diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 2affba7d42cc80fa2eec369af73be9a3bc40eef6..0e896e5693b9889123847d6f2c2bfc85e398e921 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -623,17 +623,12 @@ class DataFrame private[sql]( } /** - * (Scala-specific) Compute aggregates by specifying a map from column name to - * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns. - * - * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`. - * {{{ - * // Selects the age of the oldest employee and the aggregate expense for each department - * df.groupBy("department").agg( - * "age" -> "max", - * "expense" -> "sum" - * ) - * }}} + * (Scala-specific) Aggregates on the entire [[DataFrame]] without groups. + * {{ + * // df.agg(...) is a shorthand for df.groupBy().agg(...) + * df.agg("age" -> "max", "salary" -> "avg") + * df.groupBy().agg("age" -> "max", "salary" -> "avg") + * }} * @group dfops */ def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame = {