diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index e838a13af72d06f334b4181ceadd19f762294575..2076b29a86c6183a7ce8bdadebc8d0252ded7522 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -65,14 +65,14 @@ Throughout this document, we will often refer to Scala/Java Datasets of `Row`s a The entry point into all functionality in Spark is the [`SparkSession`](api/scala/index.html#org.apache.spark.sql.SparkSession) class. To create a basic `SparkSession`, just use `SparkSession.builder()`: -{% include_example init_session scala/org/apache/spark/examples/sql/RDDRelation.scala %} +{% include_example init_session scala/org/apache/spark/examples/sql/SparkSqlExample.scala %} </div> <div data-lang="java" markdown="1"> The entry point into all functionality in Spark is the [`SparkSession`](api/java/index.html#org.apache.spark.sql.SparkSession) class. To create a basic `SparkSession`, just use `SparkSession.builder()`: -{% include_example init_session java/org/apache/spark/examples/sql/JavaSparkSQL.java %} +{% include_example init_session java/org/apache/spark/examples/sql/JavaSparkSqlExample.java %} </div> <div data-lang="python" markdown="1"> @@ -105,14 +105,7 @@ from a Hive table, or from [Spark data sources](#data-sources). As an example, the following creates a DataFrame based on the content of a JSON file: -{% highlight scala %} -val spark: SparkSession // An existing SparkSession. -val df = spark.read.json("examples/src/main/resources/people.json") - -// Displays the content of the DataFrame to stdout -df.show() -{% endhighlight %} - +{% include_example create_df scala/org/apache/spark/examples/sql/SparkSqlExample.scala %} </div> <div data-lang="java" markdown="1"> @@ -121,14 +114,7 @@ from a Hive table, or from [Spark data sources](#data-sources). As an example, the following creates a DataFrame based on the content of a JSON file: -{% highlight java %} -SparkSession spark = ...; // An existing SparkSession. -Dataset<Row> df = spark.read().json("examples/src/main/resources/people.json"); - -// Displays the content of the DataFrame to stdout -df.show(); -{% endhighlight %} - +{% include_example create_df java/org/apache/spark/examples/sql/JavaSparkSqlExample.java %} </div> <div data-lang="python" markdown="1"> @@ -169,110 +155,20 @@ Here we include some basic examples of structured data processing using Datasets <div class="codetabs"> <div data-lang="scala" markdown="1"> -{% highlight scala %} -val spark: SparkSession // An existing SparkSession - -// Create the DataFrame -val df = spark.read.json("examples/src/main/resources/people.json") - -// Show the content of the DataFrame -df.show() -// age name -// null Michael -// 30 Andy -// 19 Justin - -// Print the schema in a tree format -df.printSchema() -// root -// |-- age: long (nullable = true) -// |-- name: string (nullable = true) - -// Select only the "name" column -df.select("name").show() -// name -// Michael -// Andy -// Justin - -// Select everybody, but increment the age by 1 -df.select(df("name"), df("age") + 1).show() -// name (age + 1) -// Michael null -// Andy 31 -// Justin 20 - -// Select people older than 21 -df.filter(df("age") > 21).show() -// age name -// 30 Andy - -// Count people by age -df.groupBy("age").count().show() -// age count -// null 1 -// 19 1 -// 30 1 -{% endhighlight %} +{% include_example untyped_ops scala/org/apache/spark/examples/sql/SparkSqlExample.scala %} For a complete list of the types of operations that can be performed on a Dataset refer to the [API Documentation](api/scala/index.html#org.apache.spark.sql.Dataset). In addition to simple column references and expressions, Datasets also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the [DataFrame Function Reference](api/scala/index.html#org.apache.spark.sql.functions$). - - </div> <div data-lang="java" markdown="1"> -{% highlight java %} -SparkSession spark = ...; // An existing SparkSession - -// Create the DataFrame -Dataset<Row> df = spark.read().json("examples/src/main/resources/people.json"); - -// Show the content of the DataFrame -df.show(); -// age name -// null Michael -// 30 Andy -// 19 Justin - -// Print the schema in a tree format -df.printSchema(); -// root -// |-- age: long (nullable = true) -// |-- name: string (nullable = true) - -// Select only the "name" column -df.select("name").show(); -// name -// Michael -// Andy -// Justin - -// Select everybody, but increment the age by 1 -df.select(df.col("name"), df.col("age").plus(1)).show(); -// name (age + 1) -// Michael null -// Andy 31 -// Justin 20 - -// Select people older than 21 -df.filter(df.col("age").gt(21)).show(); -// age name -// 30 Andy - -// Count people by age -df.groupBy("age").count().show(); -// age count -// null 1 -// 19 1 -// 30 1 -{% endhighlight %} + +{% include_example untyped_ops java/org/apache/spark/examples/sql/JavaSparkSqlExample.java %} For a complete list of the types of operations that can be performed on a Dataset refer to the [API Documentation](api/java/org/apache/spark/sql/Dataset.html). In addition to simple column references and expressions, Datasets also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the [DataFrame Function Reference](api/java/org/apache/spark/sql/functions.html). - </div> <div data-lang="python" markdown="1"> @@ -353,19 +249,13 @@ In addition to simple column references and expressions, DataFrames also have a <div data-lang="scala" markdown="1"> The `sql` function on a `SparkSession` enables applications to run SQL queries programmatically and returns the result as a `DataFrame`. -{% highlight scala %} -val spark = ... // An existing SparkSession -val df = spark.sql("SELECT * FROM table") -{% endhighlight %} +{% include_example run_sql scala/org/apache/spark/examples/sql/SparkSQLExample.scala %} </div> <div data-lang="java" markdown="1"> The `sql` function on a `SparkSession` enables applications to run SQL queries programmatically and returns the result as a `Dataset<Row>`. -{% highlight java %} -SparkSession spark = ... // An existing SparkSession -Dataset<Row> df = spark.sql("SELECT * FROM table") -{% endhighlight %} +{% include_example run_sql java/org/apache/spark/examples/sql/JavaSparkSqlExample.java %} </div> <div data-lang="python" markdown="1"> @@ -397,53 +287,11 @@ the bytes back into an object. <div class="codetabs"> <div data-lang="scala" markdown="1"> - -{% highlight scala %} -// Encoders for most common types are automatically provided by importing spark.implicits._ -val ds = Seq(1, 2, 3).toDS() -ds.map(_ + 1).collect() // Returns: Array(2, 3, 4) - -// Encoders are also created for case classes. -case class Person(name: String, age: Long) -val ds = Seq(Person("Andy", 32)).toDS() - -// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name. -val path = "examples/src/main/resources/people.json" -val people = spark.read.json(path).as[Person] - -{% endhighlight %} - +{% include_example create_ds scala/org/apache/spark/examples/sql/SparkSqlExample.scala %} </div> <div data-lang="java" markdown="1"> - -{% highlight java %} -SparkSession spark = ... // An existing SparkSession - -// Encoders for most common types are provided in class Encoders. -Dataset<Integer> ds = spark.createDataset(Arrays.asList(1, 2, 3), Encoders.INT()); -ds.map(new MapFunction<Integer, Integer>() { - @Override - public Integer call(Integer value) throws Exception { - return value + 1; - } -}, Encoders.INT()); // Returns: [2, 3, 4] - -Person person = new Person(); -person.setName("Andy"); -person.setAge(32); - -// Encoders are also created for Java beans. -Dataset<Person> ds = spark.createDataset( - Collections.singletonList(person), - Encoders.bean(Person.class) -); - -// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name. -String path = "examples/src/main/resources/people.json"; -Dataset<Person> people = spark.read().json(path).as(Encoders.bean(Person.class)); -{% endhighlight %} - +{% include_example create_ds java/org/apache/spark/examples/sql/JavaSparkSqlExample.java %} </div> </div> @@ -470,38 +318,7 @@ reflection and become the names of the columns. Case classes can also be nested types such as `Seq`s or `Array`s. This RDD can be implicitly converted to a DataFrame and then be registered as a table. Tables can be used in subsequent SQL statements. -{% highlight scala %} -val spark: SparkSession // An existing SparkSession -// this is used to implicitly convert an RDD to a DataFrame. -import spark.implicits._ - -// Define the schema using a case class. -// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit, -// you can use custom classes that implement the Product interface. -case class Person(name: String, age: Int) - -// Create an RDD of Person objects and register it as a temporary view. -val people = sc - .textFile("examples/src/main/resources/people.txt") - .map(_.split(",")) - .map(p => Person(p(0), p(1).trim.toInt)) - .toDF() -people.createOrReplaceTempView("people") - -// SQL statements can be run by using the sql methods provided by spark. -val teenagers = spark.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19") - -// The columns of a row in the result can be accessed by field index: -teenagers.map(t => "Name: " + t(0)).collect().foreach(println) - -// or by field name: -teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println) - -// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T] -teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println) -// Map("name" -> "Justin", "age" -> 19) -{% endhighlight %} - +{% include_example schema_inferring scala/org/apache/spark/examples/sql/SparkSqlExample.scala %} </div> <div data-lang="java" markdown="1"> @@ -513,68 +330,7 @@ does not support JavaBeans that contain `Map` field(s). Nested JavaBeans and `Li fields are supported though. You can create a JavaBean by creating a class that implements Serializable and has getters and setters for all of its fields. -{% highlight java %} - -public static class Person implements Serializable { - private String name; - private int age; - - public String getName() { - return name; - } - - public void setName(String name) { - this.name = name; - } - - public int getAge() { - return age; - } - - public void setAge(int age) { - this.age = age; - } -} - -{% endhighlight %} - - -A schema can be applied to an existing RDD by calling `createDataFrame` and providing the Class object -for the JavaBean. - -{% highlight java %} -SparkSession spark = ...; // An existing SparkSession - -// Load a text file and convert each line to a JavaBean. -JavaRDD<Person> people = spark.sparkContext.textFile("examples/src/main/resources/people.txt").map( - new Function<String, Person>() { - public Person call(String line) throws Exception { - String[] parts = line.split(","); - - Person person = new Person(); - person.setName(parts[0]); - person.setAge(Integer.parseInt(parts[1].trim())); - - return person; - } - }); - -// Apply a schema to an RDD of JavaBeans and register it as a table. -Dataset<Row> schemaPeople = spark.createDataFrame(people, Person.class); -schemaPeople.createOrReplaceTempView("people"); - -// SQL can be run over RDDs that have been registered as tables. -Dataset<Row> teenagers = spark.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") - -// The columns of a row in the result can be accessed by ordinal. -List<String> teenagerNames = teenagers.map(new MapFunction<Row, String>() { - public String call(Row row) { - return "Name: " + row.getString(0); - } -}).collectAsList(); - -{% endhighlight %} - +{% include_example schema_inferring java/org/apache/spark/examples/sql/JavaSparkSqlExample.java %} </div> <div data-lang="python" markdown="1"> @@ -628,43 +384,8 @@ a `DataFrame` can be created programmatically with three steps. by `SparkSession`. For example: -{% highlight scala %} -val spark: SparkSession // An existing SparkSession - -// Create an RDD -val people = sc.textFile("examples/src/main/resources/people.txt") - -// The schema is encoded in a string -val schemaString = "name age" - -// Import Row. -import org.apache.spark.sql.Row; - -// Import Spark SQL data types -import org.apache.spark.sql.types.{StructType, StructField, StringType}; - -// Generate the schema based on the string of schema -val schema = StructType(schemaString.split(" ").map { fieldName => - StructField(fieldName, StringType, true) -}) - -// Convert records of the RDD (people) to Rows. -val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim)) - -// Apply the schema to the RDD. -val peopleDataFrame = spark.createDataFrame(rowRDD, schema) - -// Creates a temporary view using the DataFrame. -peopleDataFrame.createOrReplaceTempView("people") - -// SQL statements can be run by using the sql methods provided by spark. -val results = spark.sql("SELECT name FROM people") - -// The columns of a row in the result can be accessed by field index or by field name. -results.map(t => "Name: " + t(0)).collect().foreach(println) -{% endhighlight %} - +{% include_example programmatic_schema scala/org/apache/spark/examples/sql/SparkSqlExample.scala %} </div> <div data-lang="java" markdown="1"> @@ -681,62 +402,8 @@ a `Dataset<Row>` can be created programmatically with three steps. by `SparkSession`. For example: -{% highlight java %} -import org.apache.spark.api.java.function.Function; -// Import factory methods provided by DataTypes. -import org.apache.spark.sql.types.DataTypes; -// Import StructType and StructField -import org.apache.spark.sql.types.StructType; -import org.apache.spark.sql.types.StructField; -// Import Row. -import org.apache.spark.sql.Row; -// Import RowFactory. -import org.apache.spark.sql.RowFactory; - -SparkSession spark = ...; // An existing SparkSession. -JavaSparkContext sc = spark.sparkContext - -// Load a text file and convert each line to a JavaBean. -JavaRDD<String> people = sc.textFile("examples/src/main/resources/people.txt"); - -// The schema is encoded in a string -String schemaString = "name age"; - -// Generate the schema based on the string of schema -List<StructField> fields = new ArrayList<>(); -for (String fieldName: schemaString.split(" ")) { - fields.add(DataTypes.createStructField(fieldName, DataTypes.StringType, true)); -} -StructType schema = DataTypes.createStructType(fields); - -// Convert records of the RDD (people) to Rows. -JavaRDD<Row> rowRDD = people.map( - new Function<String, Row>() { - public Row call(String record) throws Exception { - String[] fields = record.split(","); - return RowFactory.create(fields[0], fields[1].trim()); - } - }); - -// Apply the schema to the RDD. -Dataset<Row> peopleDataFrame = spark.createDataFrame(rowRDD, schema); - -// Creates a temporary view using the DataFrame. -peopleDataFrame.createOrReplaceTempView("people"); - -// SQL can be run over a temporary view created using DataFrames. -Dataset<Row> results = spark.sql("SELECT name FROM people"); - -// The results of SQL queries are DataFrames and support all the normal RDD operations. -// The columns of a row in the result can be accessed by ordinal. -List<String> names = results.javaRDD().map(new Function<Row, String>() { - public String call(Row row) { - return "Name: " + row.getString(0); - } -}).collect(); - -{% endhighlight %} +{% include_example programmatic_schema java/org/apache/spark/examples/sql/JavaSparkSqlExample.java %} </div> <div data-lang="python" markdown="1"> @@ -805,23 +472,11 @@ In the simplest form, the default data source (`parquet` unless otherwise config <div class="codetabs"> <div data-lang="scala" markdown="1"> - -{% highlight scala %} -val df = spark.read.load("examples/src/main/resources/users.parquet") -df.select("name", "favorite_color").write.save("namesAndFavColors.parquet") -{% endhighlight %} - +{% include_example generic_load_save_functions scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala %} </div> <div data-lang="java" markdown="1"> - -{% highlight java %} - -Dataset<Row> df = spark.read().load("examples/src/main/resources/users.parquet"); -df.select("name", "favorite_color").write().save("namesAndFavColors.parquet"); - -{% endhighlight %} - +{% include_example generic_load_save_functions java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java %} </div> <div data-lang="python" markdown="1"> @@ -852,23 +507,11 @@ using this syntax. <div class="codetabs"> <div data-lang="scala" markdown="1"> - -{% highlight scala %} -val df = spark.read.format("json").load("examples/src/main/resources/people.json") -df.select("name", "age").write.format("parquet").save("namesAndAges.parquet") -{% endhighlight %} - +{% include_example manual_load_options scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala %} </div> <div data-lang="java" markdown="1"> - -{% highlight java %} - -Dataset<Row> df = spark.read().format("json").load("examples/src/main/resources/people.json"); -df.select("name", "age").write().format("parquet").save("namesAndAges.parquet"); - -{% endhighlight %} - +{% include_example manual_load_options java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java %} </div> <div data-lang="python" markdown="1"> @@ -895,18 +538,11 @@ file directly with SQL. <div class="codetabs"> <div data-lang="scala" markdown="1"> - -{% highlight scala %} -val df = spark.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`") -{% endhighlight %} - +{% include_example direct_sql scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala %} </div> <div data-lang="java" markdown="1"> - -{% highlight java %} -Dataset<Row> df = spark.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`"); -{% endhighlight %} +{% include_example direct_sql java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java %} </div> <div data-lang="python" markdown="1"> @@ -997,53 +633,11 @@ Using the data from the above example: <div class="codetabs"> <div data-lang="scala" markdown="1"> - -{% highlight scala %} -// spark from the previous example is used in this example. -// This is used to implicitly convert an RDD to a DataFrame. -import spark.implicits._ - -val people: RDD[Person] = ... // An RDD of case class objects, from the previous example. - -// The RDD is implicitly converted to a DataFrame by implicits, allowing it to be stored using Parquet. -people.write.parquet("people.parquet") - -// Read in the parquet file created above. Parquet files are self-describing so the schema is preserved. -// The result of loading a Parquet file is also a DataFrame. -val parquetFile = spark.read.parquet("people.parquet") - -// Parquet files can also be used to create a temporary view and then used in SQL statements. -parquetFile.createOrReplaceTempView("parquetFile") -val teenagers = spark.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19") -teenagers.map(t => "Name: " + t(0)).collect().foreach(println) -{% endhighlight %} - +{% include_example basic_parquet_example scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala %} </div> <div data-lang="java" markdown="1"> - -{% highlight java %} -// spark from the previous example is used in this example. - -Dataset<Row> schemaPeople = ... // The DataFrame from the previous example. - -// DataFrames can be saved as Parquet files, maintaining the schema information. -schemaPeople.write().parquet("people.parquet"); - -// Read in the Parquet file created above. Parquet files are self-describing so the schema is preserved. -// The result of loading a parquet file is also a DataFrame. -Dataset<Row> parquetFile = spark.read().parquet("people.parquet"); - -// Parquet files can also be used to create a temporary view and then used in SQL statements. -parquetFile.createOrReplaceTempView("parquetFile"); -Dataset<Row> teenagers = spark.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19"); -List<String> teenagerNames = teenagers.javaRDD().map(new Function<Row, String>() { - public String call(Row row) { - return "Name: " + row.getString(0); - } -}).collect(); -{% endhighlight %} - +{% include_example basic_parquet_example java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java %} </div> <div data-lang="python" markdown="1"> @@ -1172,34 +766,11 @@ turned it off by default starting from 1.5.0. You may enable it by <div class="codetabs"> <div data-lang="scala" markdown="1"> +{% include_example schema_merging scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala %} +</div> -{% highlight scala %} -// spark from the previous example is used in this example. -// This is used to implicitly convert an RDD to a DataFrame. -import spark.implicits._ - -// Create a simple DataFrame, stored into a partition directory -val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double") -df1.write.parquet("data/test_table/key=1") - -// Create another DataFrame in a new partition directory, -// adding a new column and dropping an existing column -val df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple") -df2.write.parquet("data/test_table/key=2") - -// Read the partitioned table -val df3 = spark.read.option("mergeSchema", "true").parquet("data/test_table") -df3.printSchema() - -// The final schema consists of all 3 columns in the Parquet files together -// with the partitioning column appeared in the partition directory paths. -// root -// |-- single: int (nullable = true) -// |-- double: int (nullable = true) -// |-- triple: int (nullable = true) -// |-- key : int (nullable = true) -{% endhighlight %} - +<div data-lang="java" markdown="1"> +{% include_example schema_merging java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java %} </div> <div data-lang="python" markdown="1"> @@ -1280,8 +851,8 @@ metadata. <div data-lang="scala" markdown="1"> {% highlight scala %} -// spark is an existing HiveContext -spark.refreshTable("my_table") +// spark is an existing SparkSession +spark.catalog.refreshTable("my_table") {% endhighlight %} </div> @@ -1289,8 +860,8 @@ spark.refreshTable("my_table") <div data-lang="java" markdown="1"> {% highlight java %} -// spark is an existing HiveContext -spark.refreshTable("my_table") +// spark is an existing SparkSession +spark.catalog().refreshTable("my_table"); {% endhighlight %} </div> @@ -1402,33 +973,7 @@ Note that the file that is offered as _a json file_ is not a typical JSON file. line must contain a separate, self-contained valid JSON object. As a consequence, a regular multi-line JSON file will most often fail. -{% highlight scala %} -val spark: SparkSession // An existing SparkSession - -// A JSON dataset is pointed to by path. -// The path can be either a single text file or a directory storing text files. -val path = "examples/src/main/resources/people.json" -val people = spark.read.json(path) - -// The inferred schema can be visualized using the printSchema() method. -people.printSchema() -// root -// |-- age: long (nullable = true) -// |-- name: string (nullable = true) - -// Creates a temporary view using the DataFrame -people.createOrReplaceTempView("people") - -// SQL statements can be run by using the sql methods provided by spark. -val teenagers = spark.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19") - -// Alternatively, a DataFrame can be created for a JSON dataset represented by -// an RDD[String] storing one JSON object per string. -val anotherPeopleRDD = sc.parallelize( - """{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil) -val anotherPeople = spark.read.json(anotherPeopleRDD) -{% endhighlight %} - +{% include_example json_dataset scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala %} </div> <div data-lang="java" markdown="1"> @@ -1440,33 +985,7 @@ Note that the file that is offered as _a json file_ is not a typical JSON file. line must contain a separate, self-contained valid JSON object. As a consequence, a regular multi-line JSON file will most often fail. -{% highlight java %} -// sc is an existing JavaSparkContext. -SparkSession spark = new org.apache.spark.sql.SparkSession(sc); - -// A JSON dataset is pointed to by path. -// The path can be either a single text file or a directory storing text files. -Dataset<Row> people = spark.read().json("examples/src/main/resources/people.json"); - -// The inferred schema can be visualized using the printSchema() method. -people.printSchema(); -// root -// |-- age: long (nullable = true) -// |-- name: string (nullable = true) - -// Creates a temporary view using the DataFrame -people.createOrReplaceTempView("people"); - -// SQL statements can be run by using the sql methods provided by spark. -Dataset<Row> teenagers = spark.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19"); - -// Alternatively, a DataFrame can be created for a JSON dataset represented by -// an RDD[String] storing one JSON object per string. -List<String> jsonData = Arrays.asList( - "{\"name\":\"Yin\",\"address\":{\"city\":\"Columbus\",\"state\":\"Ohio\"}}"); -JavaRDD<String> anotherPeopleRDD = sc.parallelize(jsonData); -Dataset<Row> anotherPeople = spark.read().json(anotherPeopleRDD); -{% endhighlight %} +{% include_example json_dataset java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java %} </div> <div data-lang="python" markdown="1"> @@ -1561,18 +1080,7 @@ the `hive.metastore.warehouse.dir` property in `hive-site.xml` is deprecated sin Instead, use `spark.sql.warehouse.dir` to specify the default location of database in warehouse. You may need to grant write privilege to the user who starts the spark application. -{% highlight scala %} -// warehouse_location points to the default location for managed databases and tables -val conf = new SparkConf().setAppName("HiveFromSpark").set("spark.sql.warehouse.dir", warehouse_location) -val spark = SparkSession.builder.config(conf).enableHiveSupport().getOrCreate() - -spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") -spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src") - -// Queries are expressed in HiveQL -spark.sql("FROM src SELECT key, value").collect().foreach(println) -{% endhighlight %} - +{% include_example spark_hive scala/org/apache/spark/examples/sql/hive/SparkHiveExample.scala %} </div> <div data-lang="java" markdown="1"> @@ -1587,17 +1095,7 @@ the `hive.metastore.warehouse.dir` property in `hive-site.xml` is deprecated sin Instead, use `spark.sql.warehouse.dir` to specify the default location of database in warehouse. You may need to grant write privilege to the user who starts the spark application. -{% highlight java %} -SparkSession spark = SparkSession.builder().appName("JavaSparkSQL").getOrCreate(); - -spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)"); -spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src"); - -// Queries are expressed in HiveQL. -List<Row> results = spark.sql("FROM src SELECT key, value").collectAsList(); - -{% endhighlight %} - +{% include_example spark_hive java/org/apache/spark/examples/sql/hive/JavaSparkHiveExample.java %} </div> <div data-lang="python" markdown="1"> diff --git a/examples/src/main/java/org/apache/spark/examples/sql/JavaSparkSQL.java b/examples/src/main/java/org/apache/spark/examples/sql/JavaSparkSQL.java deleted file mode 100644 index 7fc6c007b6843f175856190a55325ad4401001db..0000000000000000000000000000000000000000 --- a/examples/src/main/java/org/apache/spark/examples/sql/JavaSparkSQL.java +++ /dev/null @@ -1,186 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.examples.sql; - -import java.io.Serializable; -import java.util.Arrays; -import java.util.List; - -import org.apache.spark.api.java.JavaRDD; -import org.apache.spark.api.java.function.Function; - -import org.apache.spark.sql.Dataset; -import org.apache.spark.sql.Row; -// $example on:init_session$ -import org.apache.spark.sql.SparkSession; -// $example off:init_session$ - -public class JavaSparkSQL { - public static class Person implements Serializable { - private String name; - private int age; - - public String getName() { - return name; - } - - public void setName(String name) { - this.name = name; - } - - public int getAge() { - return age; - } - - public void setAge(int age) { - this.age = age; - } - } - - public static void main(String[] args) throws Exception { - // $example on:init_session$ - SparkSession spark = SparkSession - .builder() - .appName("JavaSparkSQL") - .config("spark.some.config.option", "some-value") - .getOrCreate(); - // $example off:init_session$ - - System.out.println("=== Data source: RDD ==="); - // Load a text file and convert each line to a Java Bean. - String file = "examples/src/main/resources/people.txt"; - JavaRDD<Person> people = spark.read().textFile(file).javaRDD().map( - new Function<String, Person>() { - @Override - public Person call(String line) { - String[] parts = line.split(","); - - Person person = new Person(); - person.setName(parts[0]); - person.setAge(Integer.parseInt(parts[1].trim())); - - return person; - } - }); - - // Apply a schema to an RDD of Java Beans and create a temporary view - Dataset<Row> schemaPeople = spark.createDataFrame(people, Person.class); - schemaPeople.createOrReplaceTempView("people"); - - // SQL can be run over RDDs which backs a temporary view. - Dataset<Row> teenagers = spark.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19"); - - // The results of SQL queries are DataFrames and support all the normal RDD operations. - // The columns of a row in the result can be accessed by ordinal. - List<String> teenagerNames = teenagers.toJavaRDD().map(new Function<Row, String>() { - @Override - public String call(Row row) { - return "Name: " + row.getString(0); - } - }).collect(); - for (String name: teenagerNames) { - System.out.println(name); - } - - System.out.println("=== Data source: Parquet File ==="); - // DataFrames can be saved as parquet files, maintaining the schema information. - schemaPeople.write().parquet("people.parquet"); - - // Read in the parquet file created above. - // Parquet files are self-describing so the schema is preserved. - // The result of loading a parquet file is also a DataFrame. - Dataset<Row> parquetFile = spark.read().parquet("people.parquet"); - - // A temporary view can be created by using Parquet files and then used in SQL statements. - parquetFile.createOrReplaceTempView("parquetFile"); - Dataset<Row> teenagers2 = - spark.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19"); - teenagerNames = teenagers2.toJavaRDD().map(new Function<Row, String>() { - @Override - public String call(Row row) { - return "Name: " + row.getString(0); - } - }).collect(); - for (String name: teenagerNames) { - System.out.println(name); - } - - System.out.println("=== Data source: JSON Dataset ==="); - // A JSON dataset is pointed by path. - // The path can be either a single text file or a directory storing text files. - String path = "examples/src/main/resources/people.json"; - // Create a DataFrame from the file(s) pointed by path - Dataset<Row> peopleFromJsonFile = spark.read().json(path); - - // Because the schema of a JSON dataset is automatically inferred, to write queries, - // it is better to take a look at what is the schema. - peopleFromJsonFile.printSchema(); - // The schema of people is ... - // root - // |-- age: IntegerType - // |-- name: StringType - - // Creates a temporary view using the DataFrame - peopleFromJsonFile.createOrReplaceTempView("people"); - - // SQL statements can be run by using the sql methods provided by `spark` - Dataset<Row> teenagers3 = spark.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19"); - - // The results of SQL queries are DataFrame and support all the normal RDD operations. - // The columns of a row in the result can be accessed by ordinal. - teenagerNames = teenagers3.toJavaRDD().map(new Function<Row, String>() { - @Override - public String call(Row row) { return "Name: " + row.getString(0); } - }).collect(); - for (String name: teenagerNames) { - System.out.println(name); - } - - // Alternatively, a DataFrame can be created for a JSON dataset represented by - // a RDD[String] storing one JSON object per string. - List<String> jsonData = Arrays.asList( - "{\"name\":\"Yin\",\"address\":{\"city\":\"Columbus\",\"state\":\"Ohio\"}}"); - JavaRDD<String> anotherPeopleRDD = spark - .createDataFrame(jsonData, String.class).toJSON().javaRDD(); - Dataset<Row> peopleFromJsonRDD = spark.read().json(anotherPeopleRDD); - - // Take a look at the schema of this new DataFrame. - peopleFromJsonRDD.printSchema(); - // The schema of anotherPeople is ... - // root - // |-- address: StructType - // | |-- city: StringType - // | |-- state: StringType - // |-- name: StringType - - peopleFromJsonRDD.createOrReplaceTempView("people2"); - - Dataset<Row> peopleWithCity = spark.sql("SELECT name, address.city FROM people2"); - List<String> nameAndCity = peopleWithCity.toJavaRDD().map(new Function<Row, String>() { - @Override - public String call(Row row) { - return "Name: " + row.getString(0) + ", City: " + row.getString(1); - } - }).collect(); - for (String name: nameAndCity) { - System.out.println(name); - } - - spark.stop(); - } -} diff --git a/examples/src/main/java/org/apache/spark/examples/sql/JavaSparkSqlExample.java b/examples/src/main/java/org/apache/spark/examples/sql/JavaSparkSqlExample.java new file mode 100644 index 0000000000000000000000000000000000000000..586d6e3a3e4786988ff0496e74c15e84bf5665a4 --- /dev/null +++ b/examples/src/main/java/org/apache/spark/examples/sql/JavaSparkSqlExample.java @@ -0,0 +1,336 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.examples.sql; + +// $example on:programmatic_schema$ +import java.util.ArrayList; +import java.util.List; +// $example off:programmatic_schema$ +// $example on:create_ds$ +import java.util.Arrays; +import java.util.Collections; +import java.io.Serializable; +// $example off:create_ds$ + +// $example on:schema_inferring$ +// $example on:programmatic_schema$ +import org.apache.spark.api.java.JavaRDD; +import org.apache.spark.api.java.function.Function; +// $example off:programmatic_schema$ +// $example on:create_ds$ +import org.apache.spark.api.java.function.MapFunction; +// $example on:create_df$ +// $example on:run_sql$ +// $example on:programmatic_schema$ +import org.apache.spark.sql.Dataset; +import org.apache.spark.sql.Row; +// $example off:programmatic_schema$ +// $example off:create_df$ +// $example off:run_sql$ +import org.apache.spark.sql.Encoder; +import org.apache.spark.sql.Encoders; +// $example off:create_ds$ +// $example off:schema_inferring$ +import org.apache.spark.sql.RowFactory; +// $example on:init_session$ +import org.apache.spark.sql.SparkSession; +// $example off:init_session$ +// $example on:programmatic_schema$ +import org.apache.spark.sql.types.DataTypes; +import org.apache.spark.sql.types.StructField; +import org.apache.spark.sql.types.StructType; +// $example off:programmatic_schema$ + +// $example on:untyped_ops$ +// col("...") is preferable to df.col("...") +import static org.apache.spark.sql.functions.col; +// $example off:untyped_ops$ + +public class JavaSparkSqlExample { + // $example on:create_ds$ + public static class Person implements Serializable { + private String name; + private int age; + + public String getName() { + return name; + } + + public void setName(String name) { + this.name = name; + } + + public int getAge() { + return age; + } + + public void setAge(int age) { + this.age = age; + } + } + // $example off:create_ds$ + + public static void main(String[] args) { + // $example on:init_session$ + SparkSession spark = SparkSession + .builder() + .appName("Java Spark SQL Example") + .config("spark.some.config.option", "some-value") + .getOrCreate(); + // $example off:init_session$ + + runBasicDataFrameExample(spark); + runDatasetCreationExample(spark); + runInferSchemaExample(spark); + runProgrammaticSchemaExample(spark); + + spark.stop(); + } + + private static void runBasicDataFrameExample(SparkSession spark) { + // $example on:create_df$ + Dataset<Row> df = spark.read().json("examples/src/main/resources/people.json"); + + // Displays the content of the DataFrame to stdout + df.show(); + // +----+-------+ + // | age| name| + // +----+-------+ + // |null|Michael| + // | 30| Andy| + // | 19| Justin| + // +----+-------+ + // $example off:create_df$ + + // $example on:untyped_ops$ + // Print the schema in a tree format + df.printSchema(); + // root + // |-- age: long (nullable = true) + // |-- name: string (nullable = true) + + // Select only the "name" column + df.select("name").show(); + // +-------+ + // | name| + // +-------+ + // |Michael| + // | Andy| + // | Justin| + // +-------+ + + // Select everybody, but increment the age by 1 + df.select(col("name"), col("age").plus(1)).show(); + // +-------+---------+ + // | name|(age + 1)| + // +-------+---------+ + // |Michael| null| + // | Andy| 31| + // | Justin| 20| + // +-------+---------+ + + // Select people older than 21 + df.filter(col("age").gt(21)).show(); + // +---+----+ + // |age|name| + // +---+----+ + // | 30|Andy| + // +---+----+ + + // Count people by age + df.groupBy("age").count().show(); + // +----+-----+ + // | age|count| + // +----+-----+ + // | 19| 1| + // |null| 1| + // | 30| 1| + // +----+-----+ + // $example off:untyped_ops$ + + // $example on:run_sql$ + // Register the DataFrame as a SQL temporary view + df.createOrReplaceTempView("people"); + + Dataset<Row> sqlDF = spark.sql("SELECT * FROM people"); + sqlDF.show(); + // +----+-------+ + // | age| name| + // +----+-------+ + // |null|Michael| + // | 30| Andy| + // | 19| Justin| + // +----+-------+ + // $example off:run_sql$ + } + + private static void runDatasetCreationExample(SparkSession spark) { + // $example on:create_ds$ + // Create an instance of a Bean class + Person person = new Person(); + person.setName("Andy"); + person.setAge(32); + + // Encoders are created for Java beans + Encoder<Person> personEncoder = Encoders.bean(Person.class); + Dataset<Person> javaBeanDS = spark.createDataset( + Collections.singletonList(person), + personEncoder + ); + javaBeanDS.show(); + // +---+----+ + // |age|name| + // +---+----+ + // | 32|Andy| + // +---+----+ + + // Encoders for most common types are provided in class Encoders + Encoder<Integer> integerEncoder = Encoders.INT(); + Dataset<Integer> primitiveDS = spark.createDataset(Arrays.asList(1, 2, 3), integerEncoder); + Dataset<Integer> transformedDS = primitiveDS.map(new MapFunction<Integer, Integer>() { + @Override + public Integer call(Integer value) throws Exception { + return value + 1; + } + }, integerEncoder); + transformedDS.collect(); // Returns [2, 3, 4] + + // DataFrames can be converted to a Dataset by providing a class. Mapping based on name + String path = "examples/src/main/resources/people.json"; + Dataset<Person> peopleDS = spark.read().json(path).as(personEncoder); + peopleDS.show(); + // +----+-------+ + // | age| name| + // +----+-------+ + // |null|Michael| + // | 30| Andy| + // | 19| Justin| + // +----+-------+ + // $example off:create_ds$ + } + + private static void runInferSchemaExample(SparkSession spark) { + // $example on:schema_inferring$ + // Create an RDD of Person objects from a text file + JavaRDD<Person> peopleRDD = spark.read() + .textFile("examples/src/main/resources/people.txt") + .javaRDD() + .map(new Function<String, Person>() { + @Override + public Person call(String line) throws Exception { + String[] parts = line.split(","); + Person person = new Person(); + person.setName(parts[0]); + person.setAge(Integer.parseInt(parts[1].trim())); + return person; + } + }); + + // Apply a schema to an RDD of JavaBeans to get a DataFrame + Dataset<Row> peopleDF = spark.createDataFrame(peopleRDD, Person.class); + // Register the DataFrame as a temporary view + peopleDF.createOrReplaceTempView("people"); + + // SQL statements can be run by using the sql methods provided by spark + Dataset<Row> teenagersDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19"); + + // The columns of a row in the result can be accessed by field index + Encoder<String> stringEncoder = Encoders.STRING(); + Dataset<String> teenagerNamesByIndexDF = teenagersDF.map(new MapFunction<Row, String>() { + @Override + public String call(Row row) throws Exception { + return "Name: " + row.getString(0); + } + }, stringEncoder); + teenagerNamesByIndexDF.show(); + // +------------+ + // | value| + // +------------+ + // |Name: Justin| + // +------------+ + + // or by field name + Dataset<String> teenagerNamesByFieldDF = teenagersDF.map(new MapFunction<Row, String>() { + @Override + public String call(Row row) throws Exception { + return "Name: " + row.<String>getAs("name"); + } + }, stringEncoder); + teenagerNamesByFieldDF.show(); + // +------------+ + // | value| + // +------------+ + // |Name: Justin| + // +------------+ + // $example off:schema_inferring$ + } + + private static void runProgrammaticSchemaExample(SparkSession spark) { + // $example on:programmatic_schema$ + // Create an RDD + JavaRDD<String> peopleRDD = spark.sparkContext() + .textFile("examples/src/main/resources/people.txt", 1) + .toJavaRDD(); + + // The schema is encoded in a string + String schemaString = "name age"; + + // Generate the schema based on the string of schema + List<StructField> fields = new ArrayList<>(); + for (String fieldName : schemaString.split(" ")) { + StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true); + fields.add(field); + } + StructType schema = DataTypes.createStructType(fields); + + // Convert records of the RDD (people) to Rows + JavaRDD<Row> rowRDD = peopleRDD.map(new Function<String, Row>() { + @Override + public Row call(String record) throws Exception { + String[] attributes = record.split(","); + return RowFactory.create(attributes[0], attributes[1].trim()); + } + }); + + // Apply the schema to the RDD + Dataset<Row> peopleDataFrame = spark.createDataFrame(rowRDD, schema); + + // Creates a temporary view using the DataFrame + peopleDataFrame.createOrReplaceTempView("people"); + + // SQL can be run over a temporary view created using DataFrames + Dataset<Row> results = spark.sql("SELECT name FROM people"); + + // The results of SQL queries are DataFrames and support all the normal RDD operations + // The columns of a row in the result can be accessed by field index or by field name + Dataset<String> namesDS = results.map(new MapFunction<Row, String>() { + @Override + public String call(Row row) throws Exception { + return "Name: " + row.getString(0); + } + }, Encoders.STRING()); + namesDS.show(); + // +-------------+ + // | value| + // +-------------+ + // |Name: Michael| + // | Name: Andy| + // | Name: Justin| + // +-------------+ + // $example off:programmatic_schema$ + } +} diff --git a/examples/src/main/java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java b/examples/src/main/java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java new file mode 100644 index 0000000000000000000000000000000000000000..4db5e1b0af83d69c89752a78afb0c1bd506e730a --- /dev/null +++ b/examples/src/main/java/org/apache/spark/examples/sql/JavaSqlDataSourceExample.java @@ -0,0 +1,217 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.examples.sql; + +// $example on:schema_merging$ +import java.io.Serializable; +import java.util.ArrayList; +import java.util.List; +// $example off:schema_merging$ + +// $example on:basic_parquet_example$ +import org.apache.spark.api.java.function.MapFunction; +import org.apache.spark.sql.Encoders; +// import org.apache.spark.sql.Encoders; +// $example on:schema_merging$ +// $example on:json_dataset$ +import org.apache.spark.sql.Dataset; +import org.apache.spark.sql.Row; +// $example off:json_dataset$ +// $example off:schema_merging$ +// $example off:basic_parquet_example$ +import org.apache.spark.sql.SparkSession; + +public class JavaSqlDataSourceExample { + + // $example on:schema_merging$ + public static class Square implements Serializable { + private int value; + private int square; + + // Getters and setters... + // $example off:schema_merging$ + public int getValue() { + return value; + } + + public void setValue(int value) { + this.value = value; + } + + public int getSquare() { + return square; + } + + public void setSquare(int square) { + this.square = square; + } + // $example on:schema_merging$ + } + // $example off:schema_merging$ + + // $example on:schema_merging$ + public static class Cube implements Serializable { + private int value; + private int cube; + + // Getters and setters... + // $example off:schema_merging$ + public int getValue() { + return value; + } + + public void setValue(int value) { + this.value = value; + } + + public int getCube() { + return cube; + } + + public void setCube(int cube) { + this.cube = cube; + } + // $example on:schema_merging$ + } + // $example off:schema_merging$ + + public static void main(String[] args) { + SparkSession spark = SparkSession + .builder() + .appName("Java Spark SQL Data Sources Example") + .config("spark.some.config.option", "some-value") + .getOrCreate(); + + runBasicDataSourceExample(spark); + runBasicParquetExample(spark); + runParquetSchemaMergingExample(spark); + runJsonDatasetExample(spark); + + spark.stop(); + } + + private static void runBasicDataSourceExample(SparkSession spark) { + // $example on:generic_load_save_functions$ + Dataset<Row> usersDF = spark.read().load("examples/src/main/resources/users.parquet"); + usersDF.select("name", "favorite_color").write().save("namesAndFavColors.parquet"); + // $example off:generic_load_save_functions$ + // $example on:manual_load_options$ + Dataset<Row> peopleDF = spark.read().format("json").load("examples/src/main/resources/people.json"); + peopleDF.select("name", "age").write().format("parquet").save("namesAndAges.parquet"); + // $example off:manual_load_options$ + // $example on:direct_sql$ + Dataset<Row> sqlDF = spark.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`"); + // $example off:direct_sql$ + } + + private static void runBasicParquetExample(SparkSession spark) { + // $example on:basic_parquet_example$ + Dataset<Row> peopleDF = spark.read().json("examples/src/main/resources/people.json"); + + // DataFrames can be saved as Parquet files, maintaining the schema information + peopleDF.write().parquet("people.parquet"); + + // Read in the Parquet file created above. + // Parquet files are self-describing so the schema is preserved + // The result of loading a parquet file is also a DataFrame + Dataset<Row> parquetFileDF = spark.read().parquet("people.parquet"); + + // Parquet files can also be used to create a temporary view and then used in SQL statements + parquetFileDF.createOrReplaceTempView("parquetFile"); + Dataset<Row> namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19"); + Dataset<String> namesDS = namesDF.map(new MapFunction<Row, String>() { + public String call(Row row) { + return "Name: " + row.getString(0); + } + }, Encoders.STRING()); + namesDS.show(); + // +------------+ + // | value| + // +------------+ + // |Name: Justin| + // +------------+ + // $example off:basic_parquet_example$ + } + + private static void runParquetSchemaMergingExample(SparkSession spark) { + // $example on:schema_merging$ + List<Square> squares = new ArrayList<>(); + for (int value = 1; value <= 5; value++) { + Square square = new Square(); + square.setValue(value); + square.setSquare(value * value); + squares.add(square); + } + + // Create a simple DataFrame, store into a partition directory + Dataset<Row> squaresDF = spark.createDataFrame(squares, Square.class); + squaresDF.write().parquet("data/test_table/key=1"); + + List<Cube> cubes = new ArrayList<>(); + for (int value = 6; value <= 10; value++) { + Cube cube = new Cube(); + cube.setValue(value); + cube.setCube(value * value * value); + cubes.add(cube); + } + + // Create another DataFrame in a new partition directory, + // adding a new column and dropping an existing column + Dataset<Row> cubesDF = spark.createDataFrame(cubes, Cube.class); + cubesDF.write().parquet("data/test_table/key=2"); + + // Read the partitioned table + Dataset<Row> mergedDF = spark.read().option("mergeSchema", true).parquet("data/test_table"); + mergedDF.printSchema(); + + // The final schema consists of all 3 columns in the Parquet files together + // with the partitioning column appeared in the partition directory paths + // root + // |-- value: int (nullable = true) + // |-- square: int (nullable = true) + // |-- cube: int (nullable = true) + // |-- key : int (nullable = true) + // $example off:schema_merging$ + } + + private static void runJsonDatasetExample(SparkSession spark) { + // $example on:json_dataset$ + // A JSON dataset is pointed to by path. + // The path can be either a single text file or a directory storing text files + Dataset<Row> people = spark.read().json("examples/src/main/resources/people.json"); + + // The inferred schema can be visualized using the printSchema() method + people.printSchema(); + // root + // |-- age: long (nullable = true) + // |-- name: string (nullable = true) + + // Creates a temporary view using the DataFrame + people.createOrReplaceTempView("people"); + + // SQL statements can be run by using the sql methods provided by spark + Dataset<Row> namesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19"); + namesDF.show(); + // +------+ + // | name| + // +------+ + // |Justin| + // +------+ + // $example off:json_dataset$ + } + +} diff --git a/examples/src/main/java/org/apache/spark/examples/sql/hive/JavaSparkHiveExample.java b/examples/src/main/java/org/apache/spark/examples/sql/hive/JavaSparkHiveExample.java new file mode 100644 index 0000000000000000000000000000000000000000..493d759a916f8fa3938b7463afb092b687710e38 --- /dev/null +++ b/examples/src/main/java/org/apache/spark/examples/sql/hive/JavaSparkHiveExample.java @@ -0,0 +1,131 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.examples.sql.hive; + +// $example on:spark_hive$ +import java.io.Serializable; +import java.util.ArrayList; +import java.util.List; + +import org.apache.spark.api.java.function.MapFunction; +import org.apache.spark.sql.Dataset; +import org.apache.spark.sql.Encoders; +import org.apache.spark.sql.Row; +import org.apache.spark.sql.SparkSession; +// $example off:spark_hive$ + +public class JavaSparkHiveExample { + + // $example on:spark_hive$ + public static class Record implements Serializable { + private int key; + private String value; + + public int getKey() { + return key; + } + + public void setKey(int key) { + this.key = key; + } + + public String getValue() { + return value; + } + + public void setValue(String value) { + this.value = value; + } + } + // $example off:spark_hive$ + + public static void main(String[] args) { + // $example on:spark_hive$ + // warehouseLocation points to the default location for managed databases and tables + String warehouseLocation = "file:" + System.getProperty("user.dir") + "spark-warehouse"; + SparkSession spark = SparkSession + .builder() + .appName("Java Spark Hive Example") + .config("spark.sql.warehouse.dir", warehouseLocation) + .enableHiveSupport() + .getOrCreate(); + + spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)"); + spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src"); + + // Queries are expressed in HiveQL + spark.sql("SELECT * FROM src").show(); + // +---+-------+ + // |key| value| + // +---+-------+ + // |238|val_238| + // | 86| val_86| + // |311|val_311| + // ... + + // Aggregation queries are also supported. + spark.sql("SELECT COUNT(*) FROM src").show(); + // +--------+ + // |count(1)| + // +--------+ + // | 500 | + // +--------+ + + // The results of SQL queries are themselves DataFrames and support all normal functions. + Dataset<Row> sqlDF = spark.sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key"); + + // The items in DaraFrames are of type Row, which lets you to access each column by ordinal. + Dataset<String> stringsDS = sqlDF.map(new MapFunction<Row, String>() { + @Override + public String call(Row row) throws Exception { + return "Key: " + row.get(0) + ", Value: " + row.get(1); + } + }, Encoders.STRING()); + stringsDS.show(); + // +--------------------+ + // | value| + // +--------------------+ + // |Key: 0, Value: val_0| + // |Key: 0, Value: val_0| + // |Key: 0, Value: val_0| + // ... + + // You can also use DataFrames to create temporary views within a HiveContext. + List<Record> records = new ArrayList<>(); + for (int key = 1; key < 100; key++) { + Record record = new Record(); + record.setKey(key); + record.setValue("val_" + key); + records.add(record); + } + Dataset<Row> recordsDF = spark.createDataFrame(records, Record.class); + recordsDF.createOrReplaceTempView("records"); + + // Queries can then join DataFrames data with data stored in Hive. + spark.sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show(); + // +---+------+---+------+ + // |key| value|key| value| + // +---+------+---+------+ + // | 2| val_2| 2| val_2| + // | 2| val_2| 2| val_2| + // | 4| val_4| 4| val_4| + // ... + // $example off:spark_hive$ + + spark.stop(); + } +} diff --git a/examples/src/main/scala/org/apache/spark/examples/sql/SparkSqlExample.scala b/examples/src/main/scala/org/apache/spark/examples/sql/SparkSqlExample.scala new file mode 100644 index 0000000000000000000000000000000000000000..cf3f864267197f2fd5f75c17e0f417433853bd5f --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/sql/SparkSqlExample.scala @@ -0,0 +1,254 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.examples.sql + +// $example on:schema_inferring$ +import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder +import org.apache.spark.sql.Encoder +// $example off:schema_inferring$ +import org.apache.spark.sql.Row +// $example on:init_session$ +import org.apache.spark.sql.SparkSession +// $example off:init_session$ +// $example on:programmatic_schema$ +import org.apache.spark.sql.types.StringType +import org.apache.spark.sql.types.StructField +import org.apache.spark.sql.types.StructType +// $example off:programmatic_schema$ + +object SparkSqlExample { + + // $example on:create_ds$ + // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit, + // you can use custom classes that implement the Product interface + case class Person(name: String, age: Long) + // $example off:create_ds$ + + def main(args: Array[String]) { + // $example on:init_session$ + val spark = SparkSession + .builder() + .appName("Spark SQL Example") + .config("spark.some.config.option", "some-value") + .getOrCreate() + + // For implicit conversions like converting RDDs to DataFrames + import spark.implicits._ + // $example off:init_session$ + + runBasicDataFrameExample(spark) + runDatasetCreationExample(spark) + runInferSchemaExample(spark) + runProgrammaticSchemaExample(spark) + + spark.stop() + } + + private def runBasicDataFrameExample(spark: SparkSession): Unit = { + // $example on:create_df$ + val df = spark.read.json("examples/src/main/resources/people.json") + + // Displays the content of the DataFrame to stdout + df.show() + // +----+-------+ + // | age| name| + // +----+-------+ + // |null|Michael| + // | 30| Andy| + // | 19| Justin| + // +----+-------+ + // $example off:create_df$ + + // $example on:untyped_ops$ + // This import is needed to use the $-notation + import spark.implicits._ + // Print the schema in a tree format + df.printSchema() + // root + // |-- age: long (nullable = true) + // |-- name: string (nullable = true) + + // Select only the "name" column + df.select("name").show() + // +-------+ + // | name| + // +-------+ + // |Michael| + // | Andy| + // | Justin| + // +-------+ + + // Select everybody, but increment the age by 1 + df.select($"name", $"age" + 1).show() + // +-------+---------+ + // | name|(age + 1)| + // +-------+---------+ + // |Michael| null| + // | Andy| 31| + // | Justin| 20| + // +-------+---------+ + + // Select people older than 21 + df.filter($"age" > 21).show() + // +---+----+ + // |age|name| + // +---+----+ + // | 30|Andy| + // +---+----+ + + // Count people by age + df.groupBy("age").count().show() + // +----+-----+ + // | age|count| + // +----+-----+ + // | 19| 1| + // |null| 1| + // | 30| 1| + // +----+-----+ + // $example off:untyped_ops$ + + // $example on:run_sql$ + // Register the DataFrame as a SQL temporary view + df.createOrReplaceTempView("people") + + val sqlDF = spark.sql("SELECT * FROM people") + sqlDF.show() + // +----+-------+ + // | age| name| + // +----+-------+ + // |null|Michael| + // | 30| Andy| + // | 19| Justin| + // +----+-------+ + // $example off:run_sql$ + } + + private def runDatasetCreationExample(spark: SparkSession): Unit = { + import spark.implicits._ + // $example on:create_ds$ + // Encoders are created for case classes + val caseClassDS = Seq(Person("Andy", 32)).toDS() + caseClassDS.show() + // +----+---+ + // |name|age| + // +----+---+ + // |Andy| 32| + // +----+---+ + + // Encoders for most common types are automatically provided by importing spark.implicits._ + val primitiveDS = Seq(1, 2, 3).toDS() + primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4) + + // DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name + val path = "examples/src/main/resources/people.json" + val peopleDS = spark.read.json(path).as[Person] + peopleDS.show() + // +----+-------+ + // | age| name| + // +----+-------+ + // |null|Michael| + // | 30| Andy| + // | 19| Justin| + // +----+-------+ + // $example off:create_ds$ + } + + private def runInferSchemaExample(spark: SparkSession): Unit = { + // $example on:schema_inferring$ + // For implicit conversions from RDDs to DataFrames + import spark.implicits._ + + // Create an RDD of Person objects from a text file, convert it to a Dataframe + val peopleDF = spark.sparkContext + .textFile("examples/src/main/resources/people.txt") + .map(_.split(",")) + .map(attributes => Person(attributes(0), attributes(1).trim.toInt)) + .toDF() + // Register the DataFrame as a temporary view + peopleDF.createOrReplaceTempView("people") + + // SQL statements can be run by using the sql methods provided by Spark + val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19") + + // The columns of a row in the result can be accessed by field index + teenagersDF.map(teenager => "Name: " + teenager(0)).show() + // +------------+ + // | value| + // +------------+ + // |Name: Justin| + // +------------+ + + // or by field name + teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show() + // +------------+ + // | value| + // +------------+ + // |Name: Justin| + // +------------+ + + // No pre-defined encoders for Dataset[Map[K,V]], define explicitly + implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]] + // Primitive types and case classes can be also defined as + implicit val stringIntMapEncoder: Encoder[Map[String, Int]] = ExpressionEncoder() + + // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T] + teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect() + // Array(Map("name" -> "Justin", "age" -> 19)) + // $example off:schema_inferring$ + } + + private def runProgrammaticSchemaExample(spark: SparkSession): Unit = { + import spark.implicits._ + // $example on:programmatic_schema$ + // Create an RDD + val peopleRDD = spark.sparkContext.textFile("examples/src/main/resources/people.txt") + + // The schema is encoded in a string + val schemaString = "name age" + + // Generate the schema based on the string of schema + val fields = schemaString.split(" ") + .map(fieldName => StructField(fieldName, StringType, nullable = true)) + val schema = StructType(fields) + + // Convert records of the RDD (people) to Rows + val rowRDD = peopleRDD + .map(_.split(",")) + .map(attributes => Row(attributes(0), attributes(1).trim)) + + // Apply the schema to the RDD + val peopleDF = spark.createDataFrame(rowRDD, schema) + + // Creates a temporary view using the DataFrame + peopleDF.createOrReplaceTempView("people") + + // SQL can be run over a temporary view created using DataFrames + val results = spark.sql("SELECT name FROM people") + + // The results of SQL queries are DataFrames and support all the normal RDD operations + // The columns of a row in the result can be accessed by field index or by field name + results.map(attributes => "Name: " + attributes(0)).show() + // +-------------+ + // | value| + // +-------------+ + // |Name: Michael| + // | Name: Andy| + // | Name: Justin| + // +-------------+ + // $example off:programmatic_schema$ + } +} diff --git a/examples/src/main/scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala b/examples/src/main/scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala new file mode 100644 index 0000000000000000000000000000000000000000..61dea6ad2ca9046714c90eaf5864fe1c3a72bd95 --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/sql/SqlDataSourceExample.scala @@ -0,0 +1,148 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.examples.sql + +import org.apache.spark.sql.SparkSession + +object SqlDataSourceExample { + + case class Person(name: String, age: Long) + + def main(args: Array[String]) { + val spark = SparkSession + .builder() + .appName("Spark SQL Data Soures Example") + .config("spark.some.config.option", "some-value") + .getOrCreate() + + runBasicDataSourceExample(spark) + runBasicParquetExample(spark) + runParquetSchemaMergingExample(spark) + runJsonDatasetExample(spark) + + spark.stop() + } + + private def runBasicDataSourceExample(spark: SparkSession): Unit = { + // $example on:generic_load_save_functions$ + val usersDF = spark.read.load("examples/src/main/resources/users.parquet") + usersDF.select("name", "favorite_color").write.save("namesAndFavColors.parquet") + // $example off:generic_load_save_functions$ + // $example on:manual_load_options$ + val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json") + peopleDF.select("name", "age").write.format("parquet").save("namesAndAges.parquet") + // $example off:manual_load_options$ + // $example on:direct_sql$ + val sqlDF = spark.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`") + // $example off:direct_sql$ + } + + private def runBasicParquetExample(spark: SparkSession): Unit = { + // $example on:basic_parquet_example$ + // Encoders for most common types are automatically provided by importing spark.implicits._ + import spark.implicits._ + + val peopleDF = spark.read.json("examples/src/main/resources/people.json") + + // DataFrames can be saved as Parquet files, maintaining the schema information + peopleDF.write.parquet("people.parquet") + + // Read in the parquet file created above + // Parquet files are self-describing so the schema is preserved + // The result of loading a Parquet file is also a DataFrame + val parquetFileDF = spark.read.parquet("people.parquet") + + // Parquet files can also be used to create a temporary view and then used in SQL statements + parquetFileDF.createOrReplaceTempView("parquetFile") + val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19") + namesDF.map(attributes => "Name: " + attributes(0)).show() + // +------------+ + // | value| + // +------------+ + // |Name: Justin| + // +------------+ + // $example off:basic_parquet_example$ + } + + private def runParquetSchemaMergingExample(spark: SparkSession): Unit = { + // $example on:schema_merging$ + // This is used to implicitly convert an RDD to a DataFrame. + import spark.implicits._ + + // Create a simple DataFrame, store into a partition directory + val squaresDF = spark.sparkContext.makeRDD(1 to 5).map(i => (i, i * i)).toDF("value", "square") + squaresDF.write.parquet("data/test_table/key=1") + + // Create another DataFrame in a new partition directory, + // adding a new column and dropping an existing column + val cubesDF = spark.sparkContext.makeRDD(6 to 10).map(i => (i, i * i * i)).toDF("value", "cube") + cubesDF.write.parquet("data/test_table/key=2") + + // Read the partitioned table + val mergedDF = spark.read.option("mergeSchema", "true").parquet("data/test_table") + mergedDF.printSchema() + + // The final schema consists of all 3 columns in the Parquet files together + // with the partitioning column appeared in the partition directory paths + // root + // |-- value: int (nullable = true) + // |-- square: int (nullable = true) + // |-- cube: int (nullable = true) + // |-- key : int (nullable = true) + // $example off:schema_merging$ + } + + private def runJsonDatasetExample(spark: SparkSession): Unit = { + // $example on:json_dataset$ + // A JSON dataset is pointed to by path. + // The path can be either a single text file or a directory storing text files + val path = "examples/src/main/resources/people.json" + val peopleDF = spark.read.json(path) + + // The inferred schema can be visualized using the printSchema() method + peopleDF.printSchema() + // root + // |-- age: long (nullable = true) + // |-- name: string (nullable = true) + + // Creates a temporary view using the DataFrame + peopleDF.createOrReplaceTempView("people") + + // SQL statements can be run by using the sql methods provided by spark + val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19") + teenagerNamesDF.show() + // +------+ + // | name| + // +------+ + // |Justin| + // +------+ + + // Alternatively, a DataFrame can be created for a JSON dataset represented by + // an RDD[String] storing one JSON object per string + val otherPeopleRDD = spark.sparkContext.makeRDD( + """{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil) + val otherPeople = spark.read.json(otherPeopleRDD) + otherPeople.show() + // +---------------+----+ + // | address|name| + // +---------------+----+ + // |[Columbus,Ohio]| Yin| + // +---------------+----+ + // $example off:json_dataset$ + } + +} diff --git a/examples/src/main/scala/org/apache/spark/examples/sql/hive/HiveFromSpark.scala b/examples/src/main/scala/org/apache/spark/examples/sql/hive/HiveFromSpark.scala deleted file mode 100644 index 2343f98c8d07cd18f764d95e90a8a1ca165d4cf7..0000000000000000000000000000000000000000 --- a/examples/src/main/scala/org/apache/spark/examples/sql/hive/HiveFromSpark.scala +++ /dev/null @@ -1,83 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -// scalastyle:off println -package org.apache.spark.examples.sql.hive - -import java.io.File - -import com.google.common.io.{ByteStreams, Files} - -import org.apache.spark.sql._ - -object HiveFromSpark { - case class Record(key: Int, value: String) - - // Copy kv1.txt file from classpath to temporary directory - val kv1Stream = HiveFromSpark.getClass.getResourceAsStream("/kv1.txt") - val kv1File = File.createTempFile("kv1", "txt") - kv1File.deleteOnExit() - ByteStreams.copy(kv1Stream, Files.newOutputStreamSupplier(kv1File)) - - def main(args: Array[String]) { - // When working with Hive, one must instantiate `SparkSession` with Hive support, including - // connectivity to a persistent Hive metastore, support for Hive serdes, and Hive user-defined - // functions. Users who do not have an existing Hive deployment can still enable Hive support. - // When not configured by the hive-site.xml, the context automatically creates `metastore_db` - // in the current directory and creates a directory configured by `spark.sql.warehouse.dir`, - // which defaults to the directory `spark-warehouse` in the current directory that the spark - // application is started. - val spark = SparkSession.builder - .appName("HiveFromSpark") - .enableHiveSupport() - .getOrCreate() - - import spark.implicits._ - import spark.sql - - sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") - sql(s"LOAD DATA LOCAL INPATH '${kv1File.getAbsolutePath}' INTO TABLE src") - - // Queries are expressed in HiveQL - println("Result of 'SELECT *': ") - sql("SELECT * FROM src").collect().foreach(println) - - // Aggregation queries are also supported. - val count = sql("SELECT COUNT(*) FROM src").collect().head.getLong(0) - println(s"COUNT(*): $count") - - // The results of SQL queries are themselves RDDs and support all normal RDD functions. The - // items in the RDD are of type Row, which allows you to access each column by ordinal. - val rddFromSql = sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key") - - println("Result of RDD.map:") - val rddAsStrings = rddFromSql.rdd.map { - case Row(key: Int, value: String) => s"Key: $key, Value: $value" - } - - // You can also use RDDs to create temporary views within a HiveContext. - val rdd = spark.sparkContext.parallelize((1 to 100).map(i => Record(i, s"val_$i"))) - rdd.toDF().createOrReplaceTempView("records") - - // Queries can then join RDD data with data stored in Hive. - println("Result of SELECT *:") - sql("SELECT * FROM records r JOIN src s ON r.key = s.key").collect().foreach(println) - - spark.stop() - } -} -// scalastyle:on println diff --git a/examples/src/main/scala/org/apache/spark/examples/sql/hive/SparkHiveExample.scala b/examples/src/main/scala/org/apache/spark/examples/sql/hive/SparkHiveExample.scala new file mode 100644 index 0000000000000000000000000000000000000000..e897c2d066cfbe97fd6aba33ec80f61199276527 --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/sql/hive/SparkHiveExample.scala @@ -0,0 +1,107 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.examples.sql.hive + +// $example on:spark_hive$ +import org.apache.spark.sql.Row +import org.apache.spark.sql.SparkSession +// $example off:spark_hive$ + +object SparkHiveExample { + + // $example on:spark_hive$ + case class Record(key: Int, value: String) + // $example off:spark_hive$ + + def main(args: Array[String]) { + // When working with Hive, one must instantiate `SparkSession` with Hive support, including + // connectivity to a persistent Hive metastore, support for Hive serdes, and Hive user-defined + // functions. Users who do not have an existing Hive deployment can still enable Hive support. + // When not configured by the hive-site.xml, the context automatically creates `metastore_db` + // in the current directory and creates a directory configured by `spark.sql.warehouse.dir`, + // which defaults to the directory `spark-warehouse` in the current directory that the spark + // application is started. + + // $example on:spark_hive$ + // warehouseLocation points to the default location for managed databases and tables + val warehouseLocation = "file:${system:user.dir}/spark-warehouse" + + val spark = SparkSession + .builder() + .appName("Spark Hive Example") + .config("spark.sql.warehouse.dir", warehouseLocation) + .enableHiveSupport() + .getOrCreate() + + import spark.implicits._ + import spark.sql + + sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)") + sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src") + + // Queries are expressed in HiveQL + sql("SELECT * FROM src").show() + // +---+-------+ + // |key| value| + // +---+-------+ + // |238|val_238| + // | 86| val_86| + // |311|val_311| + // ... + + // Aggregation queries are also supported. + sql("SELECT COUNT(*) FROM src").show() + // +--------+ + // |count(1)| + // +--------+ + // | 500 | + // +--------+ + + // The results of SQL queries are themselves DataFrames and support all normal functions. + val sqlDF = sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key") + + // The items in DaraFrames are of type Row, which allows you to access each column by ordinal. + val stringsDS = sqlDF.map { + case Row(key: Int, value: String) => s"Key: $key, Value: $value" + } + stringsDS.show() + // +--------------------+ + // | value| + // +--------------------+ + // |Key: 0, Value: val_0| + // |Key: 0, Value: val_0| + // |Key: 0, Value: val_0| + // ... + + // You can also use DataFrames to create temporary views within a HiveContext. + val recordsDF = spark.createDataFrame((1 to 100).map(i => Record(i, s"val_$i"))) + recordsDF.createOrReplaceTempView("records") + + // Queries can then join DataFrame data with data stored in Hive. + sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show() + // +---+------+---+------+ + // |key| value|key| value| + // +---+------+---+------+ + // | 2| val_2| 2| val_2| + // | 2| val_2| 2| val_2| + // | 4| val_4| 4| val_4| + // ... + // $example off:spark_hive$ + + spark.stop() + } +}