diff --git a/docs/ml-features.md b/docs/ml-features.md index 54068debe21591d2c1f15aa78e7933af79f6482a..fa0ad1f00ab1286cec8cdb17b5fc75edb00406e0 100644 --- a/docs/ml-features.md +++ b/docs/ml-features.md @@ -461,6 +461,92 @@ for binarized_feature, in binarizedFeatures.collect(): </div> </div> +## PCA + +[PCA](http://en.wikipedia.org/wiki/Principal_component_analysis) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. A [PCA](api/scala/index.html#org.apache.spark.ml.feature.PCA) class trains a model to project vectors to a low-dimensional space using PCA. The example below shows how to project 5-dimensional feature vectors into 3-dimensional principal components. + +<div class="codetabs"> +<div data-lang="scala" markdown="1"> +See the [Scala API documentation](api/scala/index.html#org.apache.spark.ml.feature.PCA) for API details. +{% highlight scala %} +import org.apache.spark.ml.feature.PCA +import org.apache.spark.mllib.linalg.Vectors + +val data = Array( + Vectors.sparse(5, Seq((1, 1.0), (3, 7.0))), + Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0), + Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0) +) +val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features") +val pca = new PCA() + .setInputCol("features") + .setOutputCol("pcaFeatures") + .setK(3) + .fit(df) +val pcaDF = pca.transform(df) +val result = pcaDF.select("pcaFeatures") +result.show() +{% endhighlight %} +</div> + +<div data-lang="java" markdown="1"> +See the [Java API documentation](api/java/org/apache/spark/ml/feature/PCA.html) for API details. +{% highlight java %} +import com.google.common.collect.Lists; + +import org.apache.spark.api.java.JavaRDD; +import org.apache.spark.api.java.JavaSparkContext; +import org.apache.spark.ml.feature.PCA +import org.apache.spark.ml.feature.PCAModel +import org.apache.spark.mllib.linalg.VectorUDT; +import org.apache.spark.mllib.linalg.Vectors; +import org.apache.spark.sql.DataFrame; +import org.apache.spark.sql.Row; +import org.apache.spark.sql.RowFactory; +import org.apache.spark.sql.SQLContext; +import org.apache.spark.sql.types.Metadata; +import org.apache.spark.sql.types.StructField; +import org.apache.spark.sql.types.StructType; + +JavaSparkContext jsc = ... +SQLContext jsql = ... +JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList( + RowFactory.create(Vectors.sparse(5, new int[]{1, 3}, new double[]{1.0, 7.0})), + RowFactory.create(Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0)), + RowFactory.create(Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0)) +)); +StructType schema = new StructType(new StructField[] { + new StructField("features", new VectorUDT(), false, Metadata.empty()), +}); +DataFrame df = jsql.createDataFrame(data, schema); +PCAModel pca = new PCA() + .setInputCol("features") + .setOutputCol("pcaFeatures") + .setK(3) + .fit(df); +DataFrame result = pca.transform(df).select("pcaFeatures"); +result.show(); +{% endhighlight %} +</div> + +<div data-lang="python" markdown="1"> +See the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.feature.PCA) for API details. +{% highlight python %} +from pyspark.ml.feature import PCA +from pyspark.mllib.linalg import Vectors + +data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),), + (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),), + (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)] +df = sqlContext.createDataFrame(data,["features"]) +pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures") +model = pca.fit(df) +result = model.transform(df).select("pcaFeatures") +result.show(truncate=False) +{% endhighlight %} +</div> +</div> + ## PolynomialExpansion [Polynomial expansion](http://en.wikipedia.org/wiki/Polynomial_expansion) is the process of expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions. A [PolynomialExpansion](api/scala/index.html#org.apache.spark.ml.feature.PolynomialExpansion) class provides this functionality. The example below shows how to expand your features into a 3-degree polynomial space.