diff --git a/R/pkg/vignettes/sparkr-vignettes.Rmd b/R/pkg/vignettes/sparkr-vignettes.Rmd index a7cac2f503d1febc8fe3a0f0cebe9d82e716967e..f13e0b3a18f78849a8b91a4fe83dd24fe512eefe 100644 --- a/R/pkg/vignettes/sparkr-vignettes.Rmd +++ b/R/pkg/vignettes/sparkr-vignettes.Rmd @@ -744,10 +744,10 @@ predictions <- predict(rfModel, df) `spark.bisectingKmeans` is a kind of [hierarchical clustering](https://en.wikipedia.org/wiki/Hierarchical_clustering) using a divisive (or "top-down") approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy. -```{r} +```{r, warning=FALSE} df <- createDataFrame(iris) model <- spark.bisectingKmeans(df, Sepal_Length ~ Sepal_Width, k = 4) -summary(kmeansModel) +summary(model) fitted <- predict(model, df) head(select(fitted, "Sepal_Length", "prediction")) ```