,14 +746,14 @@ object SparkContext { // TODO: Add AccumulatorParams for other types, e.g. lists and strings - implicit def rddToPairRDDFunctions[K: ClassManifest, V: ClassManifest](rdd: RDD[(K, V)]) = + implicit def rddToPairRDDFunctions[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]) = new PairRDDFunctions(rdd) - implicit def rddToSequenceFileRDDFunctions[K <% Writable: ClassManifest, V <% Writable: ClassManifest]( + implicit def rddToSequenceFileRDDFunctions[K <% Writable: ClassTag, V <% Writable: ClassTag]( rdd: RDD[(K, V)]) = new SequenceFileRDDFunctions(rdd) - implicit def rddToOrderedRDDFunctions[K <% Ordered[K]: ClassManifest, V: ClassManifest]( + implicit def rddToOrderedRDDFunctions[K <% Ordered[K]: ClassTag, V: ClassTag]( rdd: RDD[(K, V)]) = new OrderedRDDFunctions(rdd) @@ -777,16 +778,16 @@ object SparkContext { implicit def stringToText(s: String) = new Text(s) - private implicit def arrayToArrayWritable[T <% Writable: ClassManifest](arr: Traversable[T]): ArrayWritable = { + private implicit def arrayToArrayWritable[T <% Writable: ClassTag](arr: Traversable[T]): ArrayWritable = { def anyToWritable[U <% Writable](u: U): Writable = u - new ArrayWritable(classManifest[T].erasure.asInstanceOf[Class[Writable]], + new ArrayWritable(classTag[T].erasure.asInstanceOf[Class[Writable]], arr.map(x => anyToWritable(x)).toArray) } // Helper objects for converting common types to Writable - private def simpleWritableConverter[T, W <: Writable: ClassManifest](convert: W => T) = { - val wClass = classManifest[W].erasure.asInstanceOf[Class[W]] + private def simpleWritableConverter[T, W <: Writable: ClassTag](convert: W => T) = { + val wClass = classTag[W].erasure.asInstanceOf[Class[W]] new WritableConverter[T](_ => wClass, x => convert(x.asInstanceOf[W])) } @@ -834,11 +835,11 @@ object SparkContext { /** * A class encapsulating how to convert some type T to Writable. It stores both the Writable class * corresponding to T (e.g. IntWritable for Int) and a function for doing the conversion. - * The getter for the writable class takes a ClassManifest[T] in case this is a generic object + * The getter for the writable class takes a ClassTag[T] in case this is a generic object * that doesn't know the type of T when it is created. This sounds strange but is necessary to * support converting subclasses of Writable to themselves (writableWritableConverter). */ private[spark] class WritableConverter[T]( - val writableClass: ClassManifest[T] => Class[_ <: Writable], + val writableClass: ClassTag[T] => Class[_ <: Writable], val convert: Writable => T) extends Serializable diff --git a/core/src/main/scala/spark/Utils.scala b/core/src/main/scala/spark/Utils.scala index 81daacf958..cdccb8b336 100644 --- a/core/src/main/scala/spark/Utils.scala +++ b/core/src/main/scala/spark/Utils.scala @@ -4,14 +4,19 @@ import java.io._ import java.net._ import java.util.{Locale, Random, UUID} import java.util.concurrent.{Executors, ThreadFactory, ThreadPoolExecutor} + import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{Path, FileSystem, FileUtil} + import scala.collection.mutable.ArrayBuffer import scala.collection.JavaConversions._ import scala.io.Source +import scala.reflect.ClassTag +import scala.Some + import com.google.common.io.Files import com.google.common.util.concurrent.ThreadFactoryBuilder -import scala.Some + import spark.serializer.SerializerInstance /** @@ -207,7 +212,7 @@ private object Utils extends Logging { * result in a new collection. Unlike scala.util.Random.shuffle, this method * uses a local random number generator, avoiding inter-thread contention. */ - def randomize[T: ClassManifest](seq: TraversableOnce[T]): Seq[T] = { + def randomize[T: ClassTag](seq: TraversableOnce[T]): Seq[T] = { randomizeInPlace(seq.toArray) } diff --git a/core/src/main/scala/spark/api/java/JavaDoubleRDD.scala b/core/src/main/scala/spark/api/java/JavaDoubleRDD.scala index 16692c0440..3e88a9ccc7 100644 --- a/core/src/main/scala/spark/api/java/JavaDoubleRDD.scala +++ b/core/src/main/scala/spark/api/java/JavaDoubleRDD.scala @@ -1,5 +1,6 @@ package spark.api.java +import scala.reflect.ClassTag import spark.RDD import spark.SparkContext.doubleRDDToDoubleRDDFunctions import spark.api.java.function.{Function => JFunction} @@ -11,7 +12,7 @@ import spark.Partitioner class JavaDoubleRDD(val srdd: RDD[scala.Double]) extends JavaRDDLike[Double, JavaDoubleRDD] { - override val classManifest: ClassManifest[Double] = implicitly[ClassManifest[Double]] + override val classTag: ClassTag[Double] = implicitly[ClassTag[Double]] override val rdd: RDD[Double] = srdd.map(x => Double.valueOf(x)) @@ -25,7 +26,7 @@ class JavaDoubleRDD(val srdd: RDD[scala.Double]) extends JavaRDDLike[Double, Jav /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): JavaDoubleRDD = fromRDD(srdd.cache()) - /** + /** * Set this RDD's storage level to persist its values across operations after the first time * it is computed. Can only be called once on each RDD. */ @@ -65,7 +66,7 @@ class JavaDoubleRDD(val srdd: RDD[scala.Double]) extends JavaRDDLike[Double, Jav /** * Return an RDD with the elements from `this` that are not in `other`. - * + * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be <= us. */ @@ -123,7 +124,7 @@ class JavaDoubleRDD(val srdd: RDD[scala.Double]) extends JavaRDDLike[Double, Jav /** Return the approximate sum of the elements in this RDD. */ def sumApprox(timeout: Long, confidence: Double): PartialResult[BoundedDouble] = srdd.sumApprox(timeout, confidence) - + /** Return the approximate sum of the elements in this RDD. */ def sumApprox(timeout: Long): PartialResult[BoundedDouble] = srdd.sumApprox(timeout) } diff --git a/core/src/main/scala/spark/api/java/JavaPairRDD.scala b/core/src/main/scala/spark/api/java/JavaPairRDD.scala index 30084df4e2..89c6d05383 100644 --- a/core/src/main/scala/spark/api/java/JavaPairRDD.scala +++ b/core/src/main/scala/spark/api/java/JavaPairRDD.scala @@ -5,6 +5,7 @@ import java.util.Comparator import scala.Tuple2 import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapred.OutputFormat @@ -23,13 +24,13 @@ import spark.Partitioner._ import spark.RDD import spark.SparkContext.rddToPairRDDFunctions -class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManifest[K], - implicit val vManifest: ClassManifest[V]) extends JavaRDDLike[(K, V), JavaPairRDD[K, V]] { +class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kClassTag: ClassTag[K], + implicit val vClassTag: ClassTag[V]) extends JavaRDDLike[(K, V), JavaPairRDD[K, V]] { override def wrapRDD(rdd: RDD[(K, V)]): JavaPairRDD[K, V] = JavaPairRDD.fromRDD(rdd) - override val classManifest: ClassManifest[(K, V)] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[Tuple2[K, V]]] + override val classTag: ClassTag[(K, V)] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[Tuple2[K, V]]] import JavaPairRDD._ @@ -38,7 +39,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd.cache()) - /** + /** * Set this RDD's storage level to persist its values across operations after the first time * it is computed. Can only be called once on each RDD. */ @@ -94,14 +95,14 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif override def first(): (K, V) = rdd.first() // Pair RDD functions - + /** - * Generic function to combine the elements for each key using a custom set of aggregation - * functions. Turns a JavaPairRDD[(K, V)] into a result of type JavaPairRDD[(K, C)], for a - * "combined type" C * Note that V and C can be different -- for example, one might group an - * RDD of type (Int, Int) into an RDD of type (Int, List[Int]). Users provide three + * Generic function to combine the elements for each key using a custom set of aggregation + * functions. Turns a JavaPairRDD[(K, V)] into a result of type JavaPairRDD[(K, C)], for a + * "combined type" C * Note that V and C can be different -- for example, one might group an + * RDD of type (Int, Int) into an RDD of type (Int, List[Int]). Users provide three * functions: - * + * * - `createCombiner`, which turns a V into a C (e.g., creates a one-element list) * - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list) * - `mergeCombiners`, to combine two C's into a single one. @@ -113,8 +114,8 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif mergeValue: JFunction2[C, V, C], mergeCombiners: JFunction2[C, C, C], partitioner: Partitioner): JavaPairRDD[K, C] = { - implicit val cm: ClassManifest[C] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[C]] + implicit val cm: ClassTag[C] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[C]] fromRDD(rdd.combineByKey( createCombiner, mergeValue, @@ -151,14 +152,14 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif /** Count the number of elements for each key, and return the result to the master as a Map. */ def countByKey(): java.util.Map[K, Long] = mapAsJavaMap(rdd.countByKey()) - /** + /** * (Experimental) Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ def countByKeyApprox(timeout: Long): PartialResult[java.util.Map[K, BoundedDouble]] = rdd.countByKeyApprox(timeout).map(mapAsJavaMap) - /** + /** * (Experimental) Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ @@ -214,7 +215,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif /** * Return an RDD with the elements from `this` that are not in `other`. - * + * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be <= us. */ @@ -271,15 +272,15 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif : JavaPairRDD[K, (Option[V], W)] = fromRDD(rdd.rightOuterJoin(other, partitioner)) - /** + /** * Simplified version of combineByKey that hash-partitions the resulting RDD using the existing * partitioner/parallelism level. */ def combineByKey[C](createCombiner: JFunction[V, C], mergeValue: JFunction2[C, V, C], mergeCombiners: JFunction2[C, C, C]): JavaPairRDD[K, C] = { - implicit val cm: ClassManifest[C] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[C]] + implicit val cm: ClassTag[C] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[C]] fromRDD(combineByKey(createCombiner, mergeValue, mergeCombiners, defaultPartitioner(rdd))) } @@ -362,8 +363,8 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif * this also retains the original RDD's partitioning. */ def mapValues[U](f: JFunction[V, U]): JavaPairRDD[K, U] = { - implicit val cm: ClassManifest[U] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[U]] + implicit val cm: ClassTag[U] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[U]] fromRDD(rdd.mapValues(f)) } @@ -374,8 +375,8 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif def flatMapValues[U](f: JFunction[V, java.lang.Iterable[U]]): JavaPairRDD[K, U] = { import scala.collection.JavaConverters._ def fn = (x: V) => f.apply(x).asScala - implicit val cm: ClassManifest[U] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[U]] + implicit val cm: ClassTag[U] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[U]] fromRDD(rdd.flatMapValues(fn)) } @@ -541,22 +542,22 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif } object JavaPairRDD { - def groupByResultToJava[K, T](rdd: RDD[(K, Seq[T])])(implicit kcm: ClassManifest[K], - vcm: ClassManifest[T]): RDD[(K, JList[T])] = + def groupByResultToJava[K, T](rdd: RDD[(K, Seq[T])])(implicit kcm: ClassTag[K], + vcm: ClassTag[T]): RDD[(K, JList[T])] = rddToPairRDDFunctions(rdd).mapValues(seqAsJavaList _) - def cogroupResultToJava[W, K, V](rdd: RDD[(K, (Seq[V], Seq[W]))])(implicit kcm: ClassManifest[K], - vcm: ClassManifest[V]): RDD[(K, (JList[V], JList[W]))] = rddToPairRDDFunctions(rdd).mapValues((x: (Seq[V], + def cogroupResultToJava[W, K, V](rdd: RDD[(K, (Seq[V], Seq[W]))])(implicit kcm: ClassTag[K], + vcm: ClassTag[V]): RDD[(K, (JList[V], JList[W]))] = rddToPairRDDFunctions(rdd).mapValues((x: (Seq[V], Seq[W])) => (seqAsJavaList(x._1), seqAsJavaList(x._2))) def cogroupResult2ToJava[W1, W2, K, V](rdd: RDD[(K, (Seq[V], Seq[W1], - Seq[W2]))])(implicit kcm: ClassManifest[K]) : RDD[(K, (JList[V], JList[W1], + Seq[W2]))])(implicit kcm: ClassTag[K]) : RDD[(K, (JList[V], JList[W1], JList[W2]))] = rddToPairRDDFunctions(rdd).mapValues( (x: (Seq[V], Seq[W1], Seq[W2])) => (seqAsJavaList(x._1), seqAsJavaList(x._2), seqAsJavaList(x._3))) - def fromRDD[K: ClassManifest, V: ClassManifest](rdd: RDD[(K, V)]): JavaPairRDD[K, V] = + def fromRDD[K: ClassTag, V: ClassTag](rdd: RDD[(K, V)]): JavaPairRDD[K, V] = new JavaPairRDD[K, V](rdd) implicit def toRDD[K, V](rdd: JavaPairRDD[K, V]): RDD[(K, V)] = rdd.rdd diff --git a/core/src/main/scala/spark/api/java/JavaRDD.scala b/core/src/main/scala/spark/api/java/JavaRDD.scala index e29f1e5899..032506383c 100644 --- a/core/src/main/scala/spark/api/java/JavaRDD.scala +++ b/core/src/main/scala/spark/api/java/JavaRDD.scala @@ -1,10 +1,11 @@ package spark.api.java +import scala.reflect.ClassTag import spark._ import spark.api.java.function.{Function => JFunction} import spark.storage.StorageLevel -class JavaRDD[T](val rdd: RDD[T])(implicit val classManifest: ClassManifest[T]) extends +class JavaRDD[T](val rdd: RDD[T])(implicit val classTag: ClassTag[T]) extends JavaRDDLike[T, JavaRDD[T]] { override def wrapRDD(rdd: RDD[T]): JavaRDD[T] = JavaRDD.fromRDD(rdd) @@ -14,7 +15,7 @@ JavaRDDLike[T, JavaRDD[T]] { /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): JavaRDD[T] = wrapRDD(rdd.cache()) - /** + /** * Set this RDD's storage level to persist its values across operations after the first time * it is computed. Can only be called once on each RDD. */ @@ -31,7 +32,7 @@ JavaRDDLike[T, JavaRDD[T]] { * Return a new RDD containing the distinct elements in this RDD. */ def distinct(numPartitions: Int): JavaRDD[T] = wrapRDD(rdd.distinct(numPartitions)) - + /** * Return a new RDD containing only the elements that satisfy a predicate. */ @@ -54,7 +55,7 @@ JavaRDDLike[T, JavaRDD[T]] { */ def sample(withReplacement: Boolean, fraction: Double, seed: Int): JavaRDD[T] = wrapRDD(rdd.sample(withReplacement, fraction, seed)) - + /** * Return the union of this RDD and another one. Any identical elements will appear multiple * times (use `.distinct()` to eliminate them). @@ -63,7 +64,7 @@ JavaRDDLike[T, JavaRDD[T]] { /** * Return an RDD with the elements from `this` that are not in `other`. - * + * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be <= us. */ @@ -85,8 +86,7 @@ JavaRDDLike[T, JavaRDD[T]] { object JavaRDD { - implicit def fromRDD[T: ClassManifest](rdd: RDD[T]): JavaRDD[T] = new JavaRDD[T](rdd) + implicit def fromRDD[T: ClassTag](rdd: RDD[T]): JavaRDD[T] = new JavaRDD[T](rdd) implicit def toRDD[T](rdd: JavaRDD[T]): RDD[T] = rdd.rdd } - diff --git a/core/src/main/scala/spark/api/java/JavaRDDLike.scala b/core/src/main/scala/spark/api/java/JavaRDDLike.scala index d884529d7a..a6555081b3 100644 --- a/core/src/main/scala/spark/api/java/JavaRDDLike.scala +++ b/core/src/main/scala/spark/api/java/JavaRDDLike.scala @@ -3,6 +3,7 @@ package spark.api.java import java.util.{List => JList} import scala.Tuple2 import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import spark.{SparkContext, Partition, RDD, TaskContext} import spark.api.java.JavaPairRDD._ @@ -15,7 +16,7 @@ import com.google.common.base.Optional trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { def wrapRDD(rdd: RDD[T]): This - implicit val classManifest: ClassManifest[T] + implicit val classTag: ClassTag[T] def rdd: RDD[T] @@ -57,7 +58,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { * Return a new RDD by applying a function to all elements of this RDD. */ def map[K2, V2](f: PairFunction[T, K2, V2]): JavaPairRDD[K2, V2] = { - def cm = implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[Tuple2[K2, V2]]] + def cm = implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[Tuple2[K2, V2]]] new JavaPairRDD(rdd.map(f)(cm))(f.keyType(), f.valueType()) } @@ -88,7 +89,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { def flatMap[K2, V2](f: PairFlatMapFunction[T, K2, V2]): JavaPairRDD[K2, V2] = { import scala.collection.JavaConverters._ def fn = (x: T) => f.apply(x).asScala - def cm = implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[Tuple2[K2, V2]]] + def cm = implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[Tuple2[K2, V2]]] JavaPairRDD.fromRDD(rdd.flatMap(fn)(cm))(f.keyType(), f.valueType()) } @@ -128,18 +129,18 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { * elements (a, b) where a is in `this` and b is in `other`. */ def cartesian[U](other: JavaRDDLike[U, _]): JavaPairRDD[T, U] = - JavaPairRDD.fromRDD(rdd.cartesian(other.rdd)(other.classManifest))(classManifest, - other.classManifest) + JavaPairRDD.fromRDD(rdd.cartesian(other.rdd)(other.classTag))(classTag, + other.classTag) /** * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements * mapping to that key. */ def groupBy[K](f: JFunction[T, K]): JavaPairRDD[K, JList[T]] = { - implicit val kcm: ClassManifest[K] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K]] - implicit val vcm: ClassManifest[JList[T]] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[JList[T]]] + implicit val kcm: ClassTag[K] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K]] + implicit val vcm: ClassTag[JList[T]] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[JList[T]]] JavaPairRDD.fromRDD(groupByResultToJava(rdd.groupBy(f)(f.returnType)))(kcm, vcm) } @@ -148,10 +149,10 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { * mapping to that key. */ def groupBy[K](f: JFunction[T, K], numPartitions: Int): JavaPairRDD[K, JList[T]] = { - implicit val kcm: ClassManifest[K] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K]] - implicit val vcm: ClassManifest[JList[T]] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[JList[T]]] + implicit val kcm: ClassTag[K] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K]] + implicit val vcm: ClassTag[JList[T]] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[JList[T]]] JavaPairRDD.fromRDD(groupByResultToJava(rdd.groupBy(f, numPartitions)(f.returnType)))(kcm, vcm) } @@ -179,7 +180,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { * a map on the other). */ def zip[U](other: JavaRDDLike[U, _]): JavaPairRDD[T, U] = { - JavaPairRDD.fromRDD(rdd.zip(other.rdd)(other.classManifest))(classManifest, other.classManifest) + JavaPairRDD.fromRDD(rdd.zip(other.rdd)(other.classTag))(classTag, other.classTag) } // Actions (launch a job to return a value to the user program) @@ -304,7 +305,7 @@ trait JavaRDDLike[T, This <: JavaRDDLike[T, This]] extends Serializable { * Creates tuples of the elements in this RDD by applying `f`. */ def keyBy[K](f: JFunction[T, K]): JavaPairRDD[K, T] = { - implicit val kcm: ClassManifest[K] = implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K]] + implicit val kcm: ClassTag[K] = implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K]] JavaPairRDD.fromRDD(rdd.keyBy(f)) } diff --git a/core/src/main/scala/spark/api/java/JavaSparkContext.scala b/core/src/main/scala/spark/api/java/JavaSparkContext.scala index 5f18b1e15b..b633273eaf 100644 --- a/core/src/main/scala/spark/api/java/JavaSparkContext.scala +++ b/core/src/main/scala/spark/api/java/JavaSparkContext.scala @@ -4,6 +4,7 @@ import java.util.{Map => JMap} import scala.collection.JavaConversions import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import org.apache.hadoop.conf.Configuration import org.apache.hadoop.mapred.InputFormat @@ -63,8 +64,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork /** Distribute a local Scala collection to form an RDD. */ def parallelize[T](list: java.util.List[T], numSlices: Int): JavaRDD[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] sc.parallelize(JavaConversions.asScalaBuffer(list), numSlices) } @@ -75,10 +76,10 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork /** Distribute a local Scala collection to form an RDD. */ def parallelizePairs[K, V](list: java.util.List[Tuple2[K, V]], numSlices: Int) : JavaPairRDD[K, V] = { - implicit val kcm: ClassManifest[K] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K]] - implicit val vcm: ClassManifest[V] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[V]] + implicit val kcm: ClassTag[K] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K]] + implicit val vcm: ClassTag[V] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[V]] JavaPairRDD.fromRDD(sc.parallelize(JavaConversions.asScalaBuffer(list), numSlices)) } @@ -113,16 +114,16 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork valueClass: Class[V], minSplits: Int ): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(keyClass) - implicit val vcm = ClassManifest.fromClass(valueClass) + implicit val kcm: ClassTag[K] = ClassTag(keyClass) + implicit val vcm: ClassTag[V] = ClassTag(valueClass) new JavaPairRDD(sc.sequenceFile(path, keyClass, valueClass, minSplits)) } /**Get an RDD for a Hadoop SequenceFile. */ def sequenceFile[K, V](path: String, keyClass: Class[K], valueClass: Class[V]): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(keyClass) - implicit val vcm = ClassManifest.fromClass(valueClass) + implicit val kcm: ClassTag[K] = ClassTag(keyClass) + implicit val vcm: ClassTag[V] = ClassTag(valueClass) new JavaPairRDD(sc.sequenceFile(path, keyClass, valueClass)) } @@ -134,8 +135,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork * that there's very little effort required to save arbitrary objects. */ def objectFile[T](path: String, minSplits: Int): JavaRDD[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] sc.objectFile(path, minSplits)(cm) } @@ -147,8 +148,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork * that there's very little effort required to save arbitrary objects. */ def objectFile[T](path: String): JavaRDD[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] sc.objectFile(path)(cm) } @@ -164,8 +165,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork valueClass: Class[V], minSplits: Int ): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(keyClass) - implicit val vcm = ClassManifest.fromClass(valueClass) + implicit val kcm: ClassTag[K] = ClassTag(keyClass) + implicit val vcm: ClassTag[V] = ClassTag(valueClass) new JavaPairRDD(sc.hadoopRDD(conf, inputFormatClass, keyClass, valueClass, minSplits)) } @@ -180,8 +181,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork keyClass: Class[K], valueClass: Class[V] ): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(keyClass) - implicit val vcm = ClassManifest.fromClass(valueClass) + implicit val kcm: ClassTag[K] = ClassTag(keyClass) + implicit val vcm: ClassTag[V] = ClassTag(valueClass) new JavaPairRDD(sc.hadoopRDD(conf, inputFormatClass, keyClass, valueClass)) } @@ -193,8 +194,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork valueClass: Class[V], minSplits: Int ): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(keyClass) - implicit val vcm = ClassManifest.fromClass(valueClass) + implicit val kcm: ClassTag[K] = ClassTag(keyClass) + implicit val vcm: ClassTag[V] = ClassTag(valueClass) new JavaPairRDD(sc.hadoopFile(path, inputFormatClass, keyClass, valueClass, minSplits)) } @@ -205,8 +206,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork keyClass: Class[K], valueClass: Class[V] ): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(keyClass) - implicit val vcm = ClassManifest.fromClass(valueClass) + implicit val kcm: ClassTag[K] = ClassTag(keyClass) + implicit val vcm: ClassTag[V] = ClassTag(valueClass) new JavaPairRDD(sc.hadoopFile(path, inputFormatClass, keyClass, valueClass)) } @@ -221,8 +222,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork kClass: Class[K], vClass: Class[V], conf: Configuration): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(kClass) - implicit val vcm = ClassManifest.fromClass(vClass) + implicit val kcm: ClassTag[K] = ClassTag(kClass) + implicit val vcm: ClassTag[V] = ClassTag(vClass) new JavaPairRDD(sc.newAPIHadoopFile(path, fClass, kClass, vClass, conf)) } @@ -235,15 +236,15 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork fClass: Class[F], kClass: Class[K], vClass: Class[V]): JavaPairRDD[K, V] = { - implicit val kcm = ClassManifest.fromClass(kClass) - implicit val vcm = ClassManifest.fromClass(vClass) + implicit val kcm: ClassTag[K] = ClassTag(kClass) + implicit val vcm: ClassTag[V] = ClassTag(vClass) new JavaPairRDD(sc.newAPIHadoopRDD(conf, fClass, kClass, vClass)) } /** Build the union of two or more RDDs. */ override def union[T](first: JavaRDD[T], rest: java.util.List[JavaRDD[T]]): JavaRDD[T] = { val rdds: Seq[RDD[T]] = (Seq(first) ++ asScalaBuffer(rest)).map(_.rdd) - implicit val cm: ClassManifest[T] = first.classManifest + implicit val cm: ClassTag[T] = first.classTag sc.union(rdds)(cm) } @@ -251,9 +252,9 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork override def union[K, V](first: JavaPairRDD[K, V], rest: java.util.List[JavaPairRDD[K, V]]) : JavaPairRDD[K, V] = { val rdds: Seq[RDD[(K, V)]] = (Seq(first) ++ asScalaBuffer(rest)).map(_.rdd) - implicit val cm: ClassManifest[(K, V)] = first.classManifest - implicit val kcm: ClassManifest[K] = first.kManifest - implicit val vcm: ClassManifest[V] = first.vManifest + implicit val cm: ClassTag[(K, V)] = first.classTag + implicit val kcm: ClassTag[K] = first.kClassTag + implicit val vcm: ClassTag[V] = first.vClassTag new JavaPairRDD(sc.union(rdds)(cm))(kcm, vcm) } @@ -386,8 +387,8 @@ class JavaSparkContext(val sc: SparkContext) extends JavaSparkContextVarargsWork } protected def checkpointFile[T](path: String): JavaRDD[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] new JavaRDD(sc.checkpointFile(path)) } } diff --git a/core/src/main/scala/spark/api/java/function/FlatMapFunction.scala b/core/src/main/scala/spark/api/java/function/FlatMapFunction.scala index e027cdacd3..e69480607e 100644 --- a/core/src/main/scala/spark/api/java/function/FlatMapFunction.scala +++ b/core/src/main/scala/spark/api/java/function/FlatMapFunction.scala @@ -1,5 +1,7 @@ package spark.api.java.function +import scala.reflect.ClassTag + /** * A function that returns zero or more output records from each input record. */ @@ -7,5 +9,5 @@ abstract class FlatMapFunction[T, R] extends Function[T, java.lang.Iterable[R]] @throws(classOf[Exception]) def call(x: T) : java.lang.Iterable[R] - def elementType() : ClassManifest[R] = ClassManifest.Any.asInstanceOf[ClassManifest[R]] + def elementType() : ClassTag[R] = ClassTag.Any.asInstanceOf[ClassTag[R]] } diff --git a/core/src/main/scala/spark/api/python/PythonRDD.scala b/core/src/main/scala/spark/api/python/PythonRDD.scala index 9b4d54ab4e..82959a33eb 100644 --- a/core/src/main/scala/spark/api/python/PythonRDD.scala +++ b/core/src/main/scala/spark/api/python/PythonRDD.scala @@ -6,6 +6,7 @@ import java.util.{List => JList, ArrayList => JArrayList, Collections} import scala.collection.JavaConversions._ import scala.io.Source +import scala.reflect.ClassTag import spark.api.java.{JavaSparkContext, JavaPairRDD, JavaRDD} import spark.broadcast.Broadcast @@ -13,7 +14,7 @@ import spark._ import spark.rdd.PipedRDD -private[spark] class PythonRDD[T: ClassManifest]( +private[spark] class PythonRDD[T: ClassTag]( parent: RDD[T], command: Seq[String], envVars: java.util.Map[String, String], @@ -251,7 +252,7 @@ private[spark] object PythonRDD { } def takePartition[T](rdd: RDD[T], partition: Int): Iterator[T] = { - implicit val cm : ClassManifest[T] = rdd.elementClassManifest + implicit val cm : ClassTag[T] = rdd.elementClassTag rdd.context.runJob(rdd, ((x: Iterator[T]) => x.toArray), Seq(partition), true).head.iterator } } @@ -277,7 +278,7 @@ private class BytesToString extends spark.api.java.function.Function[Array[Byte] */ class PythonAccumulatorParam(@transient serverHost: String, serverPort: Int) extends AccumulatorParam[JList[Array[Byte]]] { - + override def zero(value: JList[Array[Byte]]): JList[Array[Byte]] = new JArrayList override def addInPlace(val1: JList[Array[Byte]], val2: JList[Array[Byte]]) diff --git a/core/src/main/scala/spark/rdd/BlockRDD.scala b/core/src/main/scala/spark/rdd/BlockRDD.scala index 7348c4f15b..f44d37a91f 100644 --- a/core/src/main/scala/spark/rdd/BlockRDD.scala +++ b/core/src/main/scala/spark/rdd/BlockRDD.scala @@ -1,6 +1,7 @@ package spark.rdd import scala.collection.mutable.HashMap +import scala.reflect.ClassTag import spark.{RDD, SparkContext, SparkEnv, Partition, TaskContext} private[spark] class BlockRDDPartition(val blockId: String, idx: Int) extends Partition { @@ -8,7 +9,7 @@ private[spark] class BlockRDDPartition(val blockId: String, idx: Int) extends Pa } private[spark] -class BlockRDD[T: ClassManifest](sc: SparkContext, @transient blockIds: Array[String]) +class BlockRDD[T: ClassTag](sc: SparkContext, @transient blockIds: Array[String]) extends RDD[T](sc, Nil) { @transient lazy val locations_ = { @@ -37,4 +38,3 @@ class BlockRDD[T: ClassManifest](sc: SparkContext, @transient blockIds: Array[St locations_(split.asInstanceOf[BlockRDDPartition].blockId) } - diff --git a/core/src/main/scala/spark/rdd/CartesianRDD.scala b/core/src/main/scala/spark/rdd/CartesianRDD.scala index 38600b8be4..20a7487c48 100644 --- a/core/src/main/scala/spark/rdd/CartesianRDD.scala +++ b/core/src/main/scala/spark/rdd/CartesianRDD.scala @@ -1,6 +1,9 @@ package spark.rdd import java.io.{ObjectOutputStream, IOException} + +import scala.reflect.ClassTag + import spark._ @@ -26,7 +29,7 @@ class CartesianPartition( } private[spark] -class CartesianRDD[T: ClassManifest, U:ClassManifest]( +class CartesianRDD[T: ClassTag, U:ClassTag]( sc: SparkContext, var rdd1 : RDD[T], var rdd2 : RDD[U]) diff --git a/core/src/main/scala/spark/rdd/CheckpointRDD.scala b/core/src/main/scala/spark/rdd/CheckpointRDD.scala index 5db77eb142..700a4160c8 100644 --- a/core/src/main/scala/spark/rdd/CheckpointRDD.scala +++ b/core/src/main/scala/spark/rdd/CheckpointRDD.scala @@ -1,5 +1,6 @@ package spark.rdd +import scala.reflect.ClassTag import spark._ import org.apache.hadoop.mapred.{FileInputFormat, SequenceFileInputFormat, JobConf, Reporter} import org.apache.hadoop.conf.Configuration @@ -15,7 +16,7 @@ private[spark] class CheckpointRDDPartition(val index: Int) extends Partition {} * This RDD represents a RDD checkpoint file (similar to HadoopRDD). */ private[spark] -class CheckpointRDD[T: ClassManifest](sc: SparkContext, val checkpointPath: String) +class CheckpointRDD[T: ClassTag](sc: SparkContext, val checkpointPath: String) extends RDD[T](sc, Nil) { @transient val fs = new Path(checkpointPath).getFileSystem(sc.hadoopConfiguration) diff --git a/core/src/main/scala/spark/rdd/CoalescedRDD.scala b/core/src/main/scala/spark/rdd/CoalescedRDD.scala index 6d862c0c28..0ca678e4af 100644 --- a/core/src/main/scala/spark/rdd/CoalescedRDD.scala +++ b/core/src/main/scala/spark/rdd/CoalescedRDD.scala @@ -1,5 +1,6 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{Dependency, OneToOneDependency, NarrowDependency, RDD, Partition, TaskContext} import java.io.{ObjectOutputStream, IOException} @@ -26,7 +27,7 @@ private[spark] case class CoalescedRDDPartition( * This transformation is useful when an RDD with many partitions gets filtered into a smaller one, * or to avoid having a large number of small tasks when processing a directory with many files. */ -class CoalescedRDD[T: ClassManifest]( +class CoalescedRDD[T: ClassTag]( @transient var prev: RDD[T], maxPartitions: Int) extends RDD[T](prev.context, Nil) { // Nil since we implement getDependencies diff --git a/core/src/main/scala/spark/rdd/FilteredRDD.scala b/core/src/main/scala/spark/rdd/FilteredRDD.scala index c84ec39d21..eee72520d9 100644 --- a/core/src/main/scala/spark/rdd/FilteredRDD.scala +++ b/core/src/main/scala/spark/rdd/FilteredRDD.scala @@ -1,8 +1,9 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{OneToOneDependency, RDD, Partition, TaskContext} -private[spark] class FilteredRDD[T: ClassManifest]( +private[spark] class FilteredRDD[T: ClassTag]( prev: RDD[T], f: T => Boolean) extends RDD[T](prev) { diff --git a/core/src/main/scala/spark/rdd/FlatMappedRDD.scala b/core/src/main/scala/spark/rdd/FlatMappedRDD.scala index 8ebc778925..ab39ed6b5d 100644 --- a/core/src/main/scala/spark/rdd/FlatMappedRDD.scala +++ b/core/src/main/scala/spark/rdd/FlatMappedRDD.scala @@ -1,10 +1,11 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{RDD, Partition, TaskContext} private[spark] -class FlatMappedRDD[U: ClassManifest, T: ClassManifest]( +class FlatMappedRDD[U: ClassTag, T: ClassTag]( prev: RDD[T], f: T => TraversableOnce[U]) extends RDD[U](prev) { diff --git a/core/src/main/scala/spark/rdd/GlommedRDD.scala b/core/src/main/scala/spark/rdd/GlommedRDD.scala index e16c7ba881..8783aa2e86 100644 --- a/core/src/main/scala/spark/rdd/GlommedRDD.scala +++ b/core/src/main/scala/spark/rdd/GlommedRDD.scala @@ -1,8 +1,9 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{RDD, Partition, TaskContext} -private[spark] class GlommedRDD[T: ClassManifest](prev: RDD[T]) +private[spark] class GlommedRDD[T: ClassTag](prev: RDD[T]) extends RDD[Array[T]](prev) { override def getPartitions: Array[Partition] = firstParent[T].partitions diff --git a/core/src/main/scala/spark/rdd/MapPartitionsRDD.scala b/core/src/main/scala/spark/rdd/MapPartitionsRDD.scala index d283c5b2bb..685eefa09e 100644 --- a/core/src/main/scala/spark/rdd/MapPartitionsRDD.scala +++ b/core/src/main/scala/spark/rdd/MapPartitionsRDD.scala @@ -1,10 +1,11 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{RDD, Partition, TaskContext} private[spark] -class MapPartitionsRDD[U: ClassManifest, T: ClassManifest]( +class MapPartitionsRDD[U: ClassTag, T: ClassTag]( prev: RDD[T], f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false) diff --git a/core/src/main/scala/spark/rdd/MapPartitionsWithIndexRDD.scala b/core/src/main/scala/spark/rdd/MapPartitionsWithIndexRDD.scala index afb7504ba1..2a043c994b 100644 --- a/core/src/main/scala/spark/rdd/MapPartitionsWithIndexRDD.scala +++ b/core/src/main/scala/spark/rdd/MapPartitionsWithIndexRDD.scala @@ -1,5 +1,6 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{RDD, Partition, TaskContext} @@ -9,7 +10,7 @@ import spark.{RDD, Partition, TaskContext} * information such as the number of tuples in a partition. */ private[spark] -class MapPartitionsWithIndexRDD[U: ClassManifest, T: ClassManifest]( +class MapPartitionsWithIndexRDD[U: ClassTag, T: ClassTag]( prev: RDD[T], f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean diff --git a/core/src/main/scala/spark/rdd/MappedRDD.scala b/core/src/main/scala/spark/rdd/MappedRDD.scala index af07311b6d..79762e46a2 100644 --- a/core/src/main/scala/spark/rdd/MappedRDD.scala +++ b/core/src/main/scala/spark/rdd/MappedRDD.scala @@ -1,9 +1,10 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{RDD, Partition, TaskContext} private[spark] -class MappedRDD[U: ClassManifest, T: ClassManifest](prev: RDD[T], f: T => U) +class MappedRDD[U: ClassTag, T: ClassTag](prev: RDD[T], f: T => U) extends RDD[U](prev) { override def getPartitions: Array[Partition] = firstParent[T].partitions diff --git a/core/src/main/scala/spark/rdd/ParallelCollectionRDD.scala b/core/src/main/scala/spark/rdd/ParallelCollectionRDD.scala index 07585a88ce..81dbcde227 100644 --- a/core/src/main/scala/spark/rdd/ParallelCollectionRDD.scala +++ b/core/src/main/scala/spark/rdd/ParallelCollectionRDD.scala @@ -3,9 +3,11 @@ package spark.rdd import scala.collection.immutable.NumericRange import scala.collection.mutable.ArrayBuffer import scala.collection.Map +import scala.reflect.ClassTag + import spark.{RDD, TaskContext, SparkContext, Partition} -private[spark] class ParallelCollectionPartition[T: ClassManifest]( +private[spark] class ParallelCollectionPartition[T: ClassTag]( val rddId: Long, val slice: Int, values: Seq[T]) @@ -23,7 +25,7 @@ private[spark] class ParallelCollectionPartition[T: ClassManifest]( override val index: Int = slice } -private[spark] class ParallelCollectionRDD[T: ClassManifest]( +private[spark] class ParallelCollectionRDD[T: ClassTag]( @transient sc: SparkContext, @transient data: Seq[T], numSlices: Int, @@ -53,7 +55,7 @@ private object ParallelCollectionRDD { * collections specially, encoding the slices as other Ranges to minimize memory cost. This makes * it efficient to run Spark over RDDs representing large sets of numbers. */ - def slice[T: ClassManifest](seq: Seq[T], numSlices: Int): Seq[Seq[T]] = { + def slice[T: ClassTag](seq: Seq[T], numSlices: Int): Seq[Seq[T]] = { if (numSlices < 1) { throw new IllegalArgumentException("Positive number of slices required") } diff --git a/core/src/main/scala/spark/rdd/PartitionPruningRDD.scala b/core/src/main/scala/spark/rdd/PartitionPruningRDD.scala index 41ff62dd22..0afea33f8e 100644 --- a/core/src/main/scala/spark/rdd/PartitionPruningRDD.scala +++ b/core/src/main/scala/spark/rdd/PartitionPruningRDD.scala @@ -1,5 +1,6 @@ package spark.rdd +import scala.reflect.ClassTag import spark.{NarrowDependency, RDD, SparkEnv, Partition, TaskContext} @@ -29,7 +30,7 @@ class PruneDependency[T](rdd: RDD[T], @transient partitionFilterFunc: Int => Boo * and the execution DAG has a filter on the key, we can avoid launching tasks * on partitions that don't have the range covering the key. */ -class PartitionPruningRDD[T: ClassManifest]( +class PartitionPruningRDD[T: ClassTag]( @transient prev: RDD[T], @transient partitionFilterFunc: Int => Boolean) extends RDD[T](prev.context, List(new PruneDependency(prev, partitionFilterFunc))) { @@ -49,6 +50,6 @@ object PartitionPruningRDD { * when its type T is not known at compile time. */ def create[T](rdd: RDD[T], partitionFilterFunc: Int => Boolean) = { - new PartitionPruningRDD[T](rdd, partitionFilterFunc)(rdd.elementClassManifest) + new PartitionPruningRDD[T](rdd, partitionFilterFunc)(rdd.elementClassTag) } } diff --git a/core/src/main/scala/spark/rdd/PipedRDD.scala b/core/src/main/scala/spark/rdd/PipedRDD.scala index 962a1b21ad..34d32eb85a 100644 --- a/core/src/main/scala/spark/rdd/PipedRDD.scala +++ b/core/src/main/scala/spark/rdd/PipedRDD.scala @@ -7,6 +7,7 @@ import scala.collection.Map import scala.collection.JavaConversions._ import scala.collection.mutable.ArrayBuffer import scala.io.Source +import scala.reflect.ClassTag import spark.{RDD, SparkEnv, Partition, TaskContext} @@ -15,7 +16,7 @@ import spark.{RDD, SparkEnv, Partition, TaskContext} * An RDD that pipes the contents of each parent partition through an external command * (printing them one per line) and returns the output as a collection of strings. */ -class PipedRDD[T: ClassManifest]( +class PipedRDD[T: ClassTag]( prev: RDD[T], command: Seq[String], envVars: Map[String, String]) diff --git a/core/src/main/scala/spark/rdd/SampledRDD.scala b/core/src/main/scala/spark/rdd/SampledRDD.scala index 243673f151..a503088f61 100644 --- a/core/src/main/scala/spark/rdd/SampledRDD.scala +++ b/core/src/main/scala/spark/rdd/SampledRDD.scala @@ -1,5 +1,6 @@ package spark.rdd +import scala.reflect.ClassTag import java.util.Random import cern.jet.random.Poisson @@ -12,9 +13,9 @@ class SampledRDDPartition(val prev: Partition, val seed: Int) extends Partition override val index: Int = prev.index } -class SampledRDD[T: ClassManifest]( +class SampledRDD[T: ClassTag]( prev: RDD[T], - withReplacement: Boolean, + withReplacement: Boolean, frac: Double, seed: Int) extends RDD[T](prev) { diff --git a/core/src/main/scala/spark/rdd/SubtractedRDD.scala b/core/src/main/scala/spark/rdd/SubtractedRDD.scala index 481e03b349..5e56900b18 100644 --- a/core/src/main/scala/spark/rdd/SubtractedRDD.scala +++ b/core/src/main/scala/spark/rdd/SubtractedRDD.scala @@ -1,8 +1,11 @@ package spark.rdd import java.util.{HashMap => JHashMap} + import scala.collection.JavaConversions._ import scala.collection.mutable.ArrayBuffer +import scala.reflect.ClassTag + import spark.RDD import spark.Partitioner import spark.Dependency @@ -28,7 +31,7 @@ import spark.OneToOneDependency * you can use `rdd1`'s partitioner/partition size and not worry about running * out of memory because of the size of `rdd2`. */ -private[spark] class SubtractedRDD[K: ClassManifest, V: ClassManifest, W: ClassManifest]( +private[spark] class SubtractedRDD[K: ClassTag, V: ClassTag, W: ClassTag]( @transient var rdd1: RDD[(K, V)], @transient var rdd2: RDD[(K, W)], part: Partitioner) extends RDD[(K, V)](rdd1.context, Nil) { diff --git a/core/src/main/scala/spark/rdd/UnionRDD.scala b/core/src/main/scala/spark/rdd/UnionRDD.scala index 2c52a67e22..b4b21c0aac 100644 --- a/core/src/main/scala/spark/rdd/UnionRDD.scala +++ b/core/src/main/scala/spark/rdd/UnionRDD.scala @@ -1,10 +1,11 @@ package spark.rdd import scala.collection.mutable.ArrayBuffer +import scala.reflect.ClassTag import spark.{Dependency, RangeDependency, RDD, SparkContext, Partition, TaskContext} import java.io.{ObjectOutputStream, IOException} -private[spark] class UnionPartition[T: ClassManifest](idx: Int, rdd: RDD[T], splitIndex: Int) +private[spark] class UnionPartition[T: ClassTag](idx: Int, rdd: RDD[T], splitIndex: Int) extends Partition { var split: Partition = rdd.partitions(splitIndex) @@ -23,7 +24,7 @@ private[spark] class UnionPartition[T: ClassManifest](idx: Int, rdd: RDD[T], spl } } -class UnionRDD[T: ClassManifest]( +class UnionRDD[T: ClassTag]( sc: SparkContext, @transient var rdds: Seq[RDD[T]]) extends RDD[T](sc, Nil) { // Nil since we implement getDependencies diff --git a/core/src/main/scala/spark/rdd/ZippedRDD.scala b/core/src/main/scala/spark/rdd/ZippedRDD.scala index 35b0e06785..1b438cd505 100644 --- a/core/src/main/scala/spark/rdd/ZippedRDD.scala +++ b/core/src/main/scala/spark/rdd/ZippedRDD.scala @@ -1,10 +1,12 @@ package spark.rdd -import spark.{OneToOneDependency, RDD, SparkContext, Partition, TaskContext} import java.io.{ObjectOutputStream, IOException} +import scala.reflect.ClassTag + +import spark.{OneToOneDependency, RDD, SparkContext, Partition, TaskContext} -private[spark] class ZippedPartition[T: ClassManifest, U: ClassManifest]( +private[spark] class ZippedPartition[T: ClassTag, U: ClassTag]( idx: Int, @transient rdd1: RDD[T], @transient rdd2: RDD[U] @@ -25,7 +27,7 @@ private[spark] class ZippedPartition[T: ClassManifest, U: ClassManifest]( } } -class ZippedRDD[T: ClassManifest, U: ClassManifest]( +class ZippedRDD[T: ClassTag, U: ClassTag]( sc: SparkContext, var rdd1: RDD[T], var rdd2: RDD[U]) diff --git a/core/src/main/scala/spark/scheduler/DAGScheduler.scala b/core/src/main/scala/spark/scheduler/DAGScheduler.scala index c54dce51d7..b838cf84a8 100644 --- a/core/src/main/scala/spark/scheduler/DAGScheduler.scala +++ b/core/src/main/scala/spark/scheduler/DAGScheduler.scala @@ -6,6 +6,7 @@ import java.util.concurrent.LinkedBlockingQueue import java.util.concurrent.TimeUnit import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet, Map} +import scala.reflect.ClassTag import spark._ import spark.executor.TaskMetrics @@ -215,7 +216,7 @@ class DAGScheduler( * The job is assumed to have at least one partition; zero partition jobs should be handled * without a JobSubmitted event. */ - private[scheduler] def prepareJob[T, U: ClassManifest]( + private[scheduler] def prepareJob[T, U: ClassTag]( finalRdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], @@ -231,7 +232,7 @@ class DAGScheduler( return (toSubmit, waiter) } - def runJob[T, U: ClassManifest]( + def runJob[T, U: ClassTag]( finalRdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], @@ -326,7 +327,7 @@ class DAGScheduler( submitStage(stage) } } - + /** * Check for waiting or failed stages which are now eligible for resubmission. * Ordinarily run on every iteration of the event loop. @@ -712,7 +713,7 @@ class DAGScheduler( sizeBefore = shuffleToMapStage.size shuffleToMapStage.clearOldValues(cleanupTime) logInfo("shuffleToMapStage " + sizeBefore + " --> " + shuffleToMapStage.size) - + sizeBefore = pendingTasks.size pendingTasks.clearOldValues(cleanupTime) logInfo("pendingTasks " + sizeBefore + " --> " + pendingTasks.size) diff --git a/core/src/test/scala/spark/CheckpointSuite.scala b/core/src/test/scala/spark/CheckpointSuite.scala index ca385972fb..8836c68ae6 100644 --- a/core/src/test/scala/spark/CheckpointSuite.scala +++ b/core/src/test/scala/spark/CheckpointSuite.scala @@ -1,5 +1,6 @@ package spark +import scala.reflect.ClassTag import org.scalatest.FunSuite import java.io.File import spark.rdd._ @@ -179,7 +180,7 @@ class CheckpointSuite extends FunSuite with LocalSparkContext with Logging { * not, but this is not done by default as usually the partitions do not refer to any RDD and * therefore never store the lineage. */ - def testCheckpointing[U: ClassManifest]( + def testCheckpointing[U: ClassTag]( op: (RDD[Int]) => RDD[U], testRDDSize: Boolean = true, testRDDPartitionSize: Boolean = false @@ -248,7 +249,7 @@ class CheckpointSuite extends FunSuite with LocalSparkContext with Logging { * RDDs partitions. So even if the parent RDD is checkpointed and its partitions changed, * this RDD will remember the partitions and therefore potentially the whole lineage. */ - def testParentCheckpointing[U: ClassManifest]( + def testParentCheckpointing[U: ClassTag]( op: (RDD[Int]) => RDD[U], testRDDSize: Boolean, testRDDPartitionSize: Boolean diff --git a/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala b/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala index 3b847fe603..deb1c8511a 100644 --- a/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala +++ b/examples/src/main/scala/spark/streaming/examples/ActorWordCount.scala @@ -2,6 +2,7 @@ package spark.streaming.examples import scala.collection.mutable.LinkedList import scala.util.Random +import scala.reflect.ClassTag import akka.actor.Actor import akka.actor.ActorRef @@ -65,7 +66,7 @@ class FeederActor extends Actor { * * @see [[spark.streaming.examples.FeederActor]] */ -class SampleActorReceiver[T: ClassManifest](urlOfPublisher: String) +class SampleActorReceiver[T: ClassTag](urlOfPublisher: String) extends Actor with Receiver { lazy private val remotePublisher = context.actorFor(urlOfPublisher) diff --git a/streaming/src/main/scala/spark/streaming/DStream.scala b/streaming/src/main/scala/spark/streaming/DStream.scala index e1be5ef51c..c307c69611 100644 --- a/streaming/src/main/scala/spark/streaming/DStream.scala +++ b/streaming/src/main/scala/spark/streaming/DStream.scala @@ -9,6 +9,7 @@ import spark.storage.StorageLevel import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.HashMap +import scala.reflect.ClassTag import java.io.{ObjectInputStream, IOException, ObjectOutputStream} @@ -36,7 +37,7 @@ import org.apache.hadoop.conf.Configuration * - A function that is used to generate an RDD after each time interval */ -abstract class DStream[T: ClassManifest] ( +abstract class DStream[T: ClassTag] ( @transient protected[streaming] var ssc: StreamingContext ) extends Serializable with Logging { @@ -62,7 +63,7 @@ abstract class DStream[T: ClassManifest] ( // RDDs generated, marked as protected[streaming] so that testsuites can access it @transient protected[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] () - + // Time zero for the DStream protected[streaming] var zeroTime: Time = null @@ -254,16 +255,16 @@ abstract class DStream[T: ClassManifest] ( /** * Retrieve a precomputed RDD of this DStream, or computes the RDD. This is an internal * method that should not be called directly. - */ + */ protected[streaming] def getOrCompute(time: Time): Option[RDD[T]] = { // If this DStream was not initialized (i.e., zeroTime not set), then do it // If RDD was already generated, then retrieve it from HashMap generatedRDDs.get(time) match { - - // If an RDD was already generated and is being reused, then + + // If an RDD was already generated and is being reused, then // probably all RDDs in this DStream will be reused and hence should be cached case Some(oldRDD) => Some(oldRDD) - + // if RDD was not generated, and if the time is valid // (based on sliding time of this DStream), then generate the RDD case None => { @@ -280,7 +281,7 @@ abstract class DStream[T: ClassManifest] ( } generatedRDDs.put(time, newRDD) Some(newRDD) - case None => + case None => None } } else { @@ -324,7 +325,7 @@ abstract class DStream[T: ClassManifest] ( dependencies.foreach(_.clearOldMetadata(time)) } - /* Adds metadata to the Stream while it is running. + /* Adds metadata to the Stream while it is running. * This methd should be overwritten by sublcasses of InputDStream. */ protected[streaming] def addMetadata(metadata: Any) { @@ -396,7 +397,7 @@ abstract class DStream[T: ClassManifest] ( // ======================================================================= /** Return a new DStream by applying a function to all elements of this DStream. */ - def map[U: ClassManifest](mapFunc: T => U): DStream[U] = { + def map[U: ClassTag](mapFunc: T => U): DStream[U] = { new MappedDStream(this, context.sparkContext.clean(mapFunc)) } @@ -404,7 +405,7 @@ abstract class DStream[T: ClassManifest] ( * Return a new DStream by applying a function to all elements of this DStream, * and then flattening the results */ - def flatMap[U: ClassManifest](flatMapFunc: T => Traversable[U]): DStream[U] = { + def flatMap[U: ClassTag](flatMapFunc: T => Traversable[U]): DStream[U] = { new FlatMappedDStream(this, context.sparkContext.clean(flatMapFunc)) } @@ -423,7 +424,7 @@ abstract class DStream[T: ClassManifest] ( * of this DStream. Applying mapPartitions() to an RDD applies a function to each partition * of the RDD. */ - def mapPartitions[U: ClassManifest]( + def mapPartitions[U: ClassTag]( mapPartFunc: Iterator[T] => Iterator[U], preservePartitioning: Boolean = false ): DStream[U] = { @@ -474,7 +475,7 @@ abstract class DStream[T: ClassManifest] ( * Return a new DStream in which each RDD is generated by applying a function * on each RDD of this DStream. */ - def transform[U: ClassManifest](transformFunc: RDD[T] => RDD[U]): DStream[U] = { + def transform[U: ClassTag](transformFunc: RDD[T] => RDD[U]): DStream[U] = { transform((r: RDD[T], t: Time) => transformFunc(r)) } @@ -482,7 +483,7 @@ abstract class DStream[T: ClassManifest] ( * Return a new DStream in which each RDD is generated by applying a function * on each RDD of this DStream. */ - def transform[U: ClassManifest](transformFunc: (RDD[T], Time) => RDD[U]): DStream[U] = { + def transform[U: ClassTag](transformFunc: (RDD[T], Time) => RDD[U]): DStream[U] = { new TransformedDStream(this, context.sparkContext.clean(transformFunc)) } diff --git a/streaming/src/main/scala/spark/streaming/DStreamCheckpointData.scala b/streaming/src/main/scala/spark/streaming/DStreamCheckpointData.scala index 6b0fade7c6..82e5bb6e49 100644 --- a/streaming/src/main/scala/spark/streaming/DStreamCheckpointData.scala +++ b/streaming/src/main/scala/spark/streaming/DStreamCheckpointData.scala @@ -3,13 +3,15 @@ package spark.streaming import org.apache.hadoop.fs.Path import org.apache.hadoop.fs.FileSystem import org.apache.hadoop.conf.Configuration -import collection.mutable.HashMap + import spark.Logging +import scala.collection.mutable.HashMap +import scala.reflect.ClassTag private[streaming] -class DStreamCheckpointData[T: ClassManifest] (dstream: DStream[T]) +class DStreamCheckpointData[T: ClassTag] (dstream: DStream[T]) extends Serializable with Logging { protected val data = new HashMap[Time, AnyRef]() @@ -90,4 +92,3 @@ class DStreamCheckpointData[T: ClassManifest] (dstream: DStream[T]) "[\n" + checkpointFiles.size + " checkpoint files \n" + checkpointFiles.mkString("\n") + "\n]" } } - diff --git a/streaming/src/main/scala/spark/streaming/PairDStreamFunctions.scala b/streaming/src/main/scala/spark/streaming/PairDStreamFunctions.scala index 3ec922957d..962ba6619d 100644 --- a/streaming/src/main/scala/spark/streaming/PairDStreamFunctions.scala +++ b/streaming/src/main/scala/spark/streaming/PairDStreamFunctions.scala @@ -5,18 +5,19 @@ import spark.streaming.dstream.{ReducedWindowedDStream, StateDStream} import spark.streaming.dstream.{CoGroupedDStream, ShuffledDStream} import spark.streaming.dstream.{MapValuedDStream, FlatMapValuedDStream} -import spark.{Manifests, RDD, Partitioner, HashPartitioner} +import spark.{ClassTags, RDD, Partitioner, HashPartitioner} import spark.SparkContext._ import spark.storage.StorageLevel import scala.collection.mutable.ArrayBuffer +import scala.reflect.{ClassTag, classTag} import org.apache.hadoop.mapred.{JobConf, OutputFormat} import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat} import org.apache.hadoop.mapred.OutputFormat import org.apache.hadoop.conf.Configuration -class PairDStreamFunctions[K: ClassManifest, V: ClassManifest](self: DStream[(K,V)]) +class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)]) extends Serializable { private[streaming] def ssc = self.ssc @@ -86,7 +87,7 @@ extends Serializable { * combineByKey for RDDs. Please refer to combineByKey in [[spark.PairRDDFunctions]] for more * information. */ - def combineByKey[C: ClassManifest]( + def combineByKey[C: ClassTag]( createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiner: (C, C) => C, @@ -186,7 +187,7 @@ extends Serializable { * DStream's batching interval */ def reduceByKeyAndWindow( - reduceFunc: (V, V) => V, + reduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration ): DStream[(K, V)] = { @@ -317,7 +318,7 @@ extends Serializable { * corresponding state key-value pair will be eliminated. * @tparam S State type */ - def updateStateByKey[S: ClassManifest]( + def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S] ): DStream[(K, S)] = { updateStateByKey(updateFunc, defaultPartitioner()) @@ -332,7 +333,7 @@ extends Serializable { * @param numPartitions Number of partitions of each RDD in the new DStream. * @tparam S State type */ - def updateStateByKey[S: ClassManifest]( + def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S], numPartitions: Int ): DStream[(K, S)] = { @@ -348,7 +349,7 @@ extends Serializable { * @param partitioner Partitioner for controlling the partitioning of each RDD in the new DStream. * @tparam S State type */ - def updateStateByKey[S: ClassManifest]( + def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S], partitioner: Partitioner ): DStream[(K, S)] = { @@ -371,7 +372,7 @@ extends Serializable { * @param rememberPartitioner Whether to remember the paritioner object in the generated RDDs. * @tparam S State type */ - def updateStateByKey[S: ClassManifest]( + def updateStateByKey[S: ClassTag]( updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)], partitioner: Partitioner, rememberPartitioner: Boolean @@ -380,11 +381,11 @@ extends Serializable { } - def mapValues[U: ClassManifest](mapValuesFunc: V => U): DStream[(K, U)] = { + def mapValues[U: ClassTag](mapValuesFunc: V => U): DStream[(K, U)] = { new MapValuedDStream[K, V, U](self, mapValuesFunc) } - def flatMapValues[U: ClassManifest]( + def flatMapValues[U: ClassTag]( flatMapValuesFunc: V => TraversableOnce[U] ): DStream[(K, U)] = { new FlatMapValuedDStream[K, V, U](self, flatMapValuesFunc) @@ -396,7 +397,7 @@ extends Serializable { * key in both RDDs. HashPartitioner is used to partition each generated RDD into default number * of partitions. */ - def cogroup[W: ClassManifest](other: DStream[(K, W)]): DStream[(K, (Seq[V], Seq[W]))] = { + def cogroup[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (Seq[V], Seq[W]))] = { cogroup(other, defaultPartitioner()) } @@ -405,7 +406,7 @@ extends Serializable { * or `other` DStreams, the generated RDD will contains a tuple with the list of values for that * key in both RDDs. Partitioner is used to partition each generated RDD. */ - def cogroup[W: ClassManifest]( + def cogroup[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner ): DStream[(K, (Seq[V], Seq[W]))] = { @@ -415,8 +416,8 @@ extends Serializable { partitioner ) val pdfs = new PairDStreamFunctions[K, Seq[Seq[_]]](cgd)( - classManifest[K], - Manifests.seqSeqManifest + classTag[K], + ClassTags.seqSeqClassTag ) pdfs.mapValues { case Seq(vs, ws) => @@ -428,7 +429,7 @@ extends Serializable { * Join `this` DStream with `other` DStream. HashPartitioner is used * to partition each generated RDD into default number of partitions. */ - def join[W: ClassManifest](other: DStream[(K, W)]): DStream[(K, (V, W))] = { + def join[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (V, W))] = { join[W](other, defaultPartitioner()) } @@ -437,7 +438,7 @@ extends Serializable { * be generated by joining RDDs from `this` and other DStream. Uses the given * Partitioner to partition each generated RDD. */ - def join[W: ClassManifest]( + def join[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner ): DStream[(K, (V, W))] = { @@ -455,7 +456,7 @@ extends Serializable { def saveAsHadoopFiles[F <: OutputFormat[K, V]]( prefix: String, suffix: String - )(implicit fm: ClassManifest[F]) { + )(implicit fm: ClassTag[F]) { saveAsHadoopFiles(prefix, suffix, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]]) } @@ -485,7 +486,7 @@ extends Serializable { def saveAsNewAPIHadoopFiles[F <: NewOutputFormat[K, V]]( prefix: String, suffix: String - )(implicit fm: ClassManifest[F]) { + )(implicit fm: ClassTag[F]) { saveAsNewAPIHadoopFiles(prefix, suffix, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]]) } @@ -508,9 +509,7 @@ extends Serializable { self.foreach(saveFunc) } - private def getKeyClass() = implicitly[ClassManifest[K]].erasure + private def getKeyClass() = implicitly[ClassTag[K]].erasure - private def getValueClass() = implicitly[ClassManifest[V]].erasure + private def getValueClass() = implicitly[ClassTag[V]].erasure } - - diff --git a/streaming/src/main/scala/spark/streaming/StreamingContext.scala b/streaming/src/main/scala/spark/streaming/StreamingContext.scala index b8b60aab43..7646e15521 100644 --- a/streaming/src/main/scala/spark/streaming/StreamingContext.scala +++ b/streaming/src/main/scala/spark/streaming/StreamingContext.scala @@ -16,6 +16,7 @@ import spark.streaming.receivers.ActorReceiver import scala.collection.mutable.Queue import scala.collection.Map +import scala.reflect.ClassTag import java.io.InputStream import java.util.concurrent.atomic.AtomicInteger @@ -166,7 +167,7 @@ class StreamingContext private ( * Create an input stream with any arbitrary user implemented network receiver. * @param receiver Custom implementation of NetworkReceiver */ - def networkStream[T: ClassManifest]( + def networkStream[T: ClassTag]( receiver: NetworkReceiver[T]): DStream[T] = { val inputStream = new PluggableInputDStream[T](this, receiver) @@ -185,7 +186,7 @@ class StreamingContext private ( * to ensure the type safety, i.e parametrized type of data received and actorStream * should be same. */ - def actorStream[T: ClassManifest]( + def actorStream[T: ClassTag]( props: Props, name: String, storageLevel: StorageLevel = StorageLevel.MEMORY_ONLY_SER_2, @@ -203,7 +204,7 @@ class StreamingContext private ( * and sub sequence refer to its payload. * @param storageLevel RDD storage level. Defaults to memory-only. */ - def zeroMQStream[T: ClassManifest]( + def zeroMQStream[T: ClassTag]( publisherUrl:String, subscribe: Subscribe, bytesToObjects: Seq[Seq[Byte]] ⇒ Iterator[T], @@ -225,7 +226,7 @@ class StreamingContext private ( * @param storageLevel Storage level to use for storing the received objects * (default: StorageLevel.MEMORY_AND_DISK_SER_2) */ - def kafkaStream[T: ClassManifest]( + def kafkaStream[T: ClassTag]( zkQuorum: String, groupId: String, topics: Map[String, Int], @@ -264,7 +265,7 @@ class StreamingContext private ( * @param storageLevel Storage level to use for storing the received objects * @tparam T Type of the objects received (after converting bytes to objects) */ - def socketStream[T: ClassManifest]( + def socketStream[T: ClassTag]( hostname: String, port: Int, converter: (InputStream) => Iterator[T], @@ -286,7 +287,7 @@ class StreamingContext private ( port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2 ): DStream[SparkFlumeEvent] = { - val inputStream = new FlumeInputDStream(this, hostname, port, storageLevel) + val inputStream = new FlumeInputDStream[SparkFlumeEvent](this, hostname, port, storageLevel) registerInputStream(inputStream) inputStream } @@ -301,7 +302,7 @@ class StreamingContext private ( * @param storageLevel Storage level to use for storing the received objects * @tparam T Type of the objects in the received blocks */ - def rawSocketStream[T: ClassManifest]( + def rawSocketStream[T: ClassTag]( hostname: String, port: Int, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2 @@ -321,9 +322,9 @@ class StreamingContext private ( * @tparam F Input format for reading HDFS file */ def fileStream[ - K: ClassManifest, - V: ClassManifest, - F <: NewInputFormat[K, V]: ClassManifest + K: ClassTag, + V: ClassTag, + F <: NewInputFormat[K, V]: ClassTag ] (directory: String): DStream[(K, V)] = { val inputStream = new FileInputDStream[K, V, F](this, directory) registerInputStream(inputStream) @@ -341,9 +342,9 @@ class StreamingContext private ( * @tparam F Input format for reading HDFS file */ def fileStream[ - K: ClassManifest, - V: ClassManifest, - F <: NewInputFormat[K, V]: ClassManifest + K: ClassTag, + V: ClassTag, + F <: NewInputFormat[K, V]: ClassTag ] (directory: String, filter: Path => Boolean, newFilesOnly: Boolean): DStream[(K, V)] = { val inputStream = new FileInputDStream[K, V, F](this, directory, filter, newFilesOnly) registerInputStream(inputStream) @@ -385,7 +386,7 @@ class StreamingContext private ( * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval * @tparam T Type of objects in the RDD */ - def queueStream[T: ClassManifest]( + def queueStream[T: ClassTag]( queue: Queue[RDD[T]], oneAtATime: Boolean = true ): DStream[T] = { @@ -400,7 +401,7 @@ class StreamingContext private ( * @param defaultRDD Default RDD is returned by the DStream when the queue is empty. Set as null if no RDD should be returned when empty * @tparam T Type of objects in the RDD */ - def queueStream[T: ClassManifest]( + def queueStream[T: ClassTag]( queue: Queue[RDD[T]], oneAtATime: Boolean, defaultRDD: RDD[T] @@ -413,7 +414,7 @@ class StreamingContext private ( /** * Create a unified DStream from multiple DStreams of the same type and same interval */ - def union[T: ClassManifest](streams: Seq[DStream[T]]): DStream[T] = { + def union[T: ClassTag](streams: Seq[DStream[T]]): DStream[T] = { new UnionDStream[T](streams.toArray) } @@ -490,7 +491,7 @@ class StreamingContext private ( object StreamingContext { - implicit def toPairDStreamFunctions[K: ClassManifest, V: ClassManifest](stream: DStream[(K,V)]) = { + implicit def toPairDStreamFunctions[K: ClassTag, V: ClassTag](stream: DStream[(K,V)]) = { new PairDStreamFunctions[K, V](stream) } diff --git a/streaming/src/main/scala/spark/streaming/api/java/JavaDStream.scala b/streaming/src/main/scala/spark/streaming/api/java/JavaDStream.scala index 4d93f0a5f7..535a302d60 100644 --- a/streaming/src/main/scala/spark/streaming/api/java/JavaDStream.scala +++ b/streaming/src/main/scala/spark/streaming/api/java/JavaDStream.scala @@ -6,6 +6,8 @@ import spark.api.java.JavaRDD import spark.storage.StorageLevel import spark.RDD +import scala.reflect.ClassTag + /** * A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous * sequence of RDDs (of the same type) representing a continuous stream of data (see [[spark.RDD]] @@ -24,7 +26,7 @@ import spark.RDD * - A time interval at which the DStream generates an RDD * - A function that is used to generate an RDD after each time interval */ -class JavaDStream[T](val dstream: DStream[T])(implicit val classManifest: ClassManifest[T]) +class JavaDStream[T](val dstream: DStream[T])(implicit val classTag: ClassTag[T]) extends JavaDStreamLike[T, JavaDStream[T], JavaRDD[T]] { override def wrapRDD(rdd: RDD[T]): JavaRDD[T] = JavaRDD.fromRDD(rdd) @@ -80,6 +82,6 @@ class JavaDStream[T](val dstream: DStream[T])(implicit val classManifest: ClassM } object JavaDStream { - implicit def fromDStream[T: ClassManifest](dstream: DStream[T]): JavaDStream[T] = + implicit def fromDStream[T: ClassTag](dstream: DStream[T]): JavaDStream[T] = new JavaDStream[T](dstream) -} \ No newline at end of file +} diff --git a/streaming/src/main/scala/spark/streaming/api/java/JavaDStreamLike.scala b/streaming/src/main/scala/spark/streaming/api/java/JavaDStreamLike.scala index 548809a359..d67dd34760 100644 --- a/streaming/src/main/scala/spark/streaming/api/java/JavaDStreamLike.scala +++ b/streaming/src/main/scala/spark/streaming/api/java/JavaDStreamLike.scala @@ -4,6 +4,7 @@ import java.util.{List => JList} import java.lang.{Long => JLong} import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import spark.streaming._ import spark.api.java.{JavaPairRDD, JavaRDDLike, JavaRDD} @@ -14,7 +15,7 @@ import JavaDStream._ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T, R]] extends Serializable { - implicit val classManifest: ClassManifest[T] + implicit val classTag: ClassTag[T] def dstream: DStream[T] @@ -116,7 +117,7 @@ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T /** Return a new DStream by applying a function to all elements of this DStream. */ def map[K2, V2](f: PairFunction[T, K2, V2]): JavaPairDStream[K2, V2] = { - def cm = implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[Tuple2[K2, V2]]] + def cm = implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[Tuple2[K2, V2]]] new JavaPairDStream(dstream.map(f)(cm))(f.keyType(), f.valueType()) } @@ -137,7 +138,7 @@ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T def flatMap[K2, V2](f: PairFlatMapFunction[T, K2, V2]): JavaPairDStream[K2, V2] = { import scala.collection.JavaConverters._ def fn = (x: T) => f.apply(x).asScala - def cm = implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[Tuple2[K2, V2]]] + def cm = implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[Tuple2[K2, V2]]] new JavaPairDStream(dstream.flatMap(fn)(cm))(f.keyType(), f.valueType()) } @@ -240,8 +241,8 @@ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T * on each RDD of this DStream. */ def transform[U](transformFunc: JFunction[R, JavaRDD[U]]): JavaDStream[U] = { - implicit val cm: ClassManifest[U] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[U]] + implicit val cm: ClassTag[U] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[U]] def scalaTransform (in: RDD[T]): RDD[U] = transformFunc.call(wrapRDD(in)).rdd dstream.transform(scalaTransform(_)) @@ -252,8 +253,8 @@ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T * on each RDD of this DStream. */ def transform[U](transformFunc: JFunction2[R, Time, JavaRDD[U]]): JavaDStream[U] = { - implicit val cm: ClassManifest[U] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[U]] + implicit val cm: ClassTag[U] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[U]] def scalaTransform (in: RDD[T], time: Time): RDD[U] = transformFunc.call(wrapRDD(in), time).rdd dstream.transform(scalaTransform(_, _)) @@ -265,10 +266,10 @@ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T */ def transform[K2, V2](transformFunc: JFunction[R, JavaPairRDD[K2, V2]]): JavaPairDStream[K2, V2] = { - implicit val cmk: ClassManifest[K2] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K2]] - implicit val cmv: ClassManifest[V2] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[V2]] + implicit val cmk: ClassTag[K2] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K2]] + implicit val cmv: ClassTag[V2] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[V2]] def scalaTransform (in: RDD[T]): RDD[(K2, V2)] = transformFunc.call(wrapRDD(in)).rdd dstream.transform(scalaTransform(_)) @@ -280,10 +281,10 @@ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T */ def transform[K2, V2](transformFunc: JFunction2[R, Time, JavaPairRDD[K2, V2]]): JavaPairDStream[K2, V2] = { - implicit val cmk: ClassManifest[K2] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K2]] - implicit val cmv: ClassManifest[V2] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[V2]] + implicit val cmk: ClassTag[K2] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K2]] + implicit val cmv: ClassTag[V2] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[V2]] def scalaTransform (in: RDD[T], time: Time): RDD[(K2, V2)] = transformFunc.call(wrapRDD(in), time).rdd dstream.transform(scalaTransform(_, _)) @@ -296,4 +297,4 @@ trait JavaDStreamLike[T, This <: JavaDStreamLike[T, This, R], R <: JavaRDDLike[T def checkpoint(interval: Duration) = { dstream.checkpoint(interval) } -} \ No newline at end of file +} diff --git a/streaming/src/main/scala/spark/streaming/api/java/JavaPairDStream.scala b/streaming/src/main/scala/spark/streaming/api/java/JavaPairDStream.scala index 30240cad98..4c93a7e440 100644 --- a/streaming/src/main/scala/spark/streaming/api/java/JavaPairDStream.scala +++ b/streaming/src/main/scala/spark/streaming/api/java/JavaPairDStream.scala @@ -4,6 +4,7 @@ import java.util.{List => JList} import java.lang.{Long => JLong} import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import spark.streaming._ import spark.streaming.StreamingContext._ @@ -18,8 +19,8 @@ import com.google.common.base.Optional import spark.RDD class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( - implicit val kManifiest: ClassManifest[K], - implicit val vManifest: ClassManifest[V]) + implicit val kTag: ClassTag[K], + implicit val vTag: ClassTag[V]) extends JavaDStreamLike[(K, V), JavaPairDStream[K, V], JavaPairRDD[K, V]] { override def wrapRDD(rdd: RDD[(K, V)]): JavaPairRDD[K, V] = JavaPairRDD.fromRDD(rdd) @@ -138,8 +139,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( mergeCombiners: JFunction2[C, C, C], partitioner: Partitioner ): JavaPairDStream[K, C] = { - implicit val cm: ClassManifest[C] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[C]] + implicit val cm: ClassTag[C] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[C]] dstream.combineByKey(createCombiner, mergeValue, mergeCombiners, partitioner) } @@ -407,8 +408,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( */ def updateStateByKey[S](updateFunc: JFunction2[JList[V], Optional[S], Optional[S]]) : JavaPairDStream[K, S] = { - implicit val cm: ClassManifest[S] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[S]] + implicit val cm: ClassTag[S] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[S]] dstream.updateStateByKey(convertUpdateStateFunction(updateFunc)) } @@ -421,7 +422,7 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * @param numPartitions Number of partitions of each RDD in the new DStream. * @tparam S State type */ - def updateStateByKey[S: ClassManifest]( + def updateStateByKey[S: ClassTag]( updateFunc: JFunction2[JList[V], Optional[S], Optional[S]], numPartitions: Int) : JavaPairDStream[K, S] = { @@ -437,7 +438,7 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * @param partitioner Partitioner for controlling the partitioning of each RDD in the new DStream. * @tparam S State type */ - def updateStateByKey[S: ClassManifest]( + def updateStateByKey[S: ClassTag]( updateFunc: JFunction2[JList[V], Optional[S], Optional[S]], partitioner: Partitioner ): JavaPairDStream[K, S] = { @@ -445,16 +446,16 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( } def mapValues[U](f: JFunction[V, U]): JavaPairDStream[K, U] = { - implicit val cm: ClassManifest[U] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[U]] + implicit val cm: ClassTag[U] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[U]] dstream.mapValues(f) } def flatMapValues[U](f: JFunction[V, java.lang.Iterable[U]]): JavaPairDStream[K, U] = { import scala.collection.JavaConverters._ def fn = (x: V) => f.apply(x).asScala - implicit val cm: ClassManifest[U] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[U]] + implicit val cm: ClassTag[U] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[U]] dstream.flatMapValues(fn) } @@ -465,8 +466,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * of partitions. */ def cogroup[W](other: JavaPairDStream[K, W]): JavaPairDStream[K, (JList[V], JList[W])] = { - implicit val cm: ClassManifest[W] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[W]] + implicit val cm: ClassTag[W] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[W]] dstream.cogroup(other.dstream).mapValues(t => (seqAsJavaList(t._1), seqAsJavaList((t._2)))) } @@ -477,8 +478,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( */ def cogroup[W](other: JavaPairDStream[K, W], partitioner: Partitioner) : JavaPairDStream[K, (JList[V], JList[W])] = { - implicit val cm: ClassManifest[W] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[W]] + implicit val cm: ClassTag[W] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[W]] dstream.cogroup(other.dstream, partitioner) .mapValues(t => (seqAsJavaList(t._1), seqAsJavaList((t._2)))) } @@ -488,8 +489,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( * to partition each generated RDD into default number of partitions. */ def join[W](other: JavaPairDStream[K, W]): JavaPairDStream[K, (V, W)] = { - implicit val cm: ClassManifest[W] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[W]] + implicit val cm: ClassTag[W] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[W]] dstream.join(other.dstream) } @@ -500,8 +501,8 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( */ def join[W](other: JavaPairDStream[K, W], partitioner: Partitioner) : JavaPairDStream[K, (V, W)] = { - implicit val cm: ClassManifest[W] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[W]] + implicit val cm: ClassTag[W] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[W]] dstream.join(other.dstream, partitioner) } @@ -575,24 +576,24 @@ class JavaPairDStream[K, V](val dstream: DStream[(K, V)])( dstream.saveAsNewAPIHadoopFiles(prefix, suffix, keyClass, valueClass, outputFormatClass, conf) } - override val classManifest: ClassManifest[(K, V)] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[Tuple2[K, V]]] + override val classTag: ClassTag[(K, V)] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[Tuple2[K, V]]] } object JavaPairDStream { - implicit def fromPairDStream[K: ClassManifest, V: ClassManifest](dstream: DStream[(K, V)]) + implicit def fromPairDStream[K: ClassTag, V: ClassTag](dstream: DStream[(K, V)]) :JavaPairDStream[K, V] = new JavaPairDStream[K, V](dstream) def fromJavaDStream[K, V](dstream: JavaDStream[(K, V)]): JavaPairDStream[K, V] = { - implicit val cmk: ClassManifest[K] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K]] - implicit val cmv: ClassManifest[V] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[V]] + implicit val cmk: ClassTag[K] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K]] + implicit val cmv: ClassTag[V] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[V]] new JavaPairDStream[K, V](dstream.dstream) } - def scalaToJavaLong[K: ClassManifest](dstream: JavaPairDStream[K, Long]) + def scalaToJavaLong[K: ClassTag](dstream: JavaPairDStream[K, Long]) : JavaPairDStream[K, JLong] = { StreamingContext.toPairDStreamFunctions(dstream.dstream).mapValues(new JLong(_)) } diff --git a/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala b/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala index 3d149a742c..00e5aa0603 100644 --- a/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala +++ b/streaming/src/main/scala/spark/streaming/api/java/JavaStreamingContext.scala @@ -17,6 +17,7 @@ import akka.actor.SupervisorStrategy import akka.zeromq.Subscribe import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import java.lang.{Long => JLong, Integer => JInt} import java.io.InputStream @@ -126,8 +127,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { groupId: String, topics: JMap[String, JInt]) : JavaDStream[T] = { - implicit val cmt: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cmt: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.kafkaStream[T](zkQuorum, groupId, Map(topics.mapValues(_.intValue()).toSeq: _*)) } @@ -146,8 +147,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { topics: JMap[String, JInt], initialOffsets: JMap[KafkaPartitionKey, JLong]) : JavaDStream[T] = { - implicit val cmt: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cmt: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.kafkaStream[T]( zkQuorum, groupId, @@ -172,8 +173,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { initialOffsets: JMap[KafkaPartitionKey, JLong], storageLevel: StorageLevel) : JavaDStream[T] = { - implicit val cmt: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cmt: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.kafkaStream[T]( zkQuorum, groupId, @@ -224,8 +225,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { storageLevel: StorageLevel) : JavaDStream[T] = { def fn = (x: InputStream) => converter.apply(x).toIterator - implicit val cmt: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cmt: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.socketStream(hostname, port, fn, storageLevel) } @@ -253,8 +254,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { hostname: String, port: Int, storageLevel: StorageLevel): JavaDStream[T] = { - implicit val cmt: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cmt: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] JavaDStream.fromDStream(ssc.rawSocketStream(hostname, port, storageLevel)) } @@ -268,8 +269,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { * @tparam T Type of the objects in the received blocks */ def rawSocketStream[T](hostname: String, port: Int): JavaDStream[T] = { - implicit val cmt: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cmt: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] JavaDStream.fromDStream(ssc.rawSocketStream(hostname, port)) } @@ -283,12 +284,12 @@ class JavaStreamingContext(val ssc: StreamingContext) { * @tparam F Input format for reading HDFS file */ def fileStream[K, V, F <: NewInputFormat[K, V]](directory: String): JavaPairDStream[K, V] = { - implicit val cmk: ClassManifest[K] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[K]] - implicit val cmv: ClassManifest[V] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[V]] - implicit val cmf: ClassManifest[F] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[F]] + implicit val cmk: ClassTag[K] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K]] + implicit val cmv: ClassTag[V] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[V]] + implicit val cmf: ClassTag[F] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[F]] ssc.fileStream[K, V, F](directory); } @@ -372,8 +373,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { storageLevel: StorageLevel, supervisorStrategy: SupervisorStrategy ): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.actorStream[T](props, name, storageLevel, supervisorStrategy) } @@ -393,8 +394,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { name: String, storageLevel: StorageLevel ): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.actorStream[T](props, name, storageLevel) } @@ -412,8 +413,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { props: Props, name: String ): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.actorStream[T](props, name) } @@ -434,8 +435,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { storageLevel: StorageLevel, supervisorStrategy: SupervisorStrategy ): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] ssc.zeroMQStream[T](publisherUrl, subscribe, bytesToObjects, storageLevel, supervisorStrategy) } @@ -455,8 +456,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { bytesToObjects: JFunction[Array[Array[Byte]], java.lang.Iterable[T]], storageLevel: StorageLevel ): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] def fn(x: Seq[Seq[Byte]]) = bytesToObjects.apply(x.map(_.toArray).toArray).toIterator ssc.zeroMQStream[T](publisherUrl, subscribe, fn, storageLevel) } @@ -475,8 +476,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { subscribe: Subscribe, bytesToObjects: JFunction[Array[Array[Byte]], java.lang.Iterable[T]] ): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] def fn(x: Seq[Seq[Byte]]) = bytesToObjects.apply(x.map(_.toArray).toArray).toIterator ssc.zeroMQStream[T](publisherUrl, subscribe, fn) } @@ -497,8 +498,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { * @tparam T Type of objects in the RDD */ def queueStream[T](queue: java.util.Queue[JavaRDD[T]]): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] val sQueue = new scala.collection.mutable.Queue[spark.RDD[T]] sQueue.enqueue(queue.map(_.rdd).toSeq: _*) ssc.queueStream(sQueue) @@ -514,8 +515,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { * @tparam T Type of objects in the RDD */ def queueStream[T](queue: java.util.Queue[JavaRDD[T]], oneAtATime: Boolean): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] val sQueue = new scala.collection.mutable.Queue[spark.RDD[T]] sQueue.enqueue(queue.map(_.rdd).toSeq: _*) ssc.queueStream(sQueue, oneAtATime) @@ -535,8 +536,8 @@ class JavaStreamingContext(val ssc: StreamingContext) { queue: java.util.Queue[JavaRDD[T]], oneAtATime: Boolean, defaultRDD: JavaRDD[T]): JavaDStream[T] = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] val sQueue = new scala.collection.mutable.Queue[spark.RDD[T]] sQueue.enqueue(queue.map(_.rdd).toSeq: _*) ssc.queueStream(sQueue, oneAtATime, defaultRDD.rdd) diff --git a/streaming/src/main/scala/spark/streaming/dstream/CoGroupedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/CoGroupedDStream.scala index 4ef4bb7de1..3e974b2731 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/CoGroupedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/CoGroupedDStream.scala @@ -4,8 +4,10 @@ import spark.{RDD, Partitioner} import spark.rdd.CoGroupedRDD import spark.streaming.{Time, DStream, Duration} +import scala.reflect.ClassTag + private[streaming] -class CoGroupedDStream[K : ClassManifest]( +class CoGroupedDStream[K : ClassTag]( parents: Seq[DStream[(K, _)]], partitioner: Partitioner ) extends DStream[(K, Seq[Seq[_]])](parents.head.ssc) { diff --git a/streaming/src/main/scala/spark/streaming/dstream/ConstantInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/ConstantInputDStream.scala index 41c3af4694..780f361869 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/ConstantInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/ConstantInputDStream.scala @@ -3,10 +3,12 @@ package spark.streaming.dstream import spark.RDD import spark.streaming.{Time, StreamingContext} +import scala.reflect.ClassTag + /** * An input stream that always returns the same RDD on each timestep. Useful for testing. */ -class ConstantInputDStream[T: ClassManifest](ssc_ : StreamingContext, rdd: RDD[T]) +class ConstantInputDStream[T: ClassTag](ssc_ : StreamingContext, rdd: RDD[T]) extends InputDStream[T](ssc_) { override def start() {} @@ -16,4 +18,4 @@ class ConstantInputDStream[T: ClassManifest](ssc_ : StreamingContext, rdd: RDD[T override def compute(validTime: Time): Option[RDD[T]] = { Some(rdd) } -} \ No newline at end of file +} diff --git a/streaming/src/main/scala/spark/streaming/dstream/FileInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/FileInputDStream.scala index 41b9bd9461..78e62ca1d2 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/FileInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/FileInputDStream.scala @@ -9,14 +9,16 @@ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat} import scala.collection.mutable.{HashSet, HashMap} +import scala.reflect.ClassTag + import java.io.{ObjectInputStream, IOException} private[streaming] -class FileInputDStream[K: ClassManifest, V: ClassManifest, F <: NewInputFormat[K,V] : ClassManifest]( +class FileInputDStream[K: ClassTag, V: ClassTag, F <: NewInputFormat[K,V] : ClassTag]( @transient ssc_ : StreamingContext, directory: String, filter: Path => Boolean = FileInputDStream.defaultFilter, - newFilesOnly: Boolean = true) + newFilesOnly: Boolean = true) extends InputDStream[(K, V)](ssc_) { protected[streaming] override val checkpointData = new FileInputDStreamCheckpointData @@ -37,7 +39,7 @@ class FileInputDStream[K: ClassManifest, V: ClassManifest, F <: NewInputFormat[K } logDebug("LastModTime initialized to " + lastModTime + ", new files only = " + newFilesOnly) } - + override def stop() { } /** @@ -83,7 +85,7 @@ class FileInputDStream[K: ClassManifest, V: ClassManifest, F <: NewInputFormat[K latestModTimeFiles += path.toString logDebug("Accepted " + path) return true - } + } } } logDebug("Finding new files at time " + validTime + " for last mod time = " + lastModTime) @@ -178,5 +180,3 @@ private[streaming] object FileInputDStream { def defaultFilter(path: Path): Boolean = !path.getName().startsWith(".") } - - diff --git a/streaming/src/main/scala/spark/streaming/dstream/FilteredDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/FilteredDStream.scala index e993164f99..3f6054994e 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/FilteredDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/FilteredDStream.scala @@ -3,8 +3,10 @@ package spark.streaming.dstream import spark.streaming.{Duration, DStream, Time} import spark.RDD +import scala.reflect.ClassTag + private[streaming] -class FilteredDStream[T: ClassManifest]( +class FilteredDStream[T: ClassTag]( parent: DStream[T], filterFunc: T => Boolean ) extends DStream[T](parent.ssc) { @@ -17,5 +19,3 @@ class FilteredDStream[T: ClassManifest]( parent.getOrCompute(validTime).map(_.filter(filterFunc)) } } - - diff --git a/streaming/src/main/scala/spark/streaming/dstream/FlatMapValuedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/FlatMapValuedDStream.scala index cabd34f5f2..66d28b9841 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/FlatMapValuedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/FlatMapValuedDStream.scala @@ -4,8 +4,10 @@ import spark.streaming.{Duration, DStream, Time} import spark.RDD import spark.SparkContext._ +import scala.reflect.ClassTag + private[streaming] -class FlatMapValuedDStream[K: ClassManifest, V: ClassManifest, U: ClassManifest]( +class FlatMapValuedDStream[K: ClassTag, V: ClassTag, U: ClassTag]( parent: DStream[(K, V)], flatMapValueFunc: V => TraversableOnce[U] ) extends DStream[(K, U)](parent.ssc) { diff --git a/streaming/src/main/scala/spark/streaming/dstream/FlatMappedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/FlatMappedDStream.scala index a69af60589..b946d9c689 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/FlatMappedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/FlatMappedDStream.scala @@ -3,8 +3,10 @@ package spark.streaming.dstream import spark.streaming.{Duration, DStream, Time} import spark.RDD +import scala.reflect.ClassTag + private[streaming] -class FlatMappedDStream[T: ClassManifest, U: ClassManifest]( +class FlatMappedDStream[T: ClassTag, U: ClassTag]( parent: DStream[T], flatMapFunc: T => Traversable[U] ) extends DStream[U](parent.ssc) { @@ -17,4 +19,3 @@ class FlatMappedDStream[T: ClassManifest, U: ClassManifest]( parent.getOrCompute(validTime).map(_.flatMap(flatMapFunc)) } } - diff --git a/streaming/src/main/scala/spark/streaming/dstream/FlumeInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/FlumeInputDStream.scala index c9644b3a83..640033c86c 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/FlumeInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/FlumeInputDStream.scala @@ -12,13 +12,14 @@ import org.apache.avro.ipc.specific.SpecificResponder import org.apache.avro.ipc.NettyServer import scala.collection.JavaConversions._ +import scala.reflect.ClassTag import java.net.InetSocketAddress import java.io.{ObjectInput, ObjectOutput, Externalizable} import java.nio.ByteBuffer private[streaming] -class FlumeInputDStream[T: ClassManifest]( +class FlumeInputDStream[T: ClassTag]( @transient ssc_ : StreamingContext, host: String, port: Int, diff --git a/streaming/src/main/scala/spark/streaming/dstream/ForEachDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/ForEachDStream.scala index ee69ea5177..2494273ce6 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/ForEachDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/ForEachDStream.scala @@ -2,9 +2,10 @@ package spark.streaming.dstream import spark.RDD import spark.streaming.{Duration, DStream, Job, Time} +import scala.reflect.ClassTag private[streaming] -class ForEachDStream[T: ClassManifest] ( +class ForEachDStream[T: ClassTag] ( parent: DStream[T], foreachFunc: (RDD[T], Time) => Unit ) extends DStream[Unit](parent.ssc) { diff --git a/streaming/src/main/scala/spark/streaming/dstream/GlommedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/GlommedDStream.scala index b589cbd4d5..658c49b61b 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/GlommedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/GlommedDStream.scala @@ -3,8 +3,10 @@ package spark.streaming.dstream import spark.streaming.{Duration, DStream, Time} import spark.RDD +import scala.reflect.ClassTag + private[streaming] -class GlommedDStream[T: ClassManifest](parent: DStream[T]) +class GlommedDStream[T: ClassTag](parent: DStream[T]) extends DStream[Array[T]](parent.ssc) { override def dependencies = List(parent) diff --git a/streaming/src/main/scala/spark/streaming/dstream/InputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/InputDStream.scala index 3c5d43a609..f9451281d6 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/InputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/InputDStream.scala @@ -2,6 +2,8 @@ package spark.streaming.dstream import spark.streaming.{Time, Duration, StreamingContext, DStream} +import scala.reflect.ClassTag + /** * This is the abstract base class for all input streams. This class provides to methods * start() and stop() which called by the scheduler to start and stop receiving data/ @@ -13,7 +15,7 @@ import spark.streaming.{Time, Duration, StreamingContext, DStream} * that requires running a receiver on the worker nodes, use NetworkInputDStream * as the parent class. */ -abstract class InputDStream[T: ClassManifest] (@transient ssc_ : StreamingContext) +abstract class InputDStream[T: ClassTag] (@transient ssc_ : StreamingContext) extends DStream[T](ssc_) { var lastValidTime: Time = null diff --git a/streaming/src/main/scala/spark/streaming/dstream/KafkaInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/KafkaInputDStream.scala index ddd9becf32..e093edb05b 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/KafkaInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/KafkaInputDStream.scala @@ -16,14 +16,14 @@ import kafka.utils.ZkUtils._ import scala.collection.Map import scala.collection.mutable.HashMap import scala.collection.JavaConversions._ - +import scala.reflect.ClassTag // Key for a specific Kafka Partition: (broker, topic, group, part) case class KafkaPartitionKey(brokerId: Int, topic: String, groupId: String, partId: Int) /** * Input stream that pulls messages from a Kafka Broker. - * + * * @param zkQuorum Zookeper quorum (hostname:port,hostname:port,..). * @param groupId The group id for this consumer. * @param topics Map of (topic_name -> numPartitions) to consume. Each partition is consumed @@ -33,7 +33,7 @@ case class KafkaPartitionKey(brokerId: Int, topic: String, groupId: String, part * @param storageLevel RDD storage level. */ private[streaming] -class KafkaInputDStream[T: ClassManifest]( +class KafkaInputDStream[T: ClassTag]( @transient ssc_ : StreamingContext, zkQuorum: String, groupId: String, @@ -51,7 +51,7 @@ class KafkaInputDStream[T: ClassManifest]( private[streaming] class KafkaReceiver(zkQuorum: String, groupId: String, - topics: Map[String, Int], initialOffsets: Map[KafkaPartitionKey, Long], + topics: Map[String, Int], initialOffsets: Map[KafkaPartitionKey, Long], storageLevel: StorageLevel) extends NetworkReceiver[Any] { // Timeout for establishing a connection to Zookeper in ms. diff --git a/streaming/src/main/scala/spark/streaming/dstream/MapPartitionedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/MapPartitionedDStream.scala index 848afecfad..382739932b 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/MapPartitionedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/MapPartitionedDStream.scala @@ -3,8 +3,10 @@ package spark.streaming.dstream import spark.streaming.{Duration, DStream, Time} import spark.RDD +import scala.reflect.ClassTag + private[streaming] -class MapPartitionedDStream[T: ClassManifest, U: ClassManifest]( +class MapPartitionedDStream[T: ClassTag, U: ClassTag]( parent: DStream[T], mapPartFunc: Iterator[T] => Iterator[U], preservePartitioning: Boolean @@ -18,4 +20,3 @@ class MapPartitionedDStream[T: ClassManifest, U: ClassManifest]( parent.getOrCompute(validTime).map(_.mapPartitions[U](mapPartFunc, preservePartitioning)) } } - diff --git a/streaming/src/main/scala/spark/streaming/dstream/MapValuedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/MapValuedDStream.scala index 6055aa6a05..9c508eb854 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/MapValuedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/MapValuedDStream.scala @@ -4,8 +4,10 @@ import spark.streaming.{Duration, DStream, Time} import spark.RDD import spark.SparkContext._ +import scala.reflect.ClassTag + private[streaming] -class MapValuedDStream[K: ClassManifest, V: ClassManifest, U: ClassManifest]( +class MapValuedDStream[K: ClassTag, V: ClassTag, U: ClassTag]( parent: DStream[(K, V)], mapValueFunc: V => U ) extends DStream[(K, U)](parent.ssc) { @@ -18,4 +20,3 @@ class MapValuedDStream[K: ClassManifest, V: ClassManifest, U: ClassManifest]( parent.getOrCompute(validTime).map(_.mapValues[U](mapValueFunc)) } } - diff --git a/streaming/src/main/scala/spark/streaming/dstream/MappedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/MappedDStream.scala index 20818a0cab..c7cbf6cc46 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/MappedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/MappedDStream.scala @@ -3,8 +3,10 @@ package spark.streaming.dstream import spark.streaming.{Duration, DStream, Time} import spark.RDD +import scala.reflect.ClassTag + private[streaming] -class MappedDStream[T: ClassManifest, U: ClassManifest] ( +class MappedDStream[T: ClassTag, U: ClassTag] ( parent: DStream[T], mapFunc: T => U ) extends DStream[U](parent.ssc) { @@ -17,4 +19,3 @@ class MappedDStream[T: ClassManifest, U: ClassManifest] ( parent.getOrCompute(validTime).map(_.map[U](mapFunc)) } } - diff --git a/streaming/src/main/scala/spark/streaming/dstream/NetworkInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/NetworkInputDStream.scala index 5347374730..52b9968f6e 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/NetworkInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/NetworkInputDStream.scala @@ -8,6 +8,7 @@ import spark.storage.StorageLevel import scala.collection.mutable.ArrayBuffer import scala.concurrent.duration._ +import scala.reflect.ClassTag import java.nio.ByteBuffer @@ -28,7 +29,7 @@ import java.util.concurrent.ArrayBlockingQueue * @param ssc_ Streaming context that will execute this input stream * @tparam T Class type of the object of this stream */ -abstract class NetworkInputDStream[T: ClassManifest](@transient ssc_ : StreamingContext) +abstract class NetworkInputDStream[T: ClassTag](@transient ssc_ : StreamingContext) extends InputDStream[T](ssc_) { // This is an unique identifier that is used to match the network receiver with the @@ -70,7 +71,7 @@ private[streaming] case class ReportError(msg: String) extends NetworkReceiverMe * Abstract class of a receiver that can be run on worker nodes to receive external data. See * [[spark.streaming.dstream.NetworkInputDStream]] for an explanation. */ -abstract class NetworkReceiver[T: ClassManifest]() extends Serializable with Logging { +abstract class NetworkReceiver[T: ClassTag]() extends Serializable with Logging { initLogging() diff --git a/streaming/src/main/scala/spark/streaming/dstream/PluggableInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/PluggableInputDStream.scala index 3c2a81947b..70deec6ec9 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/PluggableInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/PluggableInputDStream.scala @@ -2,8 +2,10 @@ package spark.streaming.dstream import spark.streaming.StreamingContext +import scala.reflect.ClassTag + private[streaming] -class PluggableInputDStream[T: ClassManifest]( +class PluggableInputDStream[T: ClassTag]( @transient ssc_ : StreamingContext, receiver: NetworkReceiver[T]) extends NetworkInputDStream[T](ssc_) { diff --git a/streaming/src/main/scala/spark/streaming/dstream/QueueInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/QueueInputDStream.scala index da224ad6f7..8b03a49fd6 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/QueueInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/QueueInputDStream.scala @@ -7,18 +7,20 @@ import scala.collection.mutable.Queue import scala.collection.mutable.ArrayBuffer import spark.streaming.{Time, StreamingContext} +import scala.reflect.ClassTag + private[streaming] -class QueueInputDStream[T: ClassManifest]( +class QueueInputDStream[T: ClassTag]( @transient ssc: StreamingContext, val queue: Queue[RDD[T]], oneAtATime: Boolean, defaultRDD: RDD[T] ) extends InputDStream[T](ssc) { - + override def start() { } - + override def stop() { } - + override def compute(validTime: Time): Option[RDD[T]] = { val buffer = new ArrayBuffer[RDD[T]]() if (oneAtATime && queue.size > 0) { @@ -38,5 +40,5 @@ class QueueInputDStream[T: ClassManifest]( None } } - + } diff --git a/streaming/src/main/scala/spark/streaming/dstream/RawInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/RawInputDStream.scala index 1b2fa56779..7d20ac8e95 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/RawInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/RawInputDStream.scala @@ -4,6 +4,8 @@ import spark.Logging import spark.storage.StorageLevel import spark.streaming.StreamingContext +import scala.reflect.ClassTag + import java.net.InetSocketAddress import java.nio.ByteBuffer import java.nio.channels.{ReadableByteChannel, SocketChannel} @@ -18,7 +20,7 @@ import java.util.concurrent.ArrayBlockingQueue * in the format that the system is configured with. */ private[streaming] -class RawInputDStream[T: ClassManifest]( +class RawInputDStream[T: ClassTag]( @transient ssc_ : StreamingContext, host: String, port: Int, diff --git a/streaming/src/main/scala/spark/streaming/dstream/ReducedWindowedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/ReducedWindowedDStream.scala index 343b6915e7..c9ada5b306 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/ReducedWindowedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/ReducedWindowedDStream.scala @@ -8,11 +8,13 @@ import spark.Partitioner import spark.SparkContext._ import spark.storage.StorageLevel -import scala.collection.mutable.ArrayBuffer import spark.streaming.{Duration, Interval, Time, DStream} +import scala.collection.mutable.ArrayBuffer +import scala.reflect.ClassTag + private[streaming] -class ReducedWindowedDStream[K: ClassManifest, V: ClassManifest]( +class ReducedWindowedDStream[K: ClassTag, V: ClassTag]( parent: DStream[(K, V)], reduceFunc: (V, V) => V, invReduceFunc: (V, V) => V, @@ -32,7 +34,7 @@ class ReducedWindowedDStream[K: ClassManifest, V: ClassManifest]( "must be multiple of the slide duration of parent DStream (" + parent.slideDuration + ")" ) - // Reduce each batch of data using reduceByKey which will be further reduced by window + // Reduce each batch of data using reduceByKey which will be further reduced by window // by ReducedWindowedDStream val reducedStream = parent.reduceByKey(reduceFunc, partitioner) @@ -153,5 +155,3 @@ class ReducedWindowedDStream[K: ClassManifest, V: ClassManifest]( } } } - - diff --git a/streaming/src/main/scala/spark/streaming/dstream/ShuffledDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/ShuffledDStream.scala index 1f9548bfb8..930e6c2044 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/ShuffledDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/ShuffledDStream.scala @@ -4,8 +4,10 @@ import spark.{RDD, Partitioner} import spark.SparkContext._ import spark.streaming.{Duration, DStream, Time} +import scala.reflect.ClassTag + private[streaming] -class ShuffledDStream[K: ClassManifest, V: ClassManifest, C: ClassManifest]( +class ShuffledDStream[K: ClassTag, V: ClassTag, C: ClassTag]( parent: DStream[(K,V)], createCombiner: V => C, mergeValue: (C, V) => C, diff --git a/streaming/src/main/scala/spark/streaming/dstream/SocketInputDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/SocketInputDStream.scala index 1408af0afa..c9e701e07f 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/SocketInputDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/SocketInputDStream.scala @@ -4,11 +4,13 @@ import spark.streaming.StreamingContext import spark.storage.StorageLevel import spark.util.NextIterator +import scala.reflect.ClassTag + import java.io._ import java.net.Socket private[streaming] -class SocketInputDStream[T: ClassManifest]( +class SocketInputDStream[T: ClassTag]( @transient ssc_ : StreamingContext, host: String, port: Int, @@ -22,7 +24,7 @@ class SocketInputDStream[T: ClassManifest]( } private[streaming] -class SocketReceiver[T: ClassManifest]( +class SocketReceiver[T: ClassTag]( host: String, port: Int, bytesToObjects: InputStream => Iterator[T], diff --git a/streaming/src/main/scala/spark/streaming/dstream/StateDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/StateDStream.scala index db62955036..f6fb2ca941 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/StateDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/StateDStream.scala @@ -6,8 +6,10 @@ import spark.SparkContext._ import spark.storage.StorageLevel import spark.streaming.{Duration, Time, DStream} +import scala.reflect.ClassTag + private[streaming] -class StateDStream[K: ClassManifest, V: ClassManifest, S: ClassManifest]( +class StateDStream[K: ClassTag, V: ClassTag, S: ClassTag]( parent: DStream[(K, V)], updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)], partitioner: Partitioner, diff --git a/streaming/src/main/scala/spark/streaming/dstream/TransformedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/TransformedDStream.scala index 99660d9dee..23ab87d82f 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/TransformedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/TransformedDStream.scala @@ -3,8 +3,10 @@ package spark.streaming.dstream import spark.RDD import spark.streaming.{Duration, DStream, Time} +import scala.reflect.ClassTag + private[streaming] -class TransformedDStream[T: ClassManifest, U: ClassManifest] ( +class TransformedDStream[T: ClassTag, U: ClassTag] ( parent: DStream[T], transformFunc: (RDD[T], Time) => RDD[U] ) extends DStream[U](parent.ssc) { diff --git a/streaming/src/main/scala/spark/streaming/dstream/UnionDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/UnionDStream.scala index 00bad5da34..3a5bf35249 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/UnionDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/UnionDStream.scala @@ -2,11 +2,13 @@ package spark.streaming.dstream import spark.streaming.{Duration, DStream, Time} import spark.RDD -import collection.mutable.ArrayBuffer import spark.rdd.UnionRDD +import scala.collection.mutable.ArrayBuffer +import scala.reflect.ClassTag + private[streaming] -class UnionDStream[T: ClassManifest](parents: Array[DStream[T]]) +class UnionDStream[T: ClassTag](parents: Array[DStream[T]]) extends DStream[T](parents.head.ssc) { if (parents.length == 0) { diff --git a/streaming/src/main/scala/spark/streaming/dstream/WindowedDStream.scala b/streaming/src/main/scala/spark/streaming/dstream/WindowedDStream.scala index cbf0c88108..2382210b0e 100644 --- a/streaming/src/main/scala/spark/streaming/dstream/WindowedDStream.scala +++ b/streaming/src/main/scala/spark/streaming/dstream/WindowedDStream.scala @@ -5,8 +5,10 @@ import spark.rdd.UnionRDD import spark.storage.StorageLevel import spark.streaming.{Duration, Interval, Time, DStream} +import scala.reflect.ClassTag + private[streaming] -class WindowedDStream[T: ClassManifest]( +class WindowedDStream[T: ClassTag]( parent: DStream[T], _windowDuration: Duration, _slideDuration: Duration) @@ -35,6 +37,3 @@ class WindowedDStream[T: ClassManifest]( Some(new UnionRDD(ssc.sc, parent.slice(currentWindow))) } } - - - diff --git a/streaming/src/main/scala/spark/streaming/receivers/ActorReceiver.scala b/streaming/src/main/scala/spark/streaming/receivers/ActorReceiver.scala index 6c9e373de3..42e885af5c 100644 --- a/streaming/src/main/scala/spark/streaming/receivers/ActorReceiver.scala +++ b/streaming/src/main/scala/spark/streaming/receivers/ActorReceiver.scala @@ -4,14 +4,16 @@ import akka.actor.{ Actor, PoisonPill, Props, SupervisorStrategy } import akka.actor.{ actorRef2Scala, ActorRef } import akka.actor.{ PossiblyHarmful, OneForOneStrategy } import akka.actor.SupervisorStrategy._ + import scala.concurrent.duration._ +import scala.reflect.ClassTag import spark.storage.StorageLevel import spark.streaming.dstream.NetworkReceiver import java.util.concurrent.atomic.AtomicInteger -/** A helper with set of defaults for supervisor strategy **/ +/** A helper with set of defaults for supervisor strategy */ object ReceiverSupervisorStrategy { val defaultStrategy = OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = @@ -43,11 +45,11 @@ object ReceiverSupervisorStrategy { * */ trait Receiver { self: Actor ⇒ - def pushBlock[T: ClassManifest](iter: Iterator[T]) { + def pushBlock[T: ClassTag](iter: Iterator[T]) { context.parent ! Data(iter) } - def pushBlock[T: ClassManifest](data: T) { + def pushBlock[T: ClassTag](data: T) { context.parent ! Data(data) } @@ -61,8 +63,8 @@ case class Statistics(numberOfMsgs: Int, numberOfHiccups: Int, otherInfo: String) -/** Case class to receive data sent by child actors **/ -private[streaming] case class Data[T: ClassManifest](data: T) +/** Case class to receive data sent by child actors */ +private[streaming] case class Data[T: ClassTag](data: T) /** * Provides Actors as receivers for receiving stream. @@ -85,7 +87,7 @@ private[streaming] case class Data[T: ClassManifest](data: T) * * */ -private[streaming] class ActorReceiver[T: ClassManifest]( +private[streaming] class ActorReceiver[T: ClassTag]( props: Props, name: String, storageLevel: StorageLevel, diff --git a/streaming/src/main/scala/spark/streaming/receivers/ZeroMQReceiver.scala b/streaming/src/main/scala/spark/streaming/receivers/ZeroMQReceiver.scala index e7608f08ae..45e2596707 100644 --- a/streaming/src/main/scala/spark/streaming/receivers/ZeroMQReceiver.scala +++ b/streaming/src/main/scala/spark/streaming/receivers/ZeroMQReceiver.scala @@ -5,10 +5,12 @@ import akka.zeromq._ import spark.Logging +import scala.reflect.ClassTag + /** * A receiver to subscribe to ZeroMQ stream. */ -private[streaming] class ZeroMQReceiver[T: ClassManifest](publisherUrl: String, +private[streaming] class ZeroMQReceiver[T: ClassTag](publisherUrl: String, subscribe: Subscribe, bytesToObjects: Seq[Seq[Byte]] ⇒ Iterator[T]) extends Actor with Receiver with Logging { diff --git a/streaming/src/main/scala/spark/streaming/util/MasterFailureTest.scala b/streaming/src/main/scala/spark/streaming/util/MasterFailureTest.scala index f673e5be15..3db1eaa834 100644 --- a/streaming/src/main/scala/spark/streaming/util/MasterFailureTest.scala +++ b/streaming/src/main/scala/spark/streaming/util/MasterFailureTest.scala @@ -7,6 +7,7 @@ import StreamingContext._ import scala.util.Random import scala.collection.mutable.{SynchronizedBuffer, ArrayBuffer} +import scala.reflect.ClassTag import java.io.{File, ObjectInputStream, IOException} import java.util.UUID @@ -102,7 +103,7 @@ object MasterFailureTest extends Logging { * Tests stream operation with multiple master failures, and verifies whether the * final set of output values is as expected or not. */ - def testOperation[T: ClassManifest]( + def testOperation[T: ClassTag]( directory: String, batchDuration: Duration, input: Seq[String], @@ -140,7 +141,7 @@ object MasterFailureTest extends Logging { * and batch duration. Returns the streaming context and the directory to which * files should be written for testing. */ - private def setupStreams[T: ClassManifest]( + private def setupStreams[T: ClassTag]( directory: String, batchDuration: Duration, operation: DStream[String] => DStream[T] @@ -173,7 +174,7 @@ object MasterFailureTest extends Logging { * Repeatedly starts and kills the streaming context until timed out or * the last expected output is generated. Finally, return */ - private def runStreams[T: ClassManifest]( + private def runStreams[T: ClassTag]( ssc_ : StreamingContext, lastExpectedOutput: T, maxTimeToRun: Long @@ -254,7 +255,7 @@ object MasterFailureTest extends Logging { * duplicate batch outputs of values from the `output`. As a result, the * expected output should not have consecutive batches with the same values as output. */ - private def verifyOutput[T: ClassManifest](output: Seq[T], expectedOutput: Seq[T]) { + private def verifyOutput[T: ClassTag](output: Seq[T], expectedOutput: Seq[T]) { // Verify whether expected outputs do not consecutive batches with same output for (i <- 0 until expectedOutput.size - 1) { assert(expectedOutput(i) != expectedOutput(i+1), @@ -285,7 +286,7 @@ object MasterFailureTest extends Logging { * ArrayBuffer. This buffer is wiped clean on being restored from checkpoint. */ private[streaming] -class TestOutputStream[T: ClassManifest]( +class TestOutputStream[T: ClassTag]( parent: DStream[T], val output: ArrayBuffer[Seq[T]] = new ArrayBuffer[Seq[T]] with SynchronizedBuffer[Seq[T]] ) extends ForEachDStream[T]( @@ -359,22 +360,22 @@ class FileGeneratingThread(input: Seq[String], testDir: Path, interval: Long) val hadoopFile = new Path(testDir, (i+1).toString) FileUtils.writeStringToFile(localFile, input(i).toString + "\n") var tries = 0 - var done = false + var done = false while (!done && tries < maxTries) { tries += 1 try { fs.copyFromLocalFile(new Path(localFile.toString), hadoopFile) - done = true - } catch { - case ioe: IOException => { - fs = testDir.getFileSystem(new Configuration()) + done = true + } catch { + case ioe: IOException => { + fs = testDir.getFileSystem(new Configuration()) logWarning("Attempt " + tries + " at generating file " + hadoopFile + " failed.", ioe) - } - } } - if (!done) + } + } + if (!done) logError("Could not generate file " + hadoopFile) - else + else logInfo("Generated file " + hadoopFile + " at " + System.currentTimeMillis) Thread.sleep(interval) localFile.delete() @@ -388,5 +389,3 @@ class FileGeneratingThread(input: Seq[String], testDir: Path, interval: Long) } } } - - diff --git a/streaming/src/test/java/spark/streaming/JavaTestUtils.scala b/streaming/src/test/java/spark/streaming/JavaTestUtils.scala index 64a7e7cbf9..8a7c48bde6 100644 --- a/streaming/src/test/java/spark/streaming/JavaTestUtils.scala +++ b/streaming/src/test/java/spark/streaming/JavaTestUtils.scala @@ -1,6 +1,8 @@ package spark.streaming -import collection.mutable.{SynchronizedBuffer, ArrayBuffer} +import scala.collection.mutable.{SynchronizedBuffer, ArrayBuffer} +import scala.reflect.ClassTag + import java.util.{List => JList} import spark.streaming.api.java.{JavaPairDStream, JavaDStreamLike, JavaDStream, JavaStreamingContext} import spark.streaming._ @@ -13,15 +15,15 @@ trait JavaTestBase extends TestSuiteBase { /** * Create a [[spark.streaming.TestInputStream]] and attach it to the supplied context. * The stream will be derived from the supplied lists of Java objects. - **/ + */ def attachTestInputStream[T]( ssc: JavaStreamingContext, data: JList[JList[T]], numPartitions: Int) = { val seqData = data.map(Seq(_:_*)) - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] val dstream = new TestInputStream[T](ssc.ssc, seqData, numPartitions) ssc.ssc.registerInputStream(dstream) new JavaDStream[T](dstream) @@ -30,12 +32,12 @@ trait JavaTestBase extends TestSuiteBase { /** * Attach a provided stream to it's associated StreamingContext as a * [[spark.streaming.TestOutputStream]]. - **/ + */ def attachTestOutputStream[T, This <: spark.streaming.api.java.JavaDStreamLike[T, This, R], R <: spark.api.java.JavaRDDLike[T, R]]( dstream: JavaDStreamLike[T, This, R]) = { - implicit val cm: ClassManifest[T] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[T]] + implicit val cm: ClassTag[T] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]] val ostream = new TestOutputStream(dstream.dstream, new ArrayBuffer[Seq[T]] with SynchronizedBuffer[Seq[T]]) dstream.dstream.ssc.registerOutputStream(ostream) @@ -48,8 +50,8 @@ trait JavaTestBase extends TestSuiteBase { */ def runStreams[V]( ssc: JavaStreamingContext, numBatches: Int, numExpectedOutput: Int): JList[JList[V]] = { - implicit val cm: ClassManifest[V] = - implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[V]] + implicit val cm: ClassTag[V] = + implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[V]] val res = runStreams[V](ssc.ssc, numBatches, numExpectedOutput) val out = new ArrayList[JList[V]]() res.map(entry => out.append(new ArrayList[V](entry))) @@ -64,4 +66,4 @@ object JavaTestUtils extends JavaTestBase { object JavaCheckpointTestUtils extends JavaTestBase { override def actuallyWait = true -} \ No newline at end of file +} diff --git a/streaming/src/test/scala/spark/streaming/CheckpointSuite.scala b/streaming/src/test/scala/spark/streaming/CheckpointSuite.scala index f9285b19e2..143a26d911 100644 --- a/streaming/src/test/scala/spark/streaming/CheckpointSuite.scala +++ b/streaming/src/test/scala/spark/streaming/CheckpointSuite.scala @@ -3,6 +3,7 @@ package spark.streaming import java.io.File import scala.collection.mutable.ArrayBuffer +import scala.reflect.ClassTag import org.apache.commons.io.FileUtils import org.scalatest.BeforeAndAfter @@ -297,7 +298,7 @@ class CheckpointSuite extends TestSuiteBase with BeforeAndAfter { * NOTE: This takes into consideration that the last batch processed before * master failure will be re-processed after restart/recovery. */ - def testCheckpointedOperation[U: ClassManifest, V: ClassManifest]( + def testCheckpointedOperation[U: ClassTag, V: ClassTag]( input: Seq[Seq[U]], operation: DStream[U] => DStream[V], expectedOutput: Seq[Seq[V]], @@ -340,7 +341,7 @@ class CheckpointSuite extends TestSuiteBase with BeforeAndAfter { * Advances the manual clock on the streaming scheduler by given number of batches. * It also waits for the expected amount of time for each batch. */ - def advanceTimeWithRealDelay[V: ClassManifest](ssc: StreamingContext, numBatches: Long): Seq[Seq[V]] = { + def advanceTimeWithRealDelay[V: ClassTag](ssc: StreamingContext, numBatches: Long): Seq[Seq[V]] = { val clock = ssc.scheduler.clock.asInstanceOf[ManualClock] logInfo("Manual clock before advancing = " + clock.time) for (i <- 1 to numBatches.toInt) { diff --git a/streaming/src/test/scala/spark/streaming/TestSuiteBase.scala b/streaming/src/test/scala/spark/streaming/TestSuiteBase.scala index ad6aa79d10..dc280b09c9 100644 --- a/streaming/src/test/scala/spark/streaming/TestSuiteBase.scala +++ b/streaming/src/test/scala/spark/streaming/TestSuiteBase.scala @@ -5,8 +5,9 @@ import spark.streaming.util.ManualClock import spark.{RDD, Logging} -import collection.mutable.ArrayBuffer -import collection.mutable.SynchronizedBuffer +import scala.collection.mutable.ArrayBuffer +import scala.collection.mutable.SynchronizedBuffer +import scala.reflect.ClassTag import java.io.{ObjectInputStream, IOException} @@ -17,7 +18,7 @@ import org.scalatest.{BeforeAndAfter, FunSuite} * replayable, reliable message queue like Kafka. It requires a sequence as input, and * returns the i_th element at the i_th batch unde manual clock. */ -class TestInputStream[T: ClassManifest](ssc_ : StreamingContext, input: Seq[Seq[T]], numPartitions: Int) +class TestInputStream[T: ClassTag](ssc_ : StreamingContext, input: Seq[Seq[T]], numPartitions: Int) extends InputDStream[T](ssc_) { def start() {} @@ -43,7 +44,7 @@ class TestInputStream[T: ClassManifest](ssc_ : StreamingContext, input: Seq[Seq[ * This is a output stream just for the testsuites. All the output is collected into a * ArrayBuffer. This buffer is wiped clean on being restored from checkpoint. */ -class TestOutputStream[T: ClassManifest](parent: DStream[T], val output: ArrayBuffer[Seq[T]]) +class TestOutputStream[T: ClassTag](parent: DStream[T], val output: ArrayBuffer[Seq[T]]) extends ForEachDStream[T](parent, (rdd: RDD[T], t: Time) => { val collected = rdd.collect() output += collected @@ -88,7 +89,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * Set up required DStreams to test the DStream operation using the two sequences * of input collections. */ - def setupStreams[U: ClassManifest, V: ClassManifest]( + def setupStreams[U: ClassTag, V: ClassTag]( input: Seq[Seq[U]], operation: DStream[U] => DStream[V] ): StreamingContext = { @@ -112,7 +113,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * Set up required DStreams to test the binary operation using the sequence * of input collections. */ - def setupStreams[U: ClassManifest, V: ClassManifest, W: ClassManifest]( + def setupStreams[U: ClassTag, V: ClassTag, W: ClassTag]( input1: Seq[Seq[U]], input2: Seq[Seq[V]], operation: (DStream[U], DStream[V]) => DStream[W] @@ -140,7 +141,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * returns the collected output. It will wait until `numExpectedOutput` number of * output data has been collected or timeout (set by `maxWaitTimeMillis`) is reached. */ - def runStreams[V: ClassManifest]( + def runStreams[V: ClassTag]( ssc: StreamingContext, numBatches: Int, numExpectedOutput: Int @@ -196,7 +197,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * is same as the expected output values, by comparing the output * collections either as lists (order matters) or sets (order does not matter) */ - def verifyOutput[V: ClassManifest]( + def verifyOutput[V: ClassTag]( output: Seq[Seq[V]], expectedOutput: Seq[Seq[V]], useSet: Boolean @@ -226,7 +227,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * Test unary DStream operation with a list of inputs, with number of * batches to run same as the number of expected output values */ - def testOperation[U: ClassManifest, V: ClassManifest]( + def testOperation[U: ClassTag, V: ClassTag]( input: Seq[Seq[U]], operation: DStream[U] => DStream[V], expectedOutput: Seq[Seq[V]], @@ -244,7 +245,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * @param useSet Compare the output values with the expected output values * as sets (order matters) or as lists (order does not matter) */ - def testOperation[U: ClassManifest, V: ClassManifest]( + def testOperation[U: ClassTag, V: ClassTag]( input: Seq[Seq[U]], operation: DStream[U] => DStream[V], expectedOutput: Seq[Seq[V]], @@ -261,7 +262,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * Test binary DStream operation with two lists of inputs, with number of * batches to run same as the number of expected output values */ - def testOperation[U: ClassManifest, V: ClassManifest, W: ClassManifest]( + def testOperation[U: ClassTag, V: ClassTag, W: ClassTag]( input1: Seq[Seq[U]], input2: Seq[Seq[V]], operation: (DStream[U], DStream[V]) => DStream[W], @@ -281,7 +282,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { * @param useSet Compare the output values with the expected output values * as sets (order matters) or as lists (order does not matter) */ - def testOperation[U: ClassManifest, V: ClassManifest, W: ClassManifest]( + def testOperation[U: ClassTag, V: ClassTag, W: ClassTag]( input1: Seq[Seq[U]], input2: Seq[Seq[V]], operation: (DStream[U], DStream[V]) => DStream[W], -- GitLab