diff --git a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RankingMetrics.scala b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RankingMetrics.scala index b9b54b93c27fa9742a1d6b54e3c9582de3b9e5d3..5b5a2a1450f7f54a475f5bd3355a11ad7aede242 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RankingMetrics.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/RankingMetrics.scala @@ -31,6 +31,8 @@ import org.apache.spark.rdd.RDD * ::Experimental:: * Evaluator for ranking algorithms. * + * Java users should use [[RankingMetrics$.of]] to create a [[RankingMetrics]] instance. + * * @param predictionAndLabels an RDD of (predicted ranking, ground truth set) pairs. */ @Experimental diff --git a/mllib/src/main/scala/org/apache/spark/mllib/pmml/PMMLExportable.scala b/mllib/src/main/scala/org/apache/spark/mllib/pmml/PMMLExportable.scala index 354e90f3eeaa6ed6d5a7146627f6e69327170328..5e882d4ebb10b5e76938f188f800a4e92e4085a1 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/pmml/PMMLExportable.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/pmml/PMMLExportable.scala @@ -23,13 +23,16 @@ import javax.xml.transform.stream.StreamResult import org.jpmml.model.JAXBUtil import org.apache.spark.SparkContext +import org.apache.spark.annotation.{DeveloperApi, Experimental} import org.apache.spark.mllib.pmml.export.PMMLModelExportFactory /** + * :: DeveloperApi :: * Export model to the PMML format * Predictive Model Markup Language (PMML) is an XML-based file format * developed by the Data Mining Group (www.dmg.org). */ +@DeveloperApi trait PMMLExportable { /** @@ -41,30 +44,38 @@ trait PMMLExportable { } /** + * :: Experimental :: * Export the model to a local file in PMML format */ + @Experimental def toPMML(localPath: String): Unit = { toPMML(new StreamResult(new File(localPath))) } /** + * :: Experimental :: * Export the model to a directory on a distributed file system in PMML format */ + @Experimental def toPMML(sc: SparkContext, path: String): Unit = { val pmml = toPMML() sc.parallelize(Array(pmml), 1).saveAsTextFile(path) } /** + * :: Experimental :: * Export the model to the OutputStream in PMML format */ + @Experimental def toPMML(outputStream: OutputStream): Unit = { toPMML(new StreamResult(outputStream)) } /** + * :: Experimental :: * Export the model to a String in PMML format */ + @Experimental def toPMML(): String = { val writer = new StringWriter toPMML(new StreamResult(writer))