From 6a72a36940311fcb3429bd34c8818bc7d513115c Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin <vanzin@cloudera.com> Date: Wed, 3 Sep 2014 08:22:50 -0500 Subject: [PATCH] [SPARK-3187] [yarn] Cleanup allocator code. Move all shared logic to the base YarnAllocator class, and leave the version-specific logic in the version-specific module. Author: Marcelo Vanzin <vanzin@cloudera.com> Closes #2169 from vanzin/SPARK-3187 and squashes the following commits: 46c2826 [Marcelo Vanzin] Hide the privates. 4dc9c83 [Marcelo Vanzin] Actually release containers. 8b1a077 [Marcelo Vanzin] Changes to the Yarn alpha allocator. f3f5f1d [Marcelo Vanzin] [SPARK-3187] [yarn] Cleanup allocator code. --- .../deploy/yarn/YarnAllocationHandler.scala | 462 +++--------------- .../spark/deploy/yarn/YarnAllocator.scala | 425 +++++++++++++++- .../deploy/yarn/YarnAllocationHandler.scala | 402 +-------------- 3 files changed, 495 insertions(+), 794 deletions(-) diff --git a/yarn/alpha/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala b/yarn/alpha/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala index 629cd13f67..9f9e16c064 100644 --- a/yarn/alpha/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala +++ b/yarn/alpha/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala @@ -17,35 +17,21 @@ package org.apache.spark.deploy.yarn -import java.util.concurrent.{CopyOnWriteArrayList, ConcurrentHashMap} +import java.util.concurrent.CopyOnWriteArrayList import java.util.concurrent.atomic.AtomicInteger import scala.collection.JavaConversions._ -import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet} +import scala.collection.mutable.{ArrayBuffer, HashMap} -import org.apache.spark.{Logging, SparkConf, SparkEnv} -import org.apache.spark.scheduler.{SplitInfo, TaskSchedulerImpl} -import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend -import org.apache.spark.util.Utils +import org.apache.spark.SparkConf +import org.apache.spark.scheduler.SplitInfo import org.apache.hadoop.conf.Configuration import org.apache.hadoop.yarn.api.AMRMProtocol -import org.apache.hadoop.yarn.api.records.{AMResponse, ApplicationAttemptId} -import org.apache.hadoop.yarn.api.records.{Container, ContainerId} -import org.apache.hadoop.yarn.api.records.{Priority, Resource, ResourceRequest} -import org.apache.hadoop.yarn.api.protocolrecords.{AllocateRequest, AllocateResponse} +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.api.protocolrecords.AllocateRequest import org.apache.hadoop.yarn.util.Records -// TODO: -// Too many params. -// Needs to be mt-safe -// Need to refactor this to make it 'cleaner' ... right now, all computation is reactive - should -// make it more proactive and decoupled. - -// Note that right now, we assume all node asks as uniform in terms of capabilities and priority -// Refer to http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/ for -// more info on how we are requesting for containers. - /** * Acquires resources for executors from a ResourceManager and launches executors in new containers. */ @@ -56,357 +42,20 @@ private[yarn] class YarnAllocationHandler( appAttemptId: ApplicationAttemptId, args: ApplicationMasterArguments, preferredNodes: collection.Map[String, collection.Set[SplitInfo]]) - extends YarnAllocator with Logging { - - // These three are locked on allocatedHostToContainersMap. Complementary data structures - // allocatedHostToContainersMap : containers which are running : host, Set<containerid> - // allocatedContainerToHostMap: container to host mapping. - private val allocatedHostToContainersMap = - new HashMap[String, collection.mutable.Set[ContainerId]]() - - private val allocatedContainerToHostMap = new HashMap[ContainerId, String]() - - // allocatedRackCount is populated ONLY if allocation happens (or decremented if this is an - // allocated node) - // As with the two data structures above, tightly coupled with them, and to be locked on - // allocatedHostToContainersMap - private val allocatedRackCount = new HashMap[String, Int]() - - // Containers which have been released. - private val releasedContainerList = new CopyOnWriteArrayList[ContainerId]() - // Containers to be released in next request to RM - private val pendingReleaseContainers = new ConcurrentHashMap[ContainerId, Boolean] - - // Additional memory overhead - in mb. - private def memoryOverhead: Int = sparkConf.getInt("spark.yarn.executor.memoryOverhead", - YarnSparkHadoopUtil.DEFAULT_MEMORY_OVERHEAD) - - private val numExecutorsRunning = new AtomicInteger() - // Used to generate a unique id per executor - private val executorIdCounter = new AtomicInteger() - private val lastResponseId = new AtomicInteger() - private val numExecutorsFailed = new AtomicInteger() - - private val maxExecutors = args.numExecutors - private val executorMemory = args.executorMemory - private val executorCores = args.executorCores - private val (preferredHostToCount, preferredRackToCount) = - generateNodeToWeight(conf, preferredNodes) - - def getNumExecutorsRunning: Int = numExecutorsRunning.intValue - - def getNumExecutorsFailed: Int = numExecutorsFailed.intValue - - def isResourceConstraintSatisfied(container: Container): Boolean = { - container.getResource.getMemory >= (executorMemory + memoryOverhead) - } - - override def allocateResources() = { - // We need to send the request only once from what I understand ... but for now, not modifying - // this much. - val executorsToRequest = Math.max(maxExecutors - numExecutorsRunning.get(), 0) - - // Keep polling the Resource Manager for containers - val amResp = allocateExecutorResources(executorsToRequest).getAMResponse - - val _allocatedContainers = amResp.getAllocatedContainers() - - if (_allocatedContainers.size > 0) { - logDebug(""" - Allocated containers: %d - Current executor count: %d - Containers released: %s - Containers to be released: %s - Cluster resources: %s - """.format( - _allocatedContainers.size, - numExecutorsRunning.get(), - releasedContainerList, - pendingReleaseContainers, - amResp.getAvailableResources)) - - val hostToContainers = new HashMap[String, ArrayBuffer[Container]]() - - // Ignore if not satisfying constraints { - for (container <- _allocatedContainers) { - if (isResourceConstraintSatisfied(container)) { - // allocatedContainers += container - - val host = container.getNodeId.getHost - val containers = hostToContainers.getOrElseUpdate(host, new ArrayBuffer[Container]()) - - containers += container - } else { - // Add all ignored containers to released list - releasedContainerList.add(container.getId()) - } - } - - // Find the appropriate containers to use. Slightly non trivial groupBy ... - val dataLocalContainers = new HashMap[String, ArrayBuffer[Container]]() - val rackLocalContainers = new HashMap[String, ArrayBuffer[Container]]() - val offRackContainers = new HashMap[String, ArrayBuffer[Container]]() - - for (candidateHost <- hostToContainers.keySet) - { - val maxExpectedHostCount = preferredHostToCount.getOrElse(candidateHost, 0) - val requiredHostCount = maxExpectedHostCount - allocatedContainersOnHost(candidateHost) - - var remainingContainers = hostToContainers.get(candidateHost).getOrElse(null) - assert(remainingContainers != null) - - if (requiredHostCount >= remainingContainers.size){ - // Since we got <= required containers, add all to dataLocalContainers - dataLocalContainers.put(candidateHost, remainingContainers) - // all consumed - remainingContainers = null - } else if (requiredHostCount > 0) { - // Container list has more containers than we need for data locality. - // Split into two : data local container count of (remainingContainers.size - - // requiredHostCount) and rest as remainingContainer - val (dataLocal, remaining) = remainingContainers.splitAt( - remainingContainers.size - requiredHostCount) - dataLocalContainers.put(candidateHost, dataLocal) - // remainingContainers = remaining - - // yarn has nasty habit of allocating a tonne of containers on a host - discourage this : - // add remaining to release list. If we have insufficient containers, next allocation - // cycle will reallocate (but wont treat it as data local) - for (container <- remaining) releasedContainerList.add(container.getId()) - remainingContainers = null - } - - // Now rack local - if (remainingContainers != null){ - val rack = YarnSparkHadoopUtil.lookupRack(conf, candidateHost) - - if (rack != null){ - val maxExpectedRackCount = preferredRackToCount.getOrElse(rack, 0) - val requiredRackCount = maxExpectedRackCount - allocatedContainersOnRack(rack) - - rackLocalContainers.get(rack).getOrElse(List()).size - - - if (requiredRackCount >= remainingContainers.size){ - // Add all to dataLocalContainers - dataLocalContainers.put(rack, remainingContainers) - // All consumed - remainingContainers = null - } else if (requiredRackCount > 0) { - // container list has more containers than we need for data locality. - // Split into two : data local container count of (remainingContainers.size - - // requiredRackCount) and rest as remainingContainer - val (rackLocal, remaining) = remainingContainers.splitAt( - remainingContainers.size - requiredRackCount) - val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, - new ArrayBuffer[Container]()) - - existingRackLocal ++= rackLocal - remainingContainers = remaining - } - } - } - - // If still not consumed, then it is off rack host - add to that list. - if (remainingContainers != null){ - offRackContainers.put(candidateHost, remainingContainers) - } - } - - // Now that we have split the containers into various groups, go through them in order : - // first host local, then rack local and then off rack (everything else). - // Note that the list we create below tries to ensure that not all containers end up within a - // host if there are sufficiently large number of hosts/containers. - - val allocatedContainers = new ArrayBuffer[Container](_allocatedContainers.size) - allocatedContainers ++= TaskSchedulerImpl.prioritizeContainers(dataLocalContainers) - allocatedContainers ++= TaskSchedulerImpl.prioritizeContainers(rackLocalContainers) - allocatedContainers ++= TaskSchedulerImpl.prioritizeContainers(offRackContainers) - - // Run each of the allocated containers - for (container <- allocatedContainers) { - val numExecutorsRunningNow = numExecutorsRunning.incrementAndGet() - val executorHostname = container.getNodeId.getHost - val containerId = container.getId - - assert( container.getResource.getMemory >= - (executorMemory + memoryOverhead)) - - if (numExecutorsRunningNow > maxExecutors) { - logInfo("""Ignoring container %s at host %s, since we already have the required number of - containers for it.""".format(containerId, executorHostname)) - releasedContainerList.add(containerId) - // reset counter back to old value. - numExecutorsRunning.decrementAndGet() - } else { - // Deallocate + allocate can result in reusing id's wrongly - so use a different counter - // (executorIdCounter) - val executorId = executorIdCounter.incrementAndGet().toString - val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( - SparkEnv.driverActorSystemName, - sparkConf.get("spark.driver.host"), - sparkConf.get("spark.driver.port"), - CoarseGrainedSchedulerBackend.ACTOR_NAME) - - logInfo("launching container on " + containerId + " host " + executorHostname) - // Just to be safe, simply remove it from pendingReleaseContainers. - // Should not be there, but .. - pendingReleaseContainers.remove(containerId) - - val rack = YarnSparkHadoopUtil.lookupRack(conf, executorHostname) - allocatedHostToContainersMap.synchronized { - val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname, - new HashSet[ContainerId]()) - - containerSet += containerId - allocatedContainerToHostMap.put(containerId, executorHostname) - if (rack != null) { - allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1) - } - } - - new Thread( - new ExecutorRunnable(container, conf, sparkConf, driverUrl, executorId, - executorHostname, executorMemory, executorCores) - ).start() - } - } - logDebug(""" - Finished processing %d containers. - Current number of executors running: %d, - releasedContainerList: %s, - pendingReleaseContainers: %s - """.format( - allocatedContainers.size, - numExecutorsRunning.get(), - releasedContainerList, - pendingReleaseContainers)) - } - - - val completedContainers = amResp.getCompletedContainersStatuses() - if (completedContainers.size > 0){ - logDebug("Completed %d containers, to-be-released: %s".format( - completedContainers.size, releasedContainerList)) - for (completedContainer <- completedContainers){ - val containerId = completedContainer.getContainerId - - // Was this released by us ? If yes, then simply remove from containerSet and move on. - if (pendingReleaseContainers.containsKey(containerId)) { - pendingReleaseContainers.remove(containerId) - } else { - // Simply decrement count - next iteration of ReporterThread will take care of allocating. - numExecutorsRunning.decrementAndGet() - logInfo("Completed container %s (state: %s, exit status: %s)".format( - containerId, - completedContainer.getState, - completedContainer.getExitStatus())) - // Hadoop 2.2.X added a ContainerExitStatus we should switch to use - // there are some exit status' we shouldn't necessarily count against us, but for - // now I think its ok as none of the containers are expected to exit - if (completedContainer.getExitStatus() != 0) { - logInfo("Container marked as failed: " + containerId) - numExecutorsFailed.incrementAndGet() - } - } - - allocatedHostToContainersMap.synchronized { - if (allocatedContainerToHostMap.containsKey(containerId)) { - val host = allocatedContainerToHostMap.get(containerId).getOrElse(null) - assert (host != null) - - val containerSet = allocatedHostToContainersMap.get(host).getOrElse(null) - assert (containerSet != null) - - containerSet -= containerId - if (containerSet.isEmpty) { - allocatedHostToContainersMap.remove(host) - } else { - allocatedHostToContainersMap.update(host, containerSet) - } - - allocatedContainerToHostMap -= containerId - - // Doing this within locked context, sigh ... move to outside ? - val rack = YarnSparkHadoopUtil.lookupRack(conf, host) - if (rack != null) { - val rackCount = allocatedRackCount.getOrElse(rack, 0) - 1 - if (rackCount > 0) { - allocatedRackCount.put(rack, rackCount) - } else { - allocatedRackCount.remove(rack) - } - } - } - } - } - logDebug(""" - Finished processing %d completed containers. - Current number of executors running: %d, - releasedContainerList: %s, - pendingReleaseContainers: %s - """.format( - completedContainers.size, - numExecutorsRunning.get(), - releasedContainerList, - pendingReleaseContainers)) - } - } - - def createRackResourceRequests(hostContainers: List[ResourceRequest]): List[ResourceRequest] = { - // First generate modified racks and new set of hosts under it : then issue requests - val rackToCounts = new HashMap[String, Int]() - - // Within this lock - used to read/write to the rack related maps too. - for (container <- hostContainers) { - val candidateHost = container.getHostName - val candidateNumContainers = container.getNumContainers - assert(YarnSparkHadoopUtil.ANY_HOST != candidateHost) - - val rack = YarnSparkHadoopUtil.lookupRack(conf, candidateHost) - if (rack != null) { - var count = rackToCounts.getOrElse(rack, 0) - count += candidateNumContainers - rackToCounts.put(rack, count) - } - } - - val requestedContainers: ArrayBuffer[ResourceRequest] = - new ArrayBuffer[ResourceRequest](rackToCounts.size) - for ((rack, count) <- rackToCounts){ - requestedContainers += - createResourceRequest(AllocationType.RACK, rack, count, - YarnSparkHadoopUtil.RM_REQUEST_PRIORITY) - } - - requestedContainers.toList - } - - def allocatedContainersOnHost(host: String): Int = { - var retval = 0 - allocatedHostToContainersMap.synchronized { - retval = allocatedHostToContainersMap.getOrElse(host, Set()).size - } - retval - } + extends YarnAllocator(conf, sparkConf, args, preferredNodes) { - def allocatedContainersOnRack(rack: String): Int = { - var retval = 0 - allocatedHostToContainersMap.synchronized { - retval = allocatedRackCount.getOrElse(rack, 0) - } - retval - } - - private def allocateExecutorResources(numExecutors: Int): AllocateResponse = { + private val lastResponseId = new AtomicInteger() + private val releaseList: CopyOnWriteArrayList[ContainerId] = new CopyOnWriteArrayList() + override protected def allocateContainers(count: Int): YarnAllocateResponse = { var resourceRequests: List[ResourceRequest] = null - // default. - if (numExecutors <= 0 || preferredHostToCount.isEmpty) { - logDebug("numExecutors: " + numExecutors + ", host preferences: " + + // default. + if (count <= 0 || preferredHostToCount.isEmpty) { + logDebug("numExecutors: " + count + ", host preferences: " + preferredHostToCount.isEmpty) resourceRequests = List(createResourceRequest( - AllocationType.ANY, null, numExecutors, YarnSparkHadoopUtil.RM_REQUEST_PRIORITY)) + AllocationType.ANY, null, count, YarnSparkHadoopUtil.RM_REQUEST_PRIORITY)) } else { // request for all hosts in preferred nodes and for numExecutors - // candidates.size, request by default allocation policy. @@ -429,7 +78,7 @@ private[yarn] class YarnAllocationHandler( val anyContainerRequests: ResourceRequest = createResourceRequest( AllocationType.ANY, resource = null, - numExecutors, + count, YarnSparkHadoopUtil.RM_REQUEST_PRIORITY) val containerRequests: ArrayBuffer[ResourceRequest] = new ArrayBuffer[ResourceRequest]( @@ -451,8 +100,8 @@ private[yarn] class YarnAllocationHandler( val releasedContainerList = createReleasedContainerList() req.addAllReleases(releasedContainerList) - if (numExecutors > 0) { - logInfo("Allocating %d executor containers with %d of memory each.".format(numExecutors, + if (count > 0) { + logInfo("Allocating %d executor containers with %d of memory each.".format(count, executorMemory + memoryOverhead)) } else { logDebug("Empty allocation req .. release : " + releasedContainerList) @@ -466,9 +115,42 @@ private[yarn] class YarnAllocationHandler( request.getPriority, request.getCapability)) } - resourceManager.allocate(req) + new AlphaAllocateResponse(resourceManager.allocate(req).getAMResponse()) } + override protected def releaseContainer(container: Container) = { + releaseList.add(container.getId()) + } + + private def createRackResourceRequests(hostContainers: List[ResourceRequest]): + List[ResourceRequest] = { + // First generate modified racks and new set of hosts under it : then issue requests + val rackToCounts = new HashMap[String, Int]() + + // Within this lock - used to read/write to the rack related maps too. + for (container <- hostContainers) { + val candidateHost = container.getHostName + val candidateNumContainers = container.getNumContainers + assert(YarnSparkHadoopUtil.ANY_HOST != candidateHost) + + val rack = YarnSparkHadoopUtil.lookupRack(conf, candidateHost) + if (rack != null) { + var count = rackToCounts.getOrElse(rack, 0) + count += candidateNumContainers + rackToCounts.put(rack, count) + } + } + + val requestedContainers: ArrayBuffer[ResourceRequest] = + new ArrayBuffer[ResourceRequest](rackToCounts.size) + for ((rack, count) <- rackToCounts){ + requestedContainers += + createResourceRequest(AllocationType.RACK, rack, count, + YarnSparkHadoopUtil.RM_REQUEST_PRIORITY) + } + + requestedContainers.toList + } private def createResourceRequest( requestType: AllocationType.AllocationType, @@ -521,48 +203,24 @@ private[yarn] class YarnAllocationHandler( rsrcRequest } - def createReleasedContainerList(): ArrayBuffer[ContainerId] = { - + private def createReleasedContainerList(): ArrayBuffer[ContainerId] = { val retval = new ArrayBuffer[ContainerId](1) // Iterator on COW list ... - for (container <- releasedContainerList.iterator()){ + for (container <- releaseList.iterator()){ retval += container } // Remove from the original list. - if (! retval.isEmpty) { - releasedContainerList.removeAll(retval) - for (v <- retval) pendingReleaseContainers.put(v, true) - logInfo("Releasing " + retval.size + " containers. pendingReleaseContainers : " + - pendingReleaseContainers) + if (!retval.isEmpty) { + releaseList.removeAll(retval) + logInfo("Releasing " + retval.size + " containers.") } - retval } - // A simple method to copy the split info map. - private def generateNodeToWeight( - conf: Configuration, - input: collection.Map[String, collection.Set[SplitInfo]]) : - // host to count, rack to count - (Map[String, Int], Map[String, Int]) = { - - if (input == null) return (Map[String, Int](), Map[String, Int]()) - - val hostToCount = new HashMap[String, Int] - val rackToCount = new HashMap[String, Int] - - for ((host, splits) <- input) { - val hostCount = hostToCount.getOrElse(host, 0) - hostToCount.put(host, hostCount + splits.size) - - val rack = YarnSparkHadoopUtil.lookupRack(conf, host) - if (rack != null){ - val rackCount = rackToCount.getOrElse(host, 0) - rackToCount.put(host, rackCount + splits.size) - } - } - - (hostToCount.toMap, rackToCount.toMap) + private class AlphaAllocateResponse(response: AMResponse) extends YarnAllocateResponse { + override def getAllocatedContainers() = response.getAllocatedContainers() + override def getAvailableResources() = response.getAvailableResources() + override def getCompletedContainersStatuses() = response.getCompletedContainersStatuses() } } diff --git a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala index cad94e5e19..c74dd1c2b2 100644 --- a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala +++ b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala @@ -17,18 +17,431 @@ package org.apache.spark.deploy.yarn +import java.util.{List => JList} +import java.util.concurrent.ConcurrentHashMap +import java.util.concurrent.atomic.AtomicInteger + +import scala.collection.JavaConversions._ +import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet} + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.api.protocolrecords.AllocateResponse + +import org.apache.spark.{Logging, SparkConf, SparkEnv} +import org.apache.spark.scheduler.{SplitInfo, TaskSchedulerImpl} +import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend + object AllocationType extends Enumeration { type AllocationType = Value val HOST, RACK, ANY = Value } +// TODO: +// Too many params. +// Needs to be mt-safe +// Need to refactor this to make it 'cleaner' ... right now, all computation is reactive - should +// make it more proactive and decoupled. + +// Note that right now, we assume all node asks as uniform in terms of capabilities and priority +// Refer to http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/ for +// more info on how we are requesting for containers. + /** - * Interface that defines a Yarn allocator. + * Common code for the Yarn container allocator. Contains all the version-agnostic code to + * manage container allocation for a running Spark application. */ -trait YarnAllocator { +private[yarn] abstract class YarnAllocator( + conf: Configuration, + sparkConf: SparkConf, + args: ApplicationMasterArguments, + preferredNodes: collection.Map[String, collection.Set[SplitInfo]]) + extends Logging { - def allocateResources(): Unit - def getNumExecutorsFailed: Int - def getNumExecutorsRunning: Int + // These three are locked on allocatedHostToContainersMap. Complementary data structures + // allocatedHostToContainersMap : containers which are running : host, Set<containerid> + // allocatedContainerToHostMap: container to host mapping. + private val allocatedHostToContainersMap = + new HashMap[String, collection.mutable.Set[ContainerId]]() -} + private val allocatedContainerToHostMap = new HashMap[ContainerId, String]() + + // allocatedRackCount is populated ONLY if allocation happens (or decremented if this is an + // allocated node) + // As with the two data structures above, tightly coupled with them, and to be locked on + // allocatedHostToContainersMap + private val allocatedRackCount = new HashMap[String, Int]() + + // Containers to be released in next request to RM + private val releasedContainers = new ConcurrentHashMap[ContainerId, Boolean] + + // Additional memory overhead - in mb. + protected val memoryOverhead: Int = sparkConf.getInt("spark.yarn.executor.memoryOverhead", + YarnSparkHadoopUtil.DEFAULT_MEMORY_OVERHEAD) + + // Number of container requests that have been sent to, but not yet allocated by the + // ApplicationMaster. + private val numPendingAllocate = new AtomicInteger() + private val numExecutorsRunning = new AtomicInteger() + // Used to generate a unique id per executor + private val executorIdCounter = new AtomicInteger() + private val numExecutorsFailed = new AtomicInteger() + + private val maxExecutors = args.numExecutors + + protected val executorMemory = args.executorMemory + protected val executorCores = args.executorCores + protected val (preferredHostToCount, preferredRackToCount) = + generateNodeToWeight(conf, preferredNodes) + + def getNumExecutorsRunning: Int = numExecutorsRunning.intValue + + def getNumExecutorsFailed: Int = numExecutorsFailed.intValue + + def allocateResources() = { + val missing = maxExecutors - numPendingAllocate.get() - numExecutorsRunning.get() + + if (missing > 0) { + numPendingAllocate.addAndGet(missing) + logInfo("Will Allocate %d executor containers, each with %d memory".format( + missing, + (executorMemory + memoryOverhead))) + } else { + logDebug("Empty allocation request ...") + } + + val allocateResponse = allocateContainers(missing) + val allocatedContainers = allocateResponse.getAllocatedContainers() + + if (allocatedContainers.size > 0) { + var numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * allocatedContainers.size) + + if (numPendingAllocateNow < 0) { + numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * numPendingAllocateNow) + } + + logDebug(""" + Allocated containers: %d + Current executor count: %d + Containers released: %s + Cluster resources: %s + """.format( + allocatedContainers.size, + numExecutorsRunning.get(), + releasedContainers, + allocateResponse.getAvailableResources)) + + val hostToContainers = new HashMap[String, ArrayBuffer[Container]]() + + for (container <- allocatedContainers) { + if (isResourceConstraintSatisfied(container)) { + // Add the accepted `container` to the host's list of already accepted, + // allocated containers + val host = container.getNodeId.getHost + val containersForHost = hostToContainers.getOrElseUpdate(host, + new ArrayBuffer[Container]()) + containersForHost += container + } else { + // Release container, since it doesn't satisfy resource constraints. + internalReleaseContainer(container) + } + } + + // Find the appropriate containers to use. + // TODO: Cleanup this group-by... + val dataLocalContainers = new HashMap[String, ArrayBuffer[Container]]() + val rackLocalContainers = new HashMap[String, ArrayBuffer[Container]]() + val offRackContainers = new HashMap[String, ArrayBuffer[Container]]() + + for (candidateHost <- hostToContainers.keySet) { + val maxExpectedHostCount = preferredHostToCount.getOrElse(candidateHost, 0) + val requiredHostCount = maxExpectedHostCount - allocatedContainersOnHost(candidateHost) + + val remainingContainersOpt = hostToContainers.get(candidateHost) + assert(remainingContainersOpt.isDefined) + var remainingContainers = remainingContainersOpt.get + + if (requiredHostCount >= remainingContainers.size) { + // Since we have <= required containers, add all remaining containers to + // `dataLocalContainers`. + dataLocalContainers.put(candidateHost, remainingContainers) + // There are no more free containers remaining. + remainingContainers = null + } else if (requiredHostCount > 0) { + // Container list has more containers than we need for data locality. + // Split the list into two: one based on the data local container count, + // (`remainingContainers.size` - `requiredHostCount`), and the other to hold remaining + // containers. + val (dataLocal, remaining) = remainingContainers.splitAt( + remainingContainers.size - requiredHostCount) + dataLocalContainers.put(candidateHost, dataLocal) + + // Invariant: remainingContainers == remaining + + // YARN has a nasty habit of allocating a ton of containers on a host - discourage this. + // Add each container in `remaining` to list of containers to release. If we have an + // insufficient number of containers, then the next allocation cycle will reallocate + // (but won't treat it as data local). + // TODO(harvey): Rephrase this comment some more. + for (container <- remaining) internalReleaseContainer(container) + remainingContainers = null + } + + // For rack local containers + if (remainingContainers != null) { + val rack = YarnSparkHadoopUtil.lookupRack(conf, candidateHost) + if (rack != null) { + val maxExpectedRackCount = preferredRackToCount.getOrElse(rack, 0) + val requiredRackCount = maxExpectedRackCount - allocatedContainersOnRack(rack) - + rackLocalContainers.getOrElse(rack, List()).size + + if (requiredRackCount >= remainingContainers.size) { + // Add all remaining containers to to `dataLocalContainers`. + dataLocalContainers.put(rack, remainingContainers) + remainingContainers = null + } else if (requiredRackCount > 0) { + // Container list has more containers that we need for data locality. + // Split the list into two: one based on the data local container count, + // (`remainingContainers.size` - `requiredHostCount`), and the other to hold remaining + // containers. + val (rackLocal, remaining) = remainingContainers.splitAt( + remainingContainers.size - requiredRackCount) + val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, + new ArrayBuffer[Container]()) + + existingRackLocal ++= rackLocal + + remainingContainers = remaining + } + } + } + + if (remainingContainers != null) { + // Not all containers have been consumed - add them to the list of off-rack containers. + offRackContainers.put(candidateHost, remainingContainers) + } + } + + // Now that we have split the containers into various groups, go through them in order: + // first host-local, then rack-local, and finally off-rack. + // Note that the list we create below tries to ensure that not all containers end up within + // a host if there is a sufficiently large number of hosts/containers. + val allocatedContainersToProcess = new ArrayBuffer[Container](allocatedContainers.size) + allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(dataLocalContainers) + allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(rackLocalContainers) + allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(offRackContainers) + + // Run each of the allocated containers. + for (container <- allocatedContainersToProcess) { + val numExecutorsRunningNow = numExecutorsRunning.incrementAndGet() + val executorHostname = container.getNodeId.getHost + val containerId = container.getId + + val executorMemoryOverhead = (executorMemory + memoryOverhead) + assert(container.getResource.getMemory >= executorMemoryOverhead) + + if (numExecutorsRunningNow > maxExecutors) { + logInfo("""Ignoring container %s at host %s, since we already have the required number of + containers for it.""".format(containerId, executorHostname)) + internalReleaseContainer(container) + numExecutorsRunning.decrementAndGet() + } else { + val executorId = executorIdCounter.incrementAndGet().toString + val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( + SparkEnv.driverActorSystemName, + sparkConf.get("spark.driver.host"), + sparkConf.get("spark.driver.port"), + CoarseGrainedSchedulerBackend.ACTOR_NAME) + + logInfo("Launching container %s for on host %s".format(containerId, executorHostname)) + + // To be safe, remove the container from `releasedContainers`. + releasedContainers.remove(containerId) + + val rack = YarnSparkHadoopUtil.lookupRack(conf, executorHostname) + allocatedHostToContainersMap.synchronized { + val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname, + new HashSet[ContainerId]()) + + containerSet += containerId + allocatedContainerToHostMap.put(containerId, executorHostname) + + if (rack != null) { + allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1) + } + } + logInfo("Launching ExecutorRunnable. driverUrl: %s, executorHostname: %s".format( + driverUrl, executorHostname)) + val executorRunnable = new ExecutorRunnable( + container, + conf, + sparkConf, + driverUrl, + executorId, + executorHostname, + executorMemory, + executorCores) + new Thread(executorRunnable).start() + } + } + logDebug(""" + Finished allocating %s containers (from %s originally). + Current number of executors running: %d, + Released containers: %s + """.format( + allocatedContainersToProcess, + allocatedContainers, + numExecutorsRunning.get(), + releasedContainers)) + } + + val completedContainers = allocateResponse.getCompletedContainersStatuses() + if (completedContainers.size > 0) { + logDebug("Completed %d containers".format(completedContainers.size)) + + for (completedContainer <- completedContainers) { + val containerId = completedContainer.getContainerId + + if (releasedContainers.containsKey(containerId)) { + // YarnAllocationHandler already marked the container for release, so remove it from + // `releasedContainers`. + releasedContainers.remove(containerId) + } else { + // Decrement the number of executors running. The next iteration of + // the ApplicationMaster's reporting thread will take care of allocating. + numExecutorsRunning.decrementAndGet() + logInfo("Completed container %s (state: %s, exit status: %s)".format( + containerId, + completedContainer.getState, + completedContainer.getExitStatus())) + // Hadoop 2.2.X added a ContainerExitStatus we should switch to use + // there are some exit status' we shouldn't necessarily count against us, but for + // now I think its ok as none of the containers are expected to exit + if (completedContainer.getExitStatus() != 0) { + logInfo("Container marked as failed: " + containerId) + numExecutorsFailed.incrementAndGet() + } + } + + allocatedHostToContainersMap.synchronized { + if (allocatedContainerToHostMap.containsKey(containerId)) { + val hostOpt = allocatedContainerToHostMap.get(containerId) + assert(hostOpt.isDefined) + val host = hostOpt.get + + val containerSetOpt = allocatedHostToContainersMap.get(host) + assert(containerSetOpt.isDefined) + val containerSet = containerSetOpt.get + + containerSet.remove(containerId) + if (containerSet.isEmpty) { + allocatedHostToContainersMap.remove(host) + } else { + allocatedHostToContainersMap.update(host, containerSet) + } + + allocatedContainerToHostMap.remove(containerId) + + // TODO: Move this part outside the synchronized block? + val rack = YarnSparkHadoopUtil.lookupRack(conf, host) + if (rack != null) { + val rackCount = allocatedRackCount.getOrElse(rack, 0) - 1 + if (rackCount > 0) { + allocatedRackCount.put(rack, rackCount) + } else { + allocatedRackCount.remove(rack) + } + } + } + } + } + logDebug(""" + Finished processing %d completed containers. + Current number of executors running: %d, + Released containers: %s + """.format( + completedContainers.size, + numExecutorsRunning.get(), + releasedContainers)) + } + } + + protected def allocatedContainersOnHost(host: String): Int = { + var retval = 0 + allocatedHostToContainersMap.synchronized { + retval = allocatedHostToContainersMap.getOrElse(host, Set()).size + } + retval + } + + protected def allocatedContainersOnRack(rack: String): Int = { + var retval = 0 + allocatedHostToContainersMap.synchronized { + retval = allocatedRackCount.getOrElse(rack, 0) + } + retval + } + + private def isResourceConstraintSatisfied(container: Container): Boolean = { + container.getResource.getMemory >= (executorMemory + memoryOverhead) + } + + // A simple method to copy the split info map. + private def generateNodeToWeight( + conf: Configuration, + input: collection.Map[String, collection.Set[SplitInfo]] + ): (Map[String, Int], Map[String, Int]) = { + + if (input == null) { + return (Map[String, Int](), Map[String, Int]()) + } + + val hostToCount = new HashMap[String, Int] + val rackToCount = new HashMap[String, Int] + + for ((host, splits) <- input) { + val hostCount = hostToCount.getOrElse(host, 0) + hostToCount.put(host, hostCount + splits.size) + + val rack = YarnSparkHadoopUtil.lookupRack(conf, host) + if (rack != null) { + val rackCount = rackToCount.getOrElse(host, 0) + rackToCount.put(host, rackCount + splits.size) + } + } + + (hostToCount.toMap, rackToCount.toMap) + } + + private def internalReleaseContainer(container: Container) = { + releasedContainers.put(container.getId(), true) + releaseContainer(container) + } + + /** + * Called to allocate containers in the cluster. + * + * @param count Number of containers to allocate. + * If zero, should still contact RM (as a heartbeat). + * @return Response to the allocation request. + */ + protected def allocateContainers(count: Int): YarnAllocateResponse + + /** Called to release a previously allocated container. */ + protected def releaseContainer(container: Container): Unit + + /** + * Defines the interface for an allocate response from the RM. This is needed since the alpha + * and stable interfaces differ here in ways that cannot be fixed using other routes. + */ + protected trait YarnAllocateResponse { + + def getAllocatedContainers(): JList[Container] + + def getAvailableResources(): Resource + + def getCompletedContainersStatuses(): JList[ContainerStatus] + + } + +} \ No newline at end of file diff --git a/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala b/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala index 4d51449899..ed31457b61 100644 --- a/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala +++ b/yarn/stable/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala @@ -17,36 +17,19 @@ package org.apache.spark.deploy.yarn -import java.util.concurrent.{CopyOnWriteArrayList, ConcurrentHashMap} -import java.util.concurrent.atomic.AtomicInteger - import scala.collection.JavaConversions._ -import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet} +import scala.collection.mutable.{ArrayBuffer, HashMap} -import org.apache.spark.{Logging, SparkConf, SparkEnv} -import org.apache.spark.scheduler.{SplitInfo,TaskSchedulerImpl} -import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend -import org.apache.spark.util.Utils +import org.apache.spark.SparkConf +import org.apache.spark.scheduler.SplitInfo import org.apache.hadoop.conf.Configuration -import org.apache.hadoop.yarn.api.records.ApplicationAttemptId -import org.apache.hadoop.yarn.api.records.{Container, ContainerId} -import org.apache.hadoop.yarn.api.records.{Priority, Resource, ResourceRequest} -import org.apache.hadoop.yarn.api.protocolrecords.{AllocateRequest, AllocateResponse} +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.api.protocolrecords.AllocateResponse import org.apache.hadoop.yarn.client.api.AMRMClient import org.apache.hadoop.yarn.client.api.AMRMClient.ContainerRequest import org.apache.hadoop.yarn.util.Records -// TODO: -// Too many params. -// Needs to be mt-safe -// Need to refactor this to make it 'cleaner' ... right now, all computation is reactive - should -// make it more proactive and decoupled. - -// Note that right now, we assume all node asks as uniform in terms of capabilities and priority -// Refer to http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/ for -// more info on how we are requesting for containers. - /** * Acquires resources for executors from a ResourceManager and launches executors in new containers. */ @@ -57,329 +40,22 @@ private[yarn] class YarnAllocationHandler( appAttemptId: ApplicationAttemptId, args: ApplicationMasterArguments, preferredNodes: collection.Map[String, collection.Set[SplitInfo]]) - extends YarnAllocator with Logging { - - // These three are locked on allocatedHostToContainersMap. Complementary data structures - // allocatedHostToContainersMap : containers which are running : host, Set<containerid> - // allocatedContainerToHostMap: container to host mapping. - private val allocatedHostToContainersMap = - new HashMap[String, collection.mutable.Set[ContainerId]]() - - private val allocatedContainerToHostMap = new HashMap[ContainerId, String]() - - // allocatedRackCount is populated ONLY if allocation happens (or decremented if this is an - // allocated node) - // As with the two data structures above, tightly coupled with them, and to be locked on - // allocatedHostToContainersMap - private val allocatedRackCount = new HashMap[String, Int]() - - // Containers which have been released. - private val releasedContainerList = new CopyOnWriteArrayList[ContainerId]() - // Containers to be released in next request to RM - private val pendingReleaseContainers = new ConcurrentHashMap[ContainerId, Boolean] - - // Additional memory overhead - in mb. - private def memoryOverhead: Int = sparkConf.getInt("spark.yarn.executor.memoryOverhead", - YarnSparkHadoopUtil.DEFAULT_MEMORY_OVERHEAD) - - // Number of container requests that have been sent to, but not yet allocated by the - // ApplicationMaster. - private val numPendingAllocate = new AtomicInteger() - private val numExecutorsRunning = new AtomicInteger() - // Used to generate a unique id per executor - private val executorIdCounter = new AtomicInteger() - private val lastResponseId = new AtomicInteger() - private val numExecutorsFailed = new AtomicInteger() - - private val maxExecutors = args.numExecutors - private val executorMemory = args.executorMemory - private val executorCores = args.executorCores - private val (preferredHostToCount, preferredRackToCount) = - generateNodeToWeight(conf, preferredNodes) - - override def getNumExecutorsRunning: Int = numExecutorsRunning.intValue + extends YarnAllocator(conf, sparkConf, args, preferredNodes) { - override def getNumExecutorsFailed: Int = numExecutorsFailed.intValue - - def isResourceConstraintSatisfied(container: Container): Boolean = { - container.getResource.getMemory >= (executorMemory + memoryOverhead) - } - - def releaseContainer(container: Container) { - val containerId = container.getId - pendingReleaseContainers.put(containerId, true) - amClient.releaseAssignedContainer(containerId) + override protected def releaseContainer(container: Container) = { + amClient.releaseAssignedContainer(container.getId()) } - override def allocateResources() = { - addResourceRequests(maxExecutors - numPendingAllocate.get() - numExecutorsRunning.get()) + override protected def allocateContainers(count: Int): YarnAllocateResponse = { + addResourceRequests(count) // We have already set the container request. Poll the ResourceManager for a response. // This doubles as a heartbeat if there are no pending container requests. val progressIndicator = 0.1f - val allocateResponse = amClient.allocate(progressIndicator) - - val allocatedContainers = allocateResponse.getAllocatedContainers() - if (allocatedContainers.size > 0) { - var numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * allocatedContainers.size) - - if (numPendingAllocateNow < 0) { - numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * numPendingAllocateNow) - } - - logDebug(""" - Allocated containers: %d - Current executor count: %d - Containers released: %s - Containers to-be-released: %s - Cluster resources: %s - """.format( - allocatedContainers.size, - numExecutorsRunning.get(), - releasedContainerList, - pendingReleaseContainers, - allocateResponse.getAvailableResources)) - - val hostToContainers = new HashMap[String, ArrayBuffer[Container]]() - - for (container <- allocatedContainers) { - if (isResourceConstraintSatisfied(container)) { - // Add the accepted `container` to the host's list of already accepted, - // allocated containers - val host = container.getNodeId.getHost - val containersForHost = hostToContainers.getOrElseUpdate(host, - new ArrayBuffer[Container]()) - containersForHost += container - } else { - // Release container, since it doesn't satisfy resource constraints. - releaseContainer(container) - } - } - - // Find the appropriate containers to use. - // TODO: Cleanup this group-by... - val dataLocalContainers = new HashMap[String, ArrayBuffer[Container]]() - val rackLocalContainers = new HashMap[String, ArrayBuffer[Container]]() - val offRackContainers = new HashMap[String, ArrayBuffer[Container]]() - - for (candidateHost <- hostToContainers.keySet) { - val maxExpectedHostCount = preferredHostToCount.getOrElse(candidateHost, 0) - val requiredHostCount = maxExpectedHostCount - allocatedContainersOnHost(candidateHost) - - val remainingContainersOpt = hostToContainers.get(candidateHost) - assert(remainingContainersOpt.isDefined) - var remainingContainers = remainingContainersOpt.get - - if (requiredHostCount >= remainingContainers.size) { - // Since we have <= required containers, add all remaining containers to - // `dataLocalContainers`. - dataLocalContainers.put(candidateHost, remainingContainers) - // There are no more free containers remaining. - remainingContainers = null - } else if (requiredHostCount > 0) { - // Container list has more containers than we need for data locality. - // Split the list into two: one based on the data local container count, - // (`remainingContainers.size` - `requiredHostCount`), and the other to hold remaining - // containers. - val (dataLocal, remaining) = remainingContainers.splitAt( - remainingContainers.size - requiredHostCount) - dataLocalContainers.put(candidateHost, dataLocal) - - // Invariant: remainingContainers == remaining - - // YARN has a nasty habit of allocating a ton of containers on a host - discourage this. - // Add each container in `remaining` to list of containers to release. If we have an - // insufficient number of containers, then the next allocation cycle will reallocate - // (but won't treat it as data local). - // TODO(harvey): Rephrase this comment some more. - for (container <- remaining) releaseContainer(container) - remainingContainers = null - } - - // For rack local containers - if (remainingContainers != null) { - val rack = YarnSparkHadoopUtil.lookupRack(conf, candidateHost) - if (rack != null) { - val maxExpectedRackCount = preferredRackToCount.getOrElse(rack, 0) - val requiredRackCount = maxExpectedRackCount - allocatedContainersOnRack(rack) - - rackLocalContainers.getOrElse(rack, List()).size - - if (requiredRackCount >= remainingContainers.size) { - // Add all remaining containers to to `dataLocalContainers`. - dataLocalContainers.put(rack, remainingContainers) - remainingContainers = null - } else if (requiredRackCount > 0) { - // Container list has more containers that we need for data locality. - // Split the list into two: one based on the data local container count, - // (`remainingContainers.size` - `requiredHostCount`), and the other to hold remaining - // containers. - val (rackLocal, remaining) = remainingContainers.splitAt( - remainingContainers.size - requiredRackCount) - val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, - new ArrayBuffer[Container]()) - - existingRackLocal ++= rackLocal - - remainingContainers = remaining - } - } - } - - if (remainingContainers != null) { - // Not all containers have been consumed - add them to the list of off-rack containers. - offRackContainers.put(candidateHost, remainingContainers) - } - } - - // Now that we have split the containers into various groups, go through them in order: - // first host-local, then rack-local, and finally off-rack. - // Note that the list we create below tries to ensure that not all containers end up within - // a host if there is a sufficiently large number of hosts/containers. - val allocatedContainersToProcess = new ArrayBuffer[Container](allocatedContainers.size) - allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(dataLocalContainers) - allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(rackLocalContainers) - allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(offRackContainers) - - // Run each of the allocated containers. - for (container <- allocatedContainersToProcess) { - val numExecutorsRunningNow = numExecutorsRunning.incrementAndGet() - val executorHostname = container.getNodeId.getHost - val containerId = container.getId - - val executorMemoryOverhead = (executorMemory + memoryOverhead) - assert(container.getResource.getMemory >= executorMemoryOverhead) - - if (numExecutorsRunningNow > maxExecutors) { - logInfo("""Ignoring container %s at host %s, since we already have the required number of - containers for it.""".format(containerId, executorHostname)) - releaseContainer(container) - numExecutorsRunning.decrementAndGet() - } else { - val executorId = executorIdCounter.incrementAndGet().toString - val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( - SparkEnv.driverActorSystemName, - sparkConf.get("spark.driver.host"), - sparkConf.get("spark.driver.port"), - CoarseGrainedSchedulerBackend.ACTOR_NAME) - - logInfo("Launching container %s for on host %s".format(containerId, executorHostname)) - - // To be safe, remove the container from `pendingReleaseContainers`. - pendingReleaseContainers.remove(containerId) - - val rack = YarnSparkHadoopUtil.lookupRack(conf, executorHostname) - allocatedHostToContainersMap.synchronized { - val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname, - new HashSet[ContainerId]()) - - containerSet += containerId - allocatedContainerToHostMap.put(containerId, executorHostname) - - if (rack != null) { - allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1) - } - } - logInfo("Launching ExecutorRunnable. driverUrl: %s, executorHostname: %s".format( - driverUrl, executorHostname)) - val executorRunnable = new ExecutorRunnable( - container, - conf, - sparkConf, - driverUrl, - executorId, - executorHostname, - executorMemory, - executorCores) - new Thread(executorRunnable).start() - } - } - logDebug(""" - Finished allocating %s containers (from %s originally). - Current number of executors running: %d, - releasedContainerList: %s, - pendingReleaseContainers: %s - """.format( - allocatedContainersToProcess, - allocatedContainers, - numExecutorsRunning.get(), - releasedContainerList, - pendingReleaseContainers)) - } - - val completedContainers = allocateResponse.getCompletedContainersStatuses() - if (completedContainers.size > 0) { - logDebug("Completed %d containers".format(completedContainers.size)) - - for (completedContainer <- completedContainers) { - val containerId = completedContainer.getContainerId - - if (pendingReleaseContainers.containsKey(containerId)) { - // YarnAllocationHandler already marked the container for release, so remove it from - // `pendingReleaseContainers`. - pendingReleaseContainers.remove(containerId) - } else { - // Decrement the number of executors running. The next iteration of - // the ApplicationMaster's reporting thread will take care of allocating. - numExecutorsRunning.decrementAndGet() - logInfo("Completed container %s (state: %s, exit status: %s)".format( - containerId, - completedContainer.getState, - completedContainer.getExitStatus())) - // Hadoop 2.2.X added a ContainerExitStatus we should switch to use - // there are some exit status' we shouldn't necessarily count against us, but for - // now I think its ok as none of the containers are expected to exit - if (completedContainer.getExitStatus() != 0) { - logInfo("Container marked as failed: " + containerId) - numExecutorsFailed.incrementAndGet() - } - } - - allocatedHostToContainersMap.synchronized { - if (allocatedContainerToHostMap.containsKey(containerId)) { - val hostOpt = allocatedContainerToHostMap.get(containerId) - assert(hostOpt.isDefined) - val host = hostOpt.get - - val containerSetOpt = allocatedHostToContainersMap.get(host) - assert(containerSetOpt.isDefined) - val containerSet = containerSetOpt.get - - containerSet.remove(containerId) - if (containerSet.isEmpty) { - allocatedHostToContainersMap.remove(host) - } else { - allocatedHostToContainersMap.update(host, containerSet) - } - - allocatedContainerToHostMap.remove(containerId) - - // TODO: Move this part outside the synchronized block? - val rack = YarnSparkHadoopUtil.lookupRack(conf, host) - if (rack != null) { - val rackCount = allocatedRackCount.getOrElse(rack, 0) - 1 - if (rackCount > 0) { - allocatedRackCount.put(rack, rackCount) - } else { - allocatedRackCount.remove(rack) - } - } - } - } - } - logDebug(""" - Finished processing %d completed containers. - Current number of executors running: %d, - releasedContainerList: %s, - pendingReleaseContainers: %s - """.format( - completedContainers.size, - numExecutorsRunning.get(), - releasedContainerList, - pendingReleaseContainers)) - } + new StableAllocateResponse(amClient.allocate(progressIndicator)) } - def createRackResourceRequests( + private def createRackResourceRequests( hostContainers: ArrayBuffer[ContainerRequest] ): ArrayBuffer[ContainerRequest] = { // Generate modified racks and new set of hosts under it before issuing requests. @@ -409,22 +85,6 @@ private[yarn] class YarnAllocationHandler( requestedContainers } - def allocatedContainersOnHost(host: String): Int = { - var retval = 0 - allocatedHostToContainersMap.synchronized { - retval = allocatedHostToContainersMap.getOrElse(host, Set()).size - } - retval - } - - def allocatedContainersOnRack(rack: String): Int = { - var retval = 0 - allocatedHostToContainersMap.synchronized { - retval = allocatedRackCount.getOrElse(rack, 0) - } - retval - } - private def addResourceRequests(numExecutors: Int) { val containerRequests: List[ContainerRequest] = if (numExecutors <= 0 || preferredHostToCount.isEmpty) { @@ -472,15 +132,6 @@ private[yarn] class YarnAllocationHandler( amClient.addContainerRequest(request) } - if (numExecutors > 0) { - numPendingAllocate.addAndGet(numExecutors) - logInfo("Will Allocate %d executor containers, each with %d memory".format( - numExecutors, - (executorMemory + memoryOverhead))) - } else { - logDebug("Empty allocation request ...") - } - for (request <- containerRequests) { val nodes = request.getNodes var hostStr = if (nodes == null || nodes.isEmpty) { @@ -549,31 +200,10 @@ private[yarn] class YarnAllocationHandler( requests } - // A simple method to copy the split info map. - private def generateNodeToWeight( - conf: Configuration, - input: collection.Map[String, collection.Set[SplitInfo]] - ): (Map[String, Int], Map[String, Int]) = { - - if (input == null) { - return (Map[String, Int](), Map[String, Int]()) - } - - val hostToCount = new HashMap[String, Int] - val rackToCount = new HashMap[String, Int] - - for ((host, splits) <- input) { - val hostCount = hostToCount.getOrElse(host, 0) - hostToCount.put(host, hostCount + splits.size) - - val rack = YarnSparkHadoopUtil.lookupRack(conf, host) - if (rack != null){ - val rackCount = rackToCount.getOrElse(host, 0) - rackToCount.put(host, rackCount + splits.size) - } - } - - (hostToCount.toMap, rackToCount.toMap) + private class StableAllocateResponse(response: AllocateResponse) extends YarnAllocateResponse { + override def getAllocatedContainers() = response.getAllocatedContainers() + override def getAvailableResources() = response.getAvailableResources() + override def getCompletedContainersStatuses() = response.getCompletedContainersStatuses() } } -- GitLab