From 1f4a648d4e30e837d6cf3ea8de1808e2254ad70b Mon Sep 17 00:00:00 2001 From: Sandy Ryza <sandy@cloudera.com> Date: Wed, 10 Sep 2014 14:34:24 -0500 Subject: [PATCH] SPARK-1713. Use a thread pool for launching executors. This patch copies the approach used in the MapReduce application master for launching containers. Author: Sandy Ryza <sandy@cloudera.com> Closes #663 from sryza/sandy-spark-1713 and squashes the following commits: 036550d [Sandy Ryza] SPARK-1713. [YARN] Use a threadpool for launching executor containers --- docs/running-on-yarn.md | 7 +++++++ .../apache/spark/deploy/yarn/YarnAllocator.scala | 14 ++++++++++++-- 2 files changed, 19 insertions(+), 2 deletions(-) diff --git a/docs/running-on-yarn.md b/docs/running-on-yarn.md index 943f06b114..d8b22f3663 100644 --- a/docs/running-on-yarn.md +++ b/docs/running-on-yarn.md @@ -125,6 +125,13 @@ Most of the configs are the same for Spark on YARN as for other deployment modes the environment of the executor launcher. </td> </tr> +<tr> + <td><code>spark.yarn.containerLauncherMaxThreads</code></td> + <td>25</td> + <td> + The maximum number of threads to use in the application master for launching executor containers. + </td> +</tr> </table> # Launching Spark on YARN diff --git a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala index 02b9a81bf6..0b8744f4b8 100644 --- a/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala +++ b/yarn/common/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala @@ -18,7 +18,7 @@ package org.apache.spark.deploy.yarn import java.util.{List => JList} -import java.util.concurrent.ConcurrentHashMap +import java.util.concurrent._ import java.util.concurrent.atomic.AtomicInteger import scala.collection.JavaConversions._ @@ -32,6 +32,8 @@ import org.apache.spark.{Logging, SecurityManager, SparkConf, SparkEnv} import org.apache.spark.scheduler.{SplitInfo, TaskSchedulerImpl} import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend +import com.google.common.util.concurrent.ThreadFactoryBuilder + object AllocationType extends Enumeration { type AllocationType = Value val HOST, RACK, ANY = Value @@ -95,6 +97,14 @@ private[yarn] abstract class YarnAllocator( protected val (preferredHostToCount, preferredRackToCount) = generateNodeToWeight(conf, preferredNodes) + private val launcherPool = new ThreadPoolExecutor( + // max pool size of Integer.MAX_VALUE is ignored because we use an unbounded queue + sparkConf.getInt("spark.yarn.containerLauncherMaxThreads", 25), Integer.MAX_VALUE, + 1, TimeUnit.MINUTES, + new LinkedBlockingQueue[Runnable](), + new ThreadFactoryBuilder().setNameFormat("ContainerLauncher #%d").setDaemon(true).build()) + launcherPool.allowCoreThreadTimeOut(true) + def getNumExecutorsRunning: Int = numExecutorsRunning.intValue def getNumExecutorsFailed: Int = numExecutorsFailed.intValue @@ -283,7 +293,7 @@ private[yarn] abstract class YarnAllocator( executorMemory, executorCores, securityMgr) - new Thread(executorRunnable).start() + launcherPool.execute(executorRunnable) } } logDebug(""" -- GitLab