diff --git a/mllib/src/main/scala/spark/mllib/util/MFDataGenerator.scala b/mllib/src/main/scala/spark/mllib/util/MFDataGenerator.scala
new file mode 100644
index 0000000000000000000000000000000000000000..8637d27cd0ae5a2a594a2b37da721457a82e09ee
--- /dev/null
+++ b/mllib/src/main/scala/spark/mllib/util/MFDataGenerator.scala
@@ -0,0 +1,105 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package spark.mllib.recommendation
+
+import scala.util.Random
+
+import org.jblas.DoubleMatrix
+
+import spark.{RDD, SparkContext}
+import spark.mllib.util.MLUtils
+
+
+object MFDataGenerator{
+
+   /**
+   * Generate RDD(s) containing data for Matrix Factorization. This function chooses
+   * positive labels with probability `probOne` and scales positive examples by `eps`.
+   *
+   * @param sc SparkContext to use for creating the RDD.
+   * @param outputPath Directory to save output.
+   * @param m Number of rows in data matrix.
+   * @param n Number of columns in data matrix.
+   * @param rank Underlying rank of data matrix.
+   * @param tr_samp_fact Oversampling factor.
+   * @param noise Boolean value - whether to add gaussian noise to training data.
+   * @param sigma Standard deviation of added gaussian noise.
+   * @param test Boolean value - whether to create testing RDD.
+   * @param te_samp_fact Percentage of training data to use as test data.
+   */
+
+  def main(args: Array[String]) {
+    if (args.length != 10) {
+      println("Usage: MFGenerator " +
+        "<master> <output_dir> <m> <n> <rank> <tr_samp_fact> <noise> <sigma> <test> <te_samp_fact>")
+      System.exit(1)
+    }
+
+    val sparkMaster: String = args(0)
+    val outputPath: String = args(1)
+    val m: Int = if (args.length > 2) args(2).toInt else 100
+    val n: Int = if (args.length > 3) args(3).toInt else 100
+    val rank: Int = if (args.length > 4) args(4).toInt else 10
+    val tr_samp_fact: Double = if (args.length > 5) args(5).toDouble else 1.0
+    val noise: Boolean = if (args.length > 6) args(6).toBoolean else false
+    val sigma: Double = if (args.length > 7) args(7).toDouble else 0.1
+    val test: Boolean = if (args.length > 8) args(8).toBoolean else false
+    val te_samp_fact: Double = if (args.length > 9) args(9).toDouble else 0.1
+
+    val sc = new SparkContext(sparkMaster, "MFDataGenerator")
+
+    val A = DoubleMatrix.randn(m,rank)
+    val B = DoubleMatrix.randn(rank,n)
+    val z = 1/(scala.math.sqrt(scala.math.sqrt(rank)))
+    A.mmuli(z)
+    B.mmuli(z)
+    val fullData = A.mmul(B)
+
+    val df = rank*(m+n-rank)
+    val sampsize = scala.math.min(scala.math.round(tr_samp_fact*df), scala.math.round(.99*m*n)).toInt
+    val rand = new Random()
+    val mn = m*n
+    val shuffled = rand.shuffle(1 to mn toIterable)
+
+    val omega = shuffled.slice(0,sampsize)
+    val ordered = omega.sortWith(_ < _).toArray
+    val trainData: RDD[(Int, Int, Double)] = sc.parallelize(ordered)
+    		.map(x => (fullData.indexRows(x-1),fullData.indexColumns(x-1),fullData.get(x-1)))
+
+    // optionally add gaussian noise
+    if(noise){
+        trainData.map(x => (x._1,x._2,x._3+rand.nextGaussian*sigma))
+    }
+
+    trainData.map(x => x._1 + "," + x._2 + "," + x._3).saveAsTextFile(outputPath)
+
+    // optionally generate testing data
+    if(test){
+    	val test_sampsize = scala.math
+    		.min(scala.math.round(sampsize*te_samp_fact),scala.math.round(mn-sampsize))
+    		.toInt
+    	val test_omega = shuffled.slice(sampsize,sampsize+test_sampsize)
+    	val test_ordered = test_omega.sortWith(_ < _).toArray
+    	val testData: RDD[(Int, Int, Double)] = sc.parallelize(test_ordered)
+    		.map(x=> (fullData.indexRows(x-1),fullData.indexColumns(x-1),fullData.get(x-1)))
+      testData.map(x => x._1 + "," + x._2 + "," + x._3).saveAsTextFile(outputPath)
+    }
+        
+	sc.stop()
+  }
+}
\ No newline at end of file