diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py index 1ad4b5298758ba50816fe3946423e87c3d1314c6..90f93a19264bd7d1f9831fb1ae047f59919732e5 100644 --- a/python/pyspark/rdd.py +++ b/python/pyspark/rdd.py @@ -455,6 +455,18 @@ class RDD(object): yield None self.mapPartitions(processPartition).collect() # Force evaluation + def foreachPartition(self, f): + """ + Applies a function to each partition of this RDD. + + >>> def f(iterator): + ... for x in iterator: + ... print x + ... yield None + >>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f) + """ + self.mapPartitions(f).collect() # Force evaluation + def collect(self): """ Return a list that contains all of the elements in this RDD. @@ -695,6 +707,24 @@ class RDD(object): """ return dict(self.collect()) + def keys(self): + """ + Return an RDD with the keys of each tuple. + >>> m = sc.parallelize([(1, 2), (3, 4)]).keys() + >>> m.collect() + [1, 3] + """ + return self.map(lambda (k, v): k) + + def values(self): + """ + Return an RDD with the values of each tuple. + >>> m = sc.parallelize([(1, 2), (3, 4)]).values() + >>> m.collect() + [2, 4] + """ + return self.map(lambda (k, v): v) + def reduceByKey(self, func, numPartitions=None): """ Merge the values for each key using an associative reduce function. @@ -987,6 +1017,36 @@ class RDD(object): """ return self.map(lambda x: (f(x), x)) + def repartition(self, numPartitions): + """ + Return a new RDD that has exactly numPartitions partitions. + + Can increase or decrease the level of parallelism in this RDD. Internally, this uses + a shuffle to redistribute data. + If you are decreasing the number of partitions in this RDD, consider using `coalesce`, + which can avoid performing a shuffle. + >>> rdd = sc.parallelize([1,2,3,4,5,6,7], 4) + >>> sorted(rdd.glom().collect()) + [[1], [2, 3], [4, 5], [6, 7]] + >>> len(rdd.repartition(2).glom().collect()) + 2 + >>> len(rdd.repartition(10).glom().collect()) + 10 + """ + jrdd = self._jrdd.repartition(numPartitions) + return RDD(jrdd, self.ctx, self._jrdd_deserializer) + + def coalesce(self, numPartitions, shuffle=False): + """ + Return a new RDD that is reduced into `numPartitions` partitions. + >>> sc.parallelize([1, 2, 3, 4, 5], 3).glom().collect() + [[1], [2, 3], [4, 5]] + >>> sc.parallelize([1, 2, 3, 4, 5], 3).coalesce(1).glom().collect() + [[1, 2, 3, 4, 5]] + """ + jrdd = self._jrdd.coalesce(numPartitions) + return RDD(jrdd, self.ctx, self._jrdd_deserializer) + # TODO: `lookup` is disabled because we can't make direct comparisons based # on the key; we need to compare the hash of the key to the hash of the # keys in the pairs. This could be an expensive operation, since those