diff --git a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala index 2cd94fa8f5856b5a6414d615fe41691c66f1074e..a5b84116e6eaebf1dee6a22d061f932733dfa26f 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala @@ -17,9 +17,9 @@ package org.apache.spark.ml.ann -import breeze.linalg.{*, axpy => Baxpy, sum => Bsum, DenseMatrix => BDM, DenseVector => BDV, - Vector => BV} -import breeze.numerics.{log => Blog, sigmoid => Bsigmoid} +import java.util.Random + +import breeze.linalg.{*, axpy => Baxpy, DenseMatrix => BDM, DenseVector => BDV, Vector => BV} import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.optimization._ @@ -32,20 +32,46 @@ import org.apache.spark.util.random.XORShiftRandom * */ private[ann] trait Layer extends Serializable { + /** - * Returns the instance of the layer based on weights provided - * @param weights vector with layer weights - * @param position position of weights in the vector - * @return the layer model + * Number of weights that is used to allocate memory for the weights vector + */ + val weightSize: Int + + /** + * Returns the output size given the input size (not counting the stack size). + * Output size is used to allocate memory for the output. + * + * @param inputSize input size + * @return output size */ - def getInstance(weights: Vector, position: Int): LayerModel + def getOutputSize(inputSize: Int): Int + /** + * If true, the memory is not allocated for the output of this layer. + * The memory allocated to the previous layer is used to write the output of this layer. + * Developer can set this to true if computing delta of a previous layer + * does not involve its output, so the current layer can write there. + * This also mean that both layers have the same number of outputs. + */ + val inPlace: Boolean + + /** + * Returns the instance of the layer based on weights provided. + * Size of weights must be equal to weightSize + * + * @param initialWeights vector with layer weights + * @return the layer model + */ + def createModel(initialWeights: BDV[Double]): LayerModel /** * Returns the instance of the layer with random generated weights - * @param seed seed + * + * @param weights vector for weights initialization, must be equal to weightSize + * @param random random number generator * @return the layer model */ - def getInstance(seed: Long): LayerModel + def initModel(weights: BDV[Double], random: Random): LayerModel } /** @@ -54,92 +80,102 @@ private[ann] trait Layer extends Serializable { * Can return weights in Vector format. */ private[ann] trait LayerModel extends Serializable { - /** - * number of weights - */ - val size: Int + val weights: BDV[Double] /** * Evaluates the data (process the data through the layer) + * Output is allocated based on the size provided by the + * LayerModel implementation and the stack (batch) size + * Developer is responsible for checking the size of output + * when writing to it + * * @param data data - * @return processed data + * @param output output (modified in place) */ - def eval(data: BDM[Double]): BDM[Double] + def eval(data: BDM[Double], output: BDM[Double]): Unit /** * Computes the delta for back propagation - * @param nextDelta delta of the next layer - * @param input input data - * @return delta + * Delta is allocated based on the size provided by the + * LayerModel implementation and the stack (batch) size + * Developer is responsible for checking the size of + * prevDelta when writing to it + * + * @param delta delta of this layer + * @param output output of this layer + * @param prevDelta the previous delta (modified in place) */ - def prevDelta(nextDelta: BDM[Double], input: BDM[Double]): BDM[Double] + def computePrevDelta(delta: BDM[Double], output: BDM[Double], prevDelta: BDM[Double]): Unit /** * Computes the gradient + * cumGrad is a wrapper on the part of the weight vector + * size of cumGrad is based on weightSize provided by + * implementation of LayerModel + * * @param delta delta for this layer * @param input input data - * @return gradient + * @param cumGrad cumulative gradient (modified in place) */ - def grad(delta: BDM[Double], input: BDM[Double]): Array[Double] - - /** - * Returns weights for the layer in a single vector - * @return layer weights - */ - def weights(): Vector + def grad(delta: BDM[Double], input: BDM[Double], cumGrad: BDV[Double]): Unit } /** * Layer properties of affine transformations, that is y=A*x+b + * * @param numIn number of inputs * @param numOut number of outputs */ private[ann] class AffineLayer(val numIn: Int, val numOut: Int) extends Layer { - override def getInstance(weights: Vector, position: Int): LayerModel = { - AffineLayerModel(this, weights, position) - } + override val weightSize = numIn * numOut + numOut - override def getInstance(seed: Long = 11L): LayerModel = { - AffineLayerModel(this, seed) - } + override def getOutputSize(inputSize: Int): Int = numOut + + override val inPlace = false + + override def createModel(weights: BDV[Double]): LayerModel = new AffineLayerModel(weights, this) + + override def initModel(weights: BDV[Double], random: Random): LayerModel = + AffineLayerModel(this, weights, random) } /** - * Model of Affine layer y=A*x+b - * @param w weights (matrix A) - * @param b bias (vector b) + * Model of Affine layer + * + * @param weights weights + * @param layer layer properties */ -private[ann] class AffineLayerModel private(w: BDM[Double], b: BDV[Double]) extends LayerModel { - val size = w.size + b.length - val gwb = new Array[Double](size) - private lazy val gw: BDM[Double] = new BDM[Double](w.rows, w.cols, gwb) - private lazy val gb: BDV[Double] = new BDV[Double](gwb, w.size) - private var z: BDM[Double] = null - private var d: BDM[Double] = null +private[ann] class AffineLayerModel private[ann] ( + val weights: BDV[Double], + val layer: AffineLayer) extends LayerModel { + val w = new BDM[Double](layer.numOut, layer.numIn, weights.data, weights.offset) + val b = + new BDV[Double](weights.data, weights.offset + (layer.numOut * layer.numIn), 1, layer.numOut) + private var ones: BDV[Double] = null - override def eval(data: BDM[Double]): BDM[Double] = { - if (z == null || z.cols != data.cols) z = new BDM[Double](w.rows, data.cols) - z(::, *) := b - BreezeUtil.dgemm(1.0, w, data, 1.0, z) - z + override def eval(data: BDM[Double], output: BDM[Double]): Unit = { + output(::, *) := b + BreezeUtil.dgemm(1.0, w, data, 1.0, output) } - override def prevDelta(nextDelta: BDM[Double], input: BDM[Double]): BDM[Double] = { - if (d == null || d.cols != nextDelta.cols) d = new BDM[Double](w.cols, nextDelta.cols) - BreezeUtil.dgemm(1.0, w.t, nextDelta, 0.0, d) - d + override def computePrevDelta( + delta: BDM[Double], + output: BDM[Double], + prevDelta: BDM[Double]): Unit = { + BreezeUtil.dgemm(1.0, w.t, delta, 0.0, prevDelta) } - override def grad(delta: BDM[Double], input: BDM[Double]): Array[Double] = { - BreezeUtil.dgemm(1.0 / input.cols, delta, input.t, 0.0, gw) + override def grad(delta: BDM[Double], input: BDM[Double], cumGrad: BDV[Double]): Unit = { + // compute gradient of weights + val cumGradientOfWeights = new BDM[Double](w.rows, w.cols, cumGrad.data, cumGrad.offset) + BreezeUtil.dgemm(1.0 / input.cols, delta, input.t, 1.0, cumGradientOfWeights) if (ones == null || ones.length != delta.cols) ones = BDV.ones[Double](delta.cols) - BreezeUtil.dgemv(1.0 / input.cols, delta, ones, 0.0, gb) - gwb + // compute gradient of bias + val cumGradientOfBias = new BDV[Double](cumGrad.data, cumGrad.offset + w.size, 1, b.length) + BreezeUtil.dgemv(1.0 / input.cols, delta, ones, 1.0, cumGradientOfBias) } - - override def weights(): Vector = AffineLayerModel.roll(w, b) } /** @@ -149,73 +185,40 @@ private[ann] object AffineLayerModel { /** * Creates a model of Affine layer + * * @param layer layer properties - * @param weights vector with weights - * @param position position of weights in the vector - * @return model of Affine layer - */ - def apply(layer: AffineLayer, weights: Vector, position: Int): AffineLayerModel = { - val (w, b) = unroll(weights, position, layer.numIn, layer.numOut) - new AffineLayerModel(w, b) - } - - /** - * Creates a model of Affine layer - * @param layer layer properties - * @param seed seed + * @param weights vector for weights initialization + * @param random random number generator * @return model of Affine layer */ - def apply(layer: AffineLayer, seed: Long): AffineLayerModel = { - val (w, b) = randomWeights(layer.numIn, layer.numOut, seed) - new AffineLayerModel(w, b) - } - - /** - * Unrolls the weights from the vector - * @param weights vector with weights - * @param position position of weights for this layer - * @param numIn number of layer inputs - * @param numOut number of layer outputs - * @return matrix A and vector b - */ - def unroll( - weights: Vector, - position: Int, - numIn: Int, - numOut: Int): (BDM[Double], BDV[Double]) = { - val weightsCopy = weights.toArray - // TODO: the array is not copied to BDMs, make sure this is OK! - val a = new BDM[Double](numOut, numIn, weightsCopy, position) - val b = new BDV[Double](weightsCopy, position + (numOut * numIn), 1, numOut) - (a, b) - } - - /** - * Roll the layer weights into a vector - * @param a matrix A - * @param b vector b - * @return vector of weights - */ - def roll(a: BDM[Double], b: BDV[Double]): Vector = { - val result = new Array[Double](a.size + b.length) - // TODO: make sure that we need to copy! - System.arraycopy(a.toArray, 0, result, 0, a.size) - System.arraycopy(b.toArray, 0, result, a.size, b.length) - Vectors.dense(result) + def apply(layer: AffineLayer, weights: BDV[Double], random: Random): AffineLayerModel = { + randomWeights(layer.numIn, layer.numOut, weights, random) + new AffineLayerModel(weights, layer) } /** - * Generate random weights for the layer - * @param numIn number of inputs + * Initialize weights randomly in the interval + * Uses [Bottou-88] heuristic [-a/sqrt(in); a/sqrt(in)] + * where a is chosen in a such way that the weight variance corresponds + * to the points to the maximal curvature of the activation function + * (which is approximately 2.38 for a standard sigmoid) + * + * @param numIn number of inputs * @param numOut number of outputs - * @param seed seed - * @return (matrix A, vector b) + * @param weights vector for weights initialization + * @param random random number generator */ - def randomWeights(numIn: Int, numOut: Int, seed: Long = 11L): (BDM[Double], BDV[Double]) = { - val rand: XORShiftRandom = new XORShiftRandom(seed) - val weights = BDM.fill[Double](numOut, numIn) { (rand.nextDouble * 4.8 - 2.4) / numIn } - val bias = BDV.fill[Double](numOut) { (rand.nextDouble * 4.8 - 2.4) / numIn } - (weights, bias) + def randomWeights( + numIn: Int, + numOut: Int, + weights: BDV[Double], + random: Random): Unit = { + var i = 0 + val sqrtIn = math.sqrt(numIn) + while (i < weights.length) { + weights(i) = (random.nextDouble * 4.8 - 2.4) / sqrtIn + i += 1 + } } } @@ -226,44 +229,21 @@ private[ann] trait ActivationFunction extends Serializable { /** * Implements a function - * @param x input data - * @param y output data */ - def eval(x: BDM[Double], y: BDM[Double]): Unit + def eval: Double => Double /** * Implements a derivative of a function (needed for the back propagation) - * @param x input data - * @param y output data */ - def derivative(x: BDM[Double], y: BDM[Double]): Unit - - /** - * Implements a cross entropy error of a function. - * Needed if the functional layer that contains this function is the output layer - * of the network. - * @param target target output - * @param output computed output - * @param result intermediate result - * @return cross-entropy - */ - def crossEntropy(target: BDM[Double], output: BDM[Double], result: BDM[Double]): Double - - /** - * Implements a mean squared error of a function - * @param target target output - * @param output computed output - * @param result intermediate result - * @return mean squared error - */ - def squared(target: BDM[Double], output: BDM[Double], result: BDM[Double]): Double + def derivative: Double => Double } /** - * Implements in-place application of functions + * Implements in-place application of functions in the arrays */ -private[ann] object ActivationFunction { +private[ann] object ApplyInPlace { + // TODO: use Breeze UFunc def apply(x: BDM[Double], y: BDM[Double], func: Double => Double): Unit = { var i = 0 while (i < x.rows) { @@ -276,6 +256,7 @@ private[ann] object ActivationFunction { } } + // TODO: use Breeze UFunc def apply( x1: BDM[Double], x2: BDM[Double], @@ -293,180 +274,87 @@ private[ann] object ActivationFunction { } } -/** - * Implements SoftMax activation function - */ -private[ann] class SoftmaxFunction extends ActivationFunction { - override def eval(x: BDM[Double], y: BDM[Double]): Unit = { - var j = 0 - // find max value to make sure later that exponent is computable - while (j < x.cols) { - var i = 0 - var max = Double.MinValue - while (i < x.rows) { - if (x(i, j) > max) { - max = x(i, j) - } - i += 1 - } - var sum = 0.0 - i = 0 - while (i < x.rows) { - val res = Math.exp(x(i, j) - max) - y(i, j) = res - sum += res - i += 1 - } - i = 0 - while (i < x.rows) { - y(i, j) /= sum - i += 1 - } - j += 1 - } - } - - override def crossEntropy( - output: BDM[Double], - target: BDM[Double], - result: BDM[Double]): Double = { - def m(o: Double, t: Double): Double = o - t - ActivationFunction(output, target, result, m) - -Bsum( target :* Blog(output)) / output.cols - } - - override def derivative(x: BDM[Double], y: BDM[Double]): Unit = { - def sd(z: Double): Double = (1 - z) * z - ActivationFunction(x, y, sd) - } - - override def squared(output: BDM[Double], target: BDM[Double], result: BDM[Double]): Double = { - throw new UnsupportedOperationException("Sorry, squared error is not defined for SoftMax.") - } -} - /** * Implements Sigmoid activation function */ private[ann] class SigmoidFunction extends ActivationFunction { - override def eval(x: BDM[Double], y: BDM[Double]): Unit = { - def s(z: Double): Double = Bsigmoid(z) - ActivationFunction(x, y, s) - } - - override def crossEntropy( - output: BDM[Double], - target: BDM[Double], - result: BDM[Double]): Double = { - def m(o: Double, t: Double): Double = o - t - ActivationFunction(output, target, result, m) - -Bsum(target :* Blog(output)) / output.cols - } - override def derivative(x: BDM[Double], y: BDM[Double]): Unit = { - def sd(z: Double): Double = (1 - z) * z - ActivationFunction(x, y, sd) - } + override def eval: (Double) => Double = x => 1.0 / (1 + math.exp(-x)) - override def squared(output: BDM[Double], target: BDM[Double], result: BDM[Double]): Double = { - // TODO: make it readable - def m(o: Double, t: Double): Double = (o - t) - ActivationFunction(output, target, result, m) - val e = Bsum(result :* result) / 2 / output.cols - def m2(x: Double, o: Double) = x * (o - o * o) - ActivationFunction(result, output, result, m2) - e - } + override def derivative: (Double) => Double = z => (1 - z) * z } /** * Functional layer properties, y = f(x) + * * @param activationFunction activation function */ private[ann] class FunctionalLayer (val activationFunction: ActivationFunction) extends Layer { - override def getInstance(weights: Vector, position: Int): LayerModel = getInstance(0L) - override def getInstance(seed: Long): LayerModel = - FunctionalLayerModel(this) + override val weightSize = 0 + + override def getOutputSize(inputSize: Int): Int = inputSize + + override val inPlace = true + + override def createModel(weights: BDV[Double]): LayerModel = new FunctionalLayerModel(this) + + override def initModel(weights: BDV[Double], random: Random): LayerModel = + createModel(weights) } /** * Functional layer model. Holds no weights. - * @param activationFunction activation function + * + * @param layer functiona layer */ -private[ann] class FunctionalLayerModel private (val activationFunction: ActivationFunction) +private[ann] class FunctionalLayerModel private[ann] (val layer: FunctionalLayer) extends LayerModel { - val size = 0 - // matrices for in-place computations - // outputs - private var f: BDM[Double] = null - // delta - private var d: BDM[Double] = null - // matrix for error computation - private var e: BDM[Double] = null - // delta gradient - private lazy val dg = new Array[Double](0) - override def eval(data: BDM[Double]): BDM[Double] = { - if (f == null || f.cols != data.cols) f = new BDM[Double](data.rows, data.cols) - activationFunction.eval(data, f) - f - } + // empty weights + val weights = new BDV[Double](0) - override def prevDelta(nextDelta: BDM[Double], input: BDM[Double]): BDM[Double] = { - if (d == null || d.cols != nextDelta.cols) d = new BDM[Double](nextDelta.rows, nextDelta.cols) - activationFunction.derivative(input, d) - d :*= nextDelta - d + override def eval(data: BDM[Double], output: BDM[Double]): Unit = { + ApplyInPlace(data, output, layer.activationFunction.eval) } - override def grad(delta: BDM[Double], input: BDM[Double]): Array[Double] = dg - - override def weights(): Vector = Vectors.dense(new Array[Double](0)) - - def crossEntropy(output: BDM[Double], target: BDM[Double]): (BDM[Double], Double) = { - if (e == null || e.cols != output.cols) e = new BDM[Double](output.rows, output.cols) - val error = activationFunction.crossEntropy(output, target, e) - (e, error) + override def computePrevDelta( + nextDelta: BDM[Double], + input: BDM[Double], + delta: BDM[Double]): Unit = { + ApplyInPlace(input, delta, layer.activationFunction.derivative) + delta :*= nextDelta } - def squared(output: BDM[Double], target: BDM[Double]): (BDM[Double], Double) = { - if (e == null || e.cols != output.cols) e = new BDM[Double](output.rows, output.cols) - val error = activationFunction.squared(output, target, e) - (e, error) - } - - def error(output: BDM[Double], target: BDM[Double]): (BDM[Double], Double) = { - // TODO: allow user pick error - activationFunction match { - case sigmoid: SigmoidFunction => squared(output, target) - case softmax: SoftmaxFunction => crossEntropy(output, target) - } - } -} - -/** - * Fabric of functional layer models - */ -private[ann] object FunctionalLayerModel { - def apply(layer: FunctionalLayer): FunctionalLayerModel = - new FunctionalLayerModel(layer.activationFunction) + override def grad(delta: BDM[Double], input: BDM[Double], cumGrad: BDV[Double]): Unit = {} } /** * Trait for the artificial neural network (ANN) topology properties */ -private[ann] trait Topology extends Serializable{ - def getInstance(weights: Vector): TopologyModel - def getInstance(seed: Long): TopologyModel +private[ann] trait Topology extends Serializable { + def model(weights: Vector): TopologyModel + def model(seed: Long): TopologyModel } /** * Trait for ANN topology model */ -private[ann] trait TopologyModel extends Serializable{ +private[ann] trait TopologyModel extends Serializable { + + val weights: Vector + /** + * Array of layers + */ + val layers: Array[Layer] + + /** + * Array of layer models + */ + val layerModels: Array[LayerModel] /** * Forward propagation + * * @param data input data * @return array of outputs for each of the layers */ @@ -474,6 +362,7 @@ private[ann] trait TopologyModel extends Serializable{ /** * Prediction of the model + * * @param data input data * @return prediction */ @@ -481,6 +370,7 @@ private[ann] trait TopologyModel extends Serializable{ /** * Computes gradient for the network + * * @param data input data * @param target target output * @param cumGradient cumulative gradient @@ -489,22 +379,17 @@ private[ann] trait TopologyModel extends Serializable{ */ def computeGradient(data: BDM[Double], target: BDM[Double], cumGradient: Vector, blockSize: Int): Double - - /** - * Returns the weights of the ANN - * @return weights - */ - def weights(): Vector } /** * Feed forward ANN + * * @param layers */ private[ann] class FeedForwardTopology private(val layers: Array[Layer]) extends Topology { - override def getInstance(weights: Vector): TopologyModel = FeedForwardModel(this, weights) + override def model(weights: Vector): TopologyModel = FeedForwardModel(this, weights) - override def getInstance(seed: Long): TopologyModel = FeedForwardModel(this, seed) + override def model(seed: Long): TopologyModel = FeedForwardModel(this, seed) } /** @@ -513,6 +398,7 @@ private[ann] class FeedForwardTopology private(val layers: Array[Layer]) extends private[ml] object FeedForwardTopology { /** * Creates a feed forward topology from the array of layers + * * @param layers array of layers * @return feed forward topology */ @@ -522,18 +408,26 @@ private[ml] object FeedForwardTopology { /** * Creates a multi-layer perceptron + * * @param layerSizes sizes of layers including input and output size - * @param softmax whether to use SoftMax or Sigmoid function for an output layer. + * @param softmaxOnTop wether to use SoftMax or Sigmoid function for an output layer. * Softmax is default * @return multilayer perceptron topology */ - def multiLayerPerceptron(layerSizes: Array[Int], softmax: Boolean = true): FeedForwardTopology = { + def multiLayerPerceptron( + layerSizes: Array[Int], + softmaxOnTop: Boolean = true): FeedForwardTopology = { val layers = new Array[Layer]((layerSizes.length - 1) * 2) - for(i <- 0 until layerSizes.length - 1) { + for (i <- 0 until layerSizes.length - 1) { layers(i * 2) = new AffineLayer(layerSizes(i), layerSizes(i + 1)) layers(i * 2 + 1) = - if (softmax && i == layerSizes.length - 2) { - new FunctionalLayer(new SoftmaxFunction()) + if (i == layerSizes.length - 2) { + if (softmaxOnTop) { + new SoftmaxLayerWithCrossEntropyLoss() + } else { + // TODO: squared error is more natural but converges slower + new SigmoidLayerWithSquaredError() + } } else { new FunctionalLayer(new SigmoidFunction()) } @@ -545,17 +439,45 @@ private[ml] object FeedForwardTopology { /** * Model of Feed Forward Neural Network. * Implements forward, gradient computation and can return weights in vector format. - * @param layerModels models of layers - * @param topology topology of the network + * + * @param weights network weights + * @param topology network topology */ private[ml] class FeedForwardModel private( - val layerModels: Array[LayerModel], + val weights: Vector, val topology: FeedForwardTopology) extends TopologyModel { + + val layers = topology.layers + val layerModels = new Array[LayerModel](layers.length) + private var offset = 0 + for (i <- 0 until layers.length) { + layerModels(i) = layers(i).createModel( + new BDV[Double](weights.toArray, offset, 1, layers(i).weightSize)) + offset += layers(i).weightSize + } + private var outputs: Array[BDM[Double]] = null + private var deltas: Array[BDM[Double]] = null + override def forward(data: BDM[Double]): Array[BDM[Double]] = { - val outputs = new Array[BDM[Double]](layerModels.length) - outputs(0) = layerModels(0).eval(data) + // Initialize output arrays for all layers. Special treatment for InPlace + val currentBatchSize = data.cols + // TODO: allocate outputs as one big array and then create BDMs from it + if (outputs == null || outputs(0).cols != currentBatchSize) { + outputs = new Array[BDM[Double]](layers.length) + var inputSize = data.rows + for (i <- 0 until layers.length) { + if (layers(i).inPlace) { + outputs(i) = outputs(i - 1) + } else { + val outputSize = layers(i).getOutputSize(inputSize) + outputs(i) = new BDM[Double](outputSize, currentBatchSize) + inputSize = outputSize + } + } + } + layerModels(0).eval(data, outputs(0)) for (i <- 1 until layerModels.length) { - outputs(i) = layerModels(i).eval(outputs(i-1)) + layerModels(i).eval(outputs(i - 1), outputs(i)) } outputs } @@ -566,54 +488,36 @@ private[ml] class FeedForwardModel private( cumGradient: Vector, realBatchSize: Int): Double = { val outputs = forward(data) - val deltas = new Array[BDM[Double]](layerModels.length) + val currentBatchSize = data.cols + // TODO: allocate deltas as one big array and then create BDMs from it + if (deltas == null || deltas(0).cols != currentBatchSize) { + deltas = new Array[BDM[Double]](layerModels.length) + var inputSize = data.rows + for (i <- 0 until layerModels.length - 1) { + val outputSize = layers(i).getOutputSize(inputSize) + deltas(i) = new BDM[Double](outputSize, currentBatchSize) + inputSize = outputSize + } + } val L = layerModels.length - 1 - val (newE, newError) = layerModels.last match { - case flm: FunctionalLayerModel => flm.error(outputs.last, target) + // TODO: explain why delta of top layer is null (because it might contain loss+layer) + val loss = layerModels.last match { + case levelWithError: LossFunction => levelWithError.loss(outputs.last, target, deltas(L - 1)) case _ => - throw new UnsupportedOperationException("Non-functional layer not supported at the top") + throw new UnsupportedOperationException("Top layer is required to have objective.") } - deltas(L) = new BDM[Double](0, 0) - deltas(L - 1) = newE for (i <- (L - 2) to (0, -1)) { - deltas(i) = layerModels(i + 1).prevDelta(deltas(i + 1), outputs(i + 1)) - } - val grads = new Array[Array[Double]](layerModels.length) - for (i <- 0 until layerModels.length) { - val input = if (i==0) data else outputs(i - 1) - grads(i) = layerModels(i).grad(deltas(i), input) + layerModels(i + 1).computePrevDelta(deltas(i + 1), outputs(i + 1), deltas(i)) } - // update cumGradient val cumGradientArray = cumGradient.toArray var offset = 0 - // TODO: extract roll - for (i <- 0 until grads.length) { - val gradArray = grads(i) - var k = 0 - while (k < gradArray.length) { - cumGradientArray(offset + k) += gradArray(k) - k += 1 - } - offset += gradArray.length - } - newError - } - - // TODO: do we really need to copy the weights? they should be read-only - override def weights(): Vector = { - // TODO: extract roll - var size = 0 - for (i <- 0 until layerModels.length) { - size += layerModels(i).size - } - val array = new Array[Double](size) - var offset = 0 for (i <- 0 until layerModels.length) { - val layerWeights = layerModels(i).weights().toArray - System.arraycopy(layerWeights, 0, array, offset, layerWeights.length) - offset += layerWeights.length + val input = if (i == 0) data else outputs(i - 1) + layerModels(i).grad(deltas(i), input, + new BDV[Double](cumGradientArray, offset, 1, layers(i).weightSize)) + offset += layers(i).weightSize } - Vectors.dense(array) + loss } override def predict(data: Vector): Vector = { @@ -630,23 +534,19 @@ private[ann] object FeedForwardModel { /** * Creates a model from a topology and weights + * * @param topology topology * @param weights weights * @return model */ def apply(topology: FeedForwardTopology, weights: Vector): FeedForwardModel = { - val layers = topology.layers - val layerModels = new Array[LayerModel](layers.length) - var offset = 0 - for (i <- 0 until layers.length) { - layerModels(i) = layers(i).getInstance(weights, offset) - offset += layerModels(i).size - } - new FeedForwardModel(layerModels, topology) + // TODO: check that weights size is equal to sum of layers sizes + new FeedForwardModel(weights, topology) } /** * Creates a model given a topology and seed + * * @param topology topology * @param seed seed for generating the weights * @return model @@ -654,17 +554,25 @@ private[ann] object FeedForwardModel { def apply(topology: FeedForwardTopology, seed: Long = 11L): FeedForwardModel = { val layers = topology.layers val layerModels = new Array[LayerModel](layers.length) + var totalSize = 0 + for (i <- 0 until topology.layers.length) { + totalSize += topology.layers(i).weightSize + } + val weights = BDV.zeros[Double](totalSize) var offset = 0 - for(i <- 0 until layers.length) { - layerModels(i) = layers(i).getInstance(seed) - offset += layerModels(i).size + val random = new XORShiftRandom(seed) + for (i <- 0 until layers.length) { + layerModels(i) = layers(i). + initModel(new BDV[Double](weights.data, offset, 1, layers(i).weightSize), random) + offset += layers(i).weightSize } - new FeedForwardModel(layerModels, topology) + new FeedForwardModel(Vectors.fromBreeze(weights), topology) } } /** * Neural network gradient. Does nothing but calling Model's gradient + * * @param topology topology * @param dataStacker data stacker */ @@ -682,7 +590,7 @@ private[ann] class ANNGradient(topology: Topology, dataStacker: DataStacker) ext weights: Vector, cumGradient: Vector): Double = { val (input, target, realBatchSize) = dataStacker.unstack(data) - val model = topology.getInstance(weights) + val model = topology.model(weights) model.computeGradient(input, target, cumGradient, realBatchSize) } } @@ -692,6 +600,7 @@ private[ann] class ANNGradient(topology: Topology, dataStacker: DataStacker) ext * through Optimizer/Gradient interfaces. If stackSize is more than one, makes blocks * or matrices of inputs and outputs and then stack them in one vector. * This can be used for further batch computations after unstacking. + * * @param stackSize stack size * @param inputSize size of the input vectors * @param outputSize size of the output vectors @@ -701,6 +610,7 @@ private[ann] class DataStacker(stackSize: Int, inputSize: Int, outputSize: Int) /** * Stacks the data + * * @param data RDD of vector pairs * @return RDD of double (always zero) and vector that contains the stacked vectors */ @@ -733,6 +643,7 @@ private[ann] class DataStacker(stackSize: Int, inputSize: Int, outputSize: Int) /** * Unstack the stacked vectors into matrices for batch operations + * * @param data stacked vector * @return pair of matrices holding input and output data and the real stack size */ @@ -765,6 +676,7 @@ private[ann] class ANNUpdater extends Updater { /** * MLlib-style trainer class that trains a network given the data and topology + * * @param topology topology of ANN * @param inputSize input size * @param outputSize output size @@ -774,36 +686,50 @@ private[ml] class FeedForwardTrainer( val inputSize: Int, val outputSize: Int) extends Serializable { - // TODO: what if we need to pass random seed? - private var _weights = topology.getInstance(11L).weights() + private var _seed = this.getClass.getName.hashCode.toLong + private var _weights: Vector = null private var _stackSize = 128 private var dataStacker = new DataStacker(_stackSize, inputSize, outputSize) private var _gradient: Gradient = new ANNGradient(topology, dataStacker) private var _updater: Updater = new ANNUpdater() private var optimizer: Optimizer = LBFGSOptimizer.setConvergenceTol(1e-4).setNumIterations(100) + /** + * Returns seed + */ + def getSeed: Long = _seed + + /** + * Sets seed + */ + def setSeed(value: Long): this.type = { + _seed = value + this + } + /** * Returns weights - * @return weights */ def getWeights: Vector = _weights /** * Sets weights + * * @param value weights * @return trainer */ - def setWeights(value: Vector): FeedForwardTrainer = { + def setWeights(value: Vector): this.type = { _weights = value this } /** * Sets the stack size + * * @param value stack size * @return trainer */ - def setStackSize(value: Int): FeedForwardTrainer = { + def setStackSize(value: Int): this.type = { _stackSize = value dataStacker = new DataStacker(value, inputSize, outputSize) this @@ -811,6 +737,7 @@ private[ml] class FeedForwardTrainer( /** * Sets the SGD optimizer + * * @return SGD optimizer */ def SGDOptimizer: GradientDescent = { @@ -821,6 +748,7 @@ private[ml] class FeedForwardTrainer( /** * Sets the LBFGS optimizer + * * @return LBGS optimizer */ def LBFGSOptimizer: LBFGS = { @@ -831,10 +759,11 @@ private[ml] class FeedForwardTrainer( /** * Sets the updater + * * @param value updater * @return trainer */ - def setUpdater(value: Updater): FeedForwardTrainer = { + def setUpdater(value: Updater): this.type = { _updater = value updateUpdater(value) this @@ -842,10 +771,11 @@ private[ml] class FeedForwardTrainer( /** * Sets the gradient + * * @param value gradient * @return trainer */ - def setGradient(value: Gradient): FeedForwardTrainer = { + def setGradient(value: Gradient): this.type = { _gradient = value updateGradient(value) this @@ -871,12 +801,20 @@ private[ml] class FeedForwardTrainer( /** * Trains the ANN + * * @param data RDD of input and output vector pairs * @return model */ def train(data: RDD[(Vector, Vector)]): TopologyModel = { - val newWeights = optimizer.optimize(dataStacker.stack(data), getWeights) - topology.getInstance(newWeights) + val w = if (getWeights == null) { + // TODO: will make a copy if vector is a subvector of BDV (see Vectors code) + topology.model(_seed).weights + } else { + getWeights + } + // TODO: deprecate standard optimizer because it needs Vector + val newWeights = optimizer.optimize(dataStacker.stack(data), w) + topology.model(newWeights) } } diff --git a/mllib/src/main/scala/org/apache/spark/ml/ann/LossFunction.scala b/mllib/src/main/scala/org/apache/spark/ml/ann/LossFunction.scala new file mode 100644 index 0000000000000000000000000000000000000000..32d78e9b226eb7d3a3d85fd69df2ba3e402523e1 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/ml/ann/LossFunction.scala @@ -0,0 +1,124 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.ann + +import java.util.Random + +import breeze.linalg.{sum => Bsum, DenseMatrix => BDM, DenseVector => BDV} +import breeze.numerics.{log => brzlog} + +/** + * Trait for loss function + */ +private[ann] trait LossFunction { + /** + * Returns the value of loss function. + * Computes loss based on target and output. + * Writes delta (error) to delta in place. + * Delta is allocated based on the outputSize + * of model implementation. + * + * @param output actual output + * @param target target output + * @param delta delta (updated in place) + * @return loss + */ + def loss(output: BDM[Double], target: BDM[Double], delta: BDM[Double]): Double +} + +private[ann] class SigmoidLayerWithSquaredError extends Layer { + override val weightSize = 0 + override val inPlace = true + + override def getOutputSize(inputSize: Int): Int = inputSize + override def createModel(weights: BDV[Double]): LayerModel = + new SigmoidLayerModelWithSquaredError() + override def initModel(weights: BDV[Double], random: Random): LayerModel = + new SigmoidLayerModelWithSquaredError() +} + +private[ann] class SigmoidLayerModelWithSquaredError + extends FunctionalLayerModel(new FunctionalLayer(new SigmoidFunction)) with LossFunction { + override def loss(output: BDM[Double], target: BDM[Double], delta: BDM[Double]): Double = { + ApplyInPlace(output, target, delta, (o: Double, t: Double) => o - t) + val error = Bsum(delta :* delta) / 2 / output.cols + ApplyInPlace(delta, output, delta, (x: Double, o: Double) => x * (o - o * o)) + error + } +} + +private[ann] class SoftmaxLayerWithCrossEntropyLoss extends Layer { + override val weightSize = 0 + override val inPlace = true + + override def getOutputSize(inputSize: Int): Int = inputSize + override def createModel(weights: BDV[Double]): LayerModel = + new SoftmaxLayerModelWithCrossEntropyLoss() + override def initModel(weights: BDV[Double], random: Random): LayerModel = + new SoftmaxLayerModelWithCrossEntropyLoss() +} + +private[ann] class SoftmaxLayerModelWithCrossEntropyLoss extends LayerModel with LossFunction { + + // loss layer models do not have weights + val weights = new BDV[Double](0) + + override def eval(data: BDM[Double], output: BDM[Double]): Unit = { + var j = 0 + // find max value to make sure later that exponent is computable + while (j < data.cols) { + var i = 0 + var max = Double.MinValue + while (i < data.rows) { + if (data(i, j) > max) { + max = data(i, j) + } + i += 1 + } + var sum = 0.0 + i = 0 + while (i < data.rows) { + val res = math.exp(data(i, j) - max) + output(i, j) = res + sum += res + i += 1 + } + i = 0 + while (i < data.rows) { + output(i, j) /= sum + i += 1 + } + j += 1 + } + } + override def computePrevDelta( + nextDelta: BDM[Double], + input: BDM[Double], + delta: BDM[Double]): Unit = { + /* loss layer model computes delta in loss function */ + } + + override def grad(delta: BDM[Double], input: BDM[Double], cumGrad: BDV[Double]): Unit = { + /* loss layer model does not have weights */ + } + + override def loss(output: BDM[Double], target: BDM[Double], delta: BDM[Double]): Double = { + ApplyInPlace(output, target, delta, (o: Double, t: Double) => o - t) + -Bsum( target :* brzlog(output)) / output.cols + } +} diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala index 7ce3ec68da7cc846c948837c4ce379a93101d0c3..79bb2a8855dcfa49aea9ba4c4afb82964b20c7ff 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala @@ -24,8 +24,8 @@ import org.apache.hadoop.fs.Path import org.apache.spark.annotation.{Experimental, Since} import org.apache.spark.ml.{PredictionModel, Predictor, PredictorParams} import org.apache.spark.ml.ann.{FeedForwardTopology, FeedForwardTrainer} -import org.apache.spark.ml.param.{IntArrayParam, IntParam, ParamMap, ParamValidators} -import org.apache.spark.ml.param.shared.{HasMaxIter, HasSeed, HasTol} +import org.apache.spark.ml.param._ +import org.apache.spark.ml.param.shared.{HasMaxIter, HasSeed, HasStepSize, HasTol} import org.apache.spark.ml.util._ import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.regression.LabeledPoint @@ -33,11 +33,12 @@ import org.apache.spark.sql.DataFrame /** Params for Multilayer Perceptron. */ private[ml] trait MultilayerPerceptronParams extends PredictorParams - with HasSeed with HasMaxIter with HasTol { + with HasSeed with HasMaxIter with HasTol with HasStepSize { /** * Layer sizes including input size and output size. * Default: Array(1, 1) - * @group param + * + * @group param */ final val layers: IntArrayParam = new IntArrayParam(this, "layers", "Sizes of layers from input layer to output layer" + @@ -55,7 +56,8 @@ private[ml] trait MultilayerPerceptronParams extends PredictorParams * a partition then it is adjusted to the size of this data. * Recommended size is between 10 and 1000. * Default: 128 - * @group expertParam + * + * @group expertParam */ final val blockSize: IntParam = new IntParam(this, "blockSize", "Block size for stacking input data in matrices. Data is stacked within partitions." + @@ -66,7 +68,33 @@ private[ml] trait MultilayerPerceptronParams extends PredictorParams /** @group getParam */ final def getBlockSize: Int = $(blockSize) - setDefault(maxIter -> 100, tol -> 1e-4, layers -> Array(1, 1), blockSize -> 128) + /** + * Allows setting the solver: minibatch gradient descent (gd) or l-bfgs. + * l-bfgs is the default one. + * + * @group expertParam + */ + final val solver: Param[String] = new Param[String](this, "solver", + " Allows setting the solver: minibatch gradient descent (gd) or l-bfgs. " + + " l-bfgs is the default one.", + ParamValidators.inArray[String](Array("gd", "l-bfgs"))) + + /** @group getParam */ + final def getOptimizer: String = $(solver) + + /** + * Model weights. Can be returned either after training or after explicit setting + * + * @group expertParam + */ + final val weights: Param[Vector] = new Param[Vector](this, "weights", + " Sets the weights of the model ") + + /** @group getParam */ + final def getWeights: Vector = $(weights) + + + setDefault(maxIter -> 100, tol -> 1e-4, blockSize -> 128, solver -> "l-bfgs", stepSize -> 0.03) } /** Label to vector converter. */ @@ -105,6 +133,7 @@ private object LabelConverter { * Each layer has sigmoid activation function, output layer has softmax. * Number of inputs has to be equal to the size of feature vectors. * Number of outputs has to be equal to the total number of labels. + * */ @Since("1.5.0") @Experimental @@ -127,7 +156,8 @@ class MultilayerPerceptronClassifier @Since("1.5.0") ( /** * Set the maximum number of iterations. * Default is 100. - * @group setParam + * + * @group setParam */ @Since("1.5.0") def setMaxIter(value: Int): this.type = set(maxIter, value) @@ -136,18 +166,28 @@ class MultilayerPerceptronClassifier @Since("1.5.0") ( * Set the convergence tolerance of iterations. * Smaller value will lead to higher accuracy with the cost of more iterations. * Default is 1E-4. - * @group setParam + * + * @group setParam */ @Since("1.5.0") def setTol(value: Double): this.type = set(tol, value) /** - * Set the seed for weights initialization. - * @group setParam + * Set the seed for weights initialization if weights are not set + * + * @group setParam */ @Since("1.5.0") def setSeed(value: Long): this.type = set(seed, value) + /** + * Sets the model weights. + * + * @group expertParam + */ + @Since("2.0.0") + def setWeights(value: Vector): this.type = set(weights, value) + @Since("1.5.0") override def copy(extra: ParamMap): MultilayerPerceptronClassifier = defaultCopy(extra) @@ -165,11 +205,18 @@ class MultilayerPerceptronClassifier @Since("1.5.0") ( val lpData = extractLabeledPoints(dataset) val data = lpData.map(lp => LabelConverter.encodeLabeledPoint(lp, labels)) val topology = FeedForwardTopology.multiLayerPerceptron(myLayers, true) - val FeedForwardTrainer = new FeedForwardTrainer(topology, myLayers(0), myLayers.last) - FeedForwardTrainer.LBFGSOptimizer.setConvergenceTol($(tol)).setNumIterations($(maxIter)) - FeedForwardTrainer.setStackSize($(blockSize)) - val mlpModel = FeedForwardTrainer.train(data) - new MultilayerPerceptronClassificationModel(uid, myLayers, mlpModel.weights()) + val trainer = new FeedForwardTrainer(topology, myLayers(0), myLayers.last) + if (isDefined(weights)) { + trainer.setWeights($(weights)) + } else { + trainer.setSeed($(seed)) + } + trainer.LBFGSOptimizer + .setConvergenceTol($(tol)) + .setNumIterations($(maxIter)) + trainer.setStackSize($(blockSize)) + val mlpModel = trainer.train(data) + new MultilayerPerceptronClassificationModel(uid, myLayers, mlpModel.weights) } } @@ -185,7 +232,8 @@ object MultilayerPerceptronClassifier * :: Experimental :: * Classification model based on the Multilayer Perceptron. * Each layer has sigmoid activation function, output layer has softmax. - * @param uid uid + * + * @param uid uid * @param layers array of layer sizes including input and output layers * @param weights vector of initial weights for the model that consists of the weights of layers * @return prediction model @@ -202,7 +250,7 @@ class MultilayerPerceptronClassificationModel private[ml] ( @Since("1.6.0") override val numFeatures: Int = layers.head - private val mlpModel = FeedForwardTopology.multiLayerPerceptron(layers, true).getInstance(weights) + private val mlpModel = FeedForwardTopology.multiLayerPerceptron(layers, true).model(weights) /** * Returns layers in a Java List. diff --git a/mllib/src/test/java/org/apache/spark/ml/classification/JavaMultilayerPerceptronClassifierSuite.java b/mllib/src/test/java/org/apache/spark/ml/classification/JavaMultilayerPerceptronClassifierSuite.java index d499d363f18c14613ece12ad5e9bcc95929704dd..bc955f3cf6b0fff56f1ef02b19199a999b5846af 100644 --- a/mllib/src/test/java/org/apache/spark/ml/classification/JavaMultilayerPerceptronClassifierSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/classification/JavaMultilayerPerceptronClassifierSuite.java @@ -63,7 +63,7 @@ public class JavaMultilayerPerceptronClassifierSuite implements Serializable { MultilayerPerceptronClassifier mlpc = new MultilayerPerceptronClassifier() .setLayers(new int[] {2, 5, 2}) .setBlockSize(1) - .setSeed(11L) + .setSeed(123L) .setMaxIter(100); MultilayerPerceptronClassificationModel model = mlpc.fit(dataFrame); Dataset<Row> result = model.transform(dataFrame); diff --git a/mllib/src/test/scala/org/apache/spark/ml/ann/ANNSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/ann/ANNSuite.scala index 1292e57d7c01ae263ba266f9f594d3469b8879cb..dc91fc5f9e458e0dd684b0dbc3f34e4aab8a0ba0 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/ann/ANNSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/ann/ANNSuite.scala @@ -42,7 +42,7 @@ class ANNSuite extends SparkFunSuite with MLlibTestSparkContext { val dataSample = rddData.first() val layerSizes = dataSample._1.size +: hiddenLayersTopology :+ dataSample._2.size val topology = FeedForwardTopology.multiLayerPerceptron(layerSizes, false) - val initialWeights = FeedForwardModel(topology, 23124).weights() + val initialWeights = FeedForwardModel(topology, 23124).weights val trainer = new FeedForwardTrainer(topology, 2, 1) trainer.setWeights(initialWeights) trainer.LBFGSOptimizer.setNumIterations(20) @@ -76,10 +76,11 @@ class ANNSuite extends SparkFunSuite with MLlibTestSparkContext { val dataSample = rddData.first() val layerSizes = dataSample._1.size +: hiddenLayersTopology :+ dataSample._2.size val topology = FeedForwardTopology.multiLayerPerceptron(layerSizes, false) - val initialWeights = FeedForwardModel(topology, 23124).weights() + val initialWeights = FeedForwardModel(topology, 23124).weights val trainer = new FeedForwardTrainer(topology, 2, 2) - trainer.SGDOptimizer.setNumIterations(2000) - trainer.setWeights(initialWeights) + // TODO: add a test for SGD + trainer.LBFGSOptimizer.setConvergenceTol(1e-4).setNumIterations(20) + trainer.setWeights(initialWeights).setStackSize(1) val model = trainer.train(rddData) val predictionAndLabels = rddData.map { case (input, label) => (model.predict(input), label) diff --git a/mllib/src/test/scala/org/apache/spark/ml/ann/GradientSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/ann/GradientSuite.scala new file mode 100644 index 0000000000000000000000000000000000000000..04cc426c40b5ef1b79b595686777f171c5fb2fbf --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/ml/ann/GradientSuite.scala @@ -0,0 +1,76 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.ann + +import breeze.linalg.{DenseMatrix => BDM} + +import org.apache.spark.SparkFunSuite +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.util.MLlibTestSparkContext + +class GradientSuite extends SparkFunSuite with MLlibTestSparkContext { + + test("Gradient computation against numerical differentiation") { + val input = new BDM[Double](3, 1, Array(1.0, 1.0, 1.0)) + // output must contain zeros and one 1 for SoftMax + val target = new BDM[Double](2, 1, Array(0.0, 1.0)) + val topology = FeedForwardTopology.multiLayerPerceptron(Array(3, 4, 2), softmaxOnTop = false) + val layersWithErrors = Seq( + new SigmoidLayerWithSquaredError(), + new SoftmaxLayerWithCrossEntropyLoss() + ) + // check all layers that provide loss computation + // 1) compute loss and gradient given the model and initial weights + // 2) modify weights with small number epsilon (per dimension i) + // 3) compute new loss + // 4) ((newLoss - loss) / epsilon) should be close to the i-th component of the gradient + for (layerWithError <- layersWithErrors) { + topology.layers(topology.layers.length - 1) = layerWithError + val model = topology.model(seed = 12L) + val weights = model.weights.toArray + val numWeights = weights.size + val gradient = Vectors.dense(Array.fill[Double](numWeights)(0.0)) + val loss = model.computeGradient(input, target, gradient, 1) + val eps = 1e-4 + var i = 0 + val tol = 1e-4 + while (i < numWeights) { + val originalValue = weights(i) + weights(i) += eps + val newModel = topology.model(Vectors.dense(weights)) + val newLoss = computeLoss(input, target, newModel) + val derivativeEstimate = (newLoss - loss) / eps + assert(math.abs(gradient(i) - derivativeEstimate) < tol, "Layer failed gradient check: " + + layerWithError.getClass) + weights(i) = originalValue + i += 1 + } + } + } + + private def computeLoss(input: BDM[Double], target: BDM[Double], model: TopologyModel): Double = { + val outputs = model.forward(input) + model.layerModels.last match { + case layerWithLoss: LossFunction => + layerWithLoss.loss(outputs.last, target, new BDM[Double](target.rows, target.cols)) + case _ => + throw new UnsupportedOperationException("Top layer is required to have loss." + + " Failed layer:" + model.layerModels.last.getClass) + } + } +} diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala index 53c7a559e34dd44381948d172733875e9c96af13..43781385dbdbdc858a2b8420b74db177c4f71a5b 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala @@ -65,7 +65,7 @@ class MultilayerPerceptronClassifierSuite val trainer = new MultilayerPerceptronClassifier() .setLayers(layers) .setBlockSize(1) - .setSeed(11L) + .setSeed(123L) .setMaxIter(100) val model = trainer.fit(dataset) val result = model.transform(dataset) @@ -75,7 +75,29 @@ class MultilayerPerceptronClassifierSuite } } - // TODO: implement a more rigorous test + test("Test setWeights by training restart") { + val dataFrame = sqlContext.createDataFrame(Seq( + (Vectors.dense(0.0, 0.0), 0.0), + (Vectors.dense(0.0, 1.0), 1.0), + (Vectors.dense(1.0, 0.0), 1.0), + (Vectors.dense(1.0, 1.0), 0.0)) + ).toDF("features", "label") + val layers = Array[Int](2, 5, 2) + val trainer = new MultilayerPerceptronClassifier() + .setLayers(layers) + .setBlockSize(1) + .setSeed(12L) + .setMaxIter(1) + .setTol(1e-6) + val initialWeights = trainer.fit(dataFrame).weights + trainer.setWeights(initialWeights.copy) + val weights1 = trainer.fit(dataFrame).weights + trainer.setWeights(initialWeights.copy) + val weights2 = trainer.fit(dataFrame).weights + assert(weights1 ~== weights2 absTol 10e-5, + "Training should produce the same weights given equal initial weights and number of steps") + } + test("3 class classification with 2 hidden layers") { val nPoints = 1000 diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index 94621d7fa3723b21662f213487774abcff7131f3..ff11775412d0860f8aed8ef28b9ce33ce7e7b14c 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -592,6 +592,11 @@ object MimaExcludes { ) ++ Seq( // [SPARK-14205][SQL] remove trait Queryable ProblemFilters.exclude[MissingTypesProblem]("org.apache.spark.sql.Dataset") + ) ++ Seq( + // [SPARK-11262][ML] Unit test for gradient, loss layers, memory management + // for multilayer perceptron. + // This class is marked as `private`. + ProblemFilters.exclude[MissingClassProblem]("org.apache.spark.ml.ann.SoftmaxFunction") ) case v if v.startsWith("1.6") => Seq( diff --git a/python/pyspark/ml/classification.py b/python/pyspark/ml/classification.py index f5335a3114b183fa3f66a190cd540c73e6241a2c..067009559b6f7dfb715a57b6c1321f67b30d53c0 100644 --- a/python/pyspark/ml/classification.py +++ b/python/pyspark/ml/classification.py @@ -788,7 +788,7 @@ class MultilayerPerceptronClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, ... (1.0, Vectors.dense([0.0, 1.0])), ... (1.0, Vectors.dense([1.0, 0.0])), ... (0.0, Vectors.dense([1.0, 1.0]))], ["label", "features"]) - >>> mlp = MultilayerPerceptronClassifier(maxIter=100, layers=[2, 5, 2], blockSize=1, seed=11) + >>> mlp = MultilayerPerceptronClassifier(maxIter=100, layers=[2, 5, 2], blockSize=1, seed=123) >>> model = mlp.fit(df) >>> model.layers [2, 5, 2]