{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 200,
   "metadata": {},
   "outputs": [],
   "source": [
    "import glob\n",
    "from PIL import Image\n",
    "import pillow_heif\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from torchvision.utils import save_image\n",
    "import torchvision.transforms.functional as fn\n",
    "import torchvision.transforms as transforms\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 201,
   "metadata": {},
   "outputs": [],
   "source": [
    "# generates new dataset by pasting beetles and non-beetles in the same picture. \n",
    "#returns array of new images and coordinates\n",
    "#TODO: make sure that the beetles and non-beetles don't overlap with each other\n",
    "\n",
    "def generate_data(bg: list[Image], beetle_set: list[Image], num_beetles_arr: list[int], \n",
    "                  non_beetle_set: list[Image], num_non_beetles_arr: list[int], overlap: bool):\n",
    "    set_size = len(beetle_set)\n",
    "    set_non_size = len(non_beetle_set)\n",
    "    set_bg_size = len(bg)\n",
    "    sim_arr, coords_arr = [],[]\n",
    "\n",
    "    for i, num_beetles in enumerate(num_beetles_arr):\n",
    "        num_non_beetles = num_non_beetles_arr[i]\n",
    "        bg_id = np.random.randint(0, set_bg_size)\n",
    "        bg_temp = bg[bg_id].copy()\n",
    "        width, height = bg_temp.size\n",
    "        beetle_coords = []\n",
    "        non_beetle_coords = []\n",
    "        for j in range(num_non_beetles):\n",
    "            # get random non_beetle image\n",
    "            non_beetle_id = np.random.randint(0, set_non_size)\n",
    "            non_beetle_img = non_beetle_set[non_beetle_id]\n",
    "            \n",
    "            # get random non_beetle rotation\n",
    "            angle = np.random.randint(0, 360)\n",
    "            non_beetle_img = non_beetle_img.rotate(angle, resample=Image.BICUBIC, expand=1)\n",
    "            \n",
    "            non_beetle_width, non_beetle_height = non_beetle_img.size\n",
    "            \n",
    "            # get random x,y coords to paste non-beetle\n",
    "            x = np.random.randint(0, width - non_beetle_width)\n",
    "            y = np.random.randint(0, height - non_beetle_height)\n",
    "            \n",
    "            if not overlap:\n",
    "                is_overlapping = True\n",
    "                while (is_overlapping):\n",
    "                    is_overlapping = False\n",
    "                    for k in range(j):\n",
    "                        _, x_, y_, width_, height_, _ = non_beetle_coords[-(k+1)]\n",
    "                        if (x_ - width_/2) < x and (x_ + width_/2) > x and (y_ - height_/2) < y and (y_ + height_/2) > y:\n",
    "                            is_overlapping = True\n",
    "                            x = np.random.randint(0, width - non_beetle_width)\n",
    "                            y = np.random.randint(0, height - non_beetle_height)\n",
    "                            break\n",
    "\n",
    "            bg_temp.paste(non_beetle_img, box=(x,y), mask=non_beetle_img)\n",
    "            \n",
    "            #centers x and y for YOLOv5 PyTorch label\n",
    "            x += non_beetle_width/2\n",
    "            y += non_beetle_width/2\n",
    "            non_beetle_coords.append((non_beetle_id, x, y, non_beetle_width, non_beetle_height, angle))\n",
    "\n",
    "            \n",
    "        for j in range(num_beetles):\n",
    "            # get random beetle image\n",
    "            beetle_id = np.random.randint(0, set_size)\n",
    "            beetle_img = beetle_set[beetle_id]\n",
    "            # get random beetle rotation\n",
    "            angle = np.random.randint(0, 360)\n",
    "            beetle_img = beetle_img.rotate(angle, resample=Image.BICUBIC, expand=1)\n",
    "            \n",
    "            #randomly resize beetle to be smaller as they are much bigger on image\n",
    "            \n",
    "            beetle_width, beetle_height = beetle_img.size\n",
    "            beetle_max = np.max([beetle_width, beetle_height])\n",
    "            factor = np.random.uniform((height/(5*9))/beetle_max, (height/(4*9))/beetle_max)\n",
    "            beetle_img = beetle_img.resize((int(factor * beetle_width), int(factor * beetle_height)), resample=Image.BICUBIC)\n",
    "            beetle_width, beetle_height = beetle_img.size\n",
    "            \n",
    "            # get random x,y coords to paste beetle\n",
    "            x = np.random.randint(0, width - beetle_width)\n",
    "            y = np.random.randint(0, height - beetle_height)\n",
    "            \n",
    "            if not overlap:\n",
    "                is_overlapping = True\n",
    "                while (is_overlapping):\n",
    "                    is_overlapping = False\n",
    "                    for k in range(j+num_non_beetles):\n",
    "                        if (k < num_non_beetles):\n",
    "                            _, x_, y_, width_, height_, _ = non_beetle_coords[-(k+1)]\n",
    "                        else:\n",
    "                            _, x_, y_, width_, height_, _ = beetle_coords[-(k+1-num_non_beetles)]\n",
    "                        if (x_ - width_/2) < x and (x_ + width_/2) > x and (y_ - height_/2) < y and (y_ + height_/2) > y:\n",
    "                            is_overlapping = True\n",
    "                            x = np.random.randint(0, width - non_beetle_width)\n",
    "                            y = np.random.randint(0, height - non_beetle_height)\n",
    "                            break\n",
    "                            \n",
    "\n",
    "            bg_temp.paste(beetle_img, box=(x,y), mask=beetle_img)\n",
    "            \n",
    "            #centers x and y for YOLOv5 PyTorch label\n",
    "            x += beetle_width/2\n",
    "            y += beetle_height/2\n",
    "            beetle_coords.append((beetle_id, x, y, beetle_width, beetle_height, angle))\n",
    "        sim_arr.append(bg_temp)\n",
    "        coords_arr.append(beetle_coords)\n",
    "    \n",
    "    return sim_arr, coords_arr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 202,
   "metadata": {},
   "outputs": [],
   "source": [
    "#???\n",
    "def find_coeffs(source_coords, target_coords):\n",
    "    matrix = []\n",
    "    for s, t in zip(source_coords, target_coords):\n",
    "        matrix.append([t[0], t[1], 1, 0, 0, 0, -s[0]*t[0], -s[0]*t[1]])\n",
    "        matrix.append([0, 0, 0, t[0], t[1], 1, -s[1]*t[0], -s[1]*t[1]])\n",
    "    A = np.matrix(matrix, dtype=float)\n",
    "    B = np.array(source_coords).reshape(8)\n",
    "    res = np.dot(np.linalg.inv(A.T * A) * A.T, B)\n",
    "    return np.array(res).reshape(8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 203,
   "metadata": {},
   "outputs": [],
   "source": [
    "backgrounds = []\n",
    "for file in glob.glob(r\"/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/*\"):\n",
    "    if \"bg.png\" in file: #clean trap\n",
    "        bg = Image.open(file)\n",
    "        # map corners of trap to corners of image\n",
    "        coeffs = find_coeffs([(128,6), (1904,62), (2113,3137), (3,3228)], \n",
    "                     [(0,0), (bg.size[0], 0), (bg.size[0], bg.size[1]), (0, bg.size[1])])\n",
    "        bg_flat = bg.transform(bg.size, Image.PERSPECTIVE, coeffs, Image.BICUBIC)\n",
    "        backgrounds.append(bg)\n",
    "        continue\n",
    "    bg = Image.open(file)\n",
    "    \n",
    "    backgrounds.append(bg);\n",
    "\n",
    "beetles = []\n",
    "for file in glob.glob(r\"/raid/projects/akhot2/group-01-phys371-sp2023/crop/beetles/*\"):\n",
    "    b0 = Image.open(file)\n",
    "    beetles.append(b0);\n",
    "non_beetles = []\n",
    "for file in glob.glob(r\"/raid/projects/akhot2/group-01-phys371-sp2023/crop/non_beetles/*\"):\n",
    "    n_b0 = Image.open(file)\n",
    "    non_beetles.append(n_b0);"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 204,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "21\n",
      "20\n",
      "48\n"
     ]
    }
   ],
   "source": [
    "print(len(backgrounds))\n",
    "print(len(beetles))\n",
    "print(len(non_beetles))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 188,
   "metadata": {},
   "outputs": [],
   "source": [
    "beetle_counts = np.random.randint(0, 8, size=1250)\n",
    "non_beetle_counts = np.random.randint(0, 15, size=1250)\n",
    "overlap = True\n",
    "sim_img_arr, coords_arr = generate_data(backgrounds, beetles, beetle_counts, non_beetles, non_beetle_counts, overlap)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 189,
   "metadata": {},
   "outputs": [],
   "source": [
    "#exports images and coordinates in YOLOv5 PyTorch format\n",
    "def export(img_arr, coords_arr):\n",
    "    s = \"\"\n",
    "    image_set = \"train\"\n",
    "    change = len(img_arr)*0.8\n",
    "    for i in range(len(img_arr)):\n",
    "        s = \"\"\n",
    "        img = img_arr[i]\n",
    "        for coord in coords_arr[i]:\n",
    "            c, x, y, w, h, a = coord\n",
    "            s += f\"{0} {x/img.size[0]} {y/img.size[1]} {w/img.size[0]} {h/img.size[1]}\\n\"\n",
    "        print(i)\n",
    "        if i > change:\n",
    "            image_set = \"test\"\n",
    "        with open(\"data/\" +image_set+ f\"/labels/sim{i}.txt\", \"w\") as f:\n",
    "            f.write(s)\n",
    "        img.save(\"data/\" +image_set+ f\"/images/sim{i}.png\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 190,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n"
     ]
    }
   ],
   "source": [
    "export(sim_img_arr, coords_arr)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3.4648"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "beetle_counts.mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2.528"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "non_beetle_counts.mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "format\n",
    "0 x y width height (each value normalized to size of image)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RGBA\n",
      "(2, 4)\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMIAAAD8CAYAAAAlkXvsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAKeklEQVR4nO3dT4xdZR3G8e9jKUgEI0UhBIlU0g0aU2pTMRCiiX9qN9WFCS60C5ISA4kuXFRJtC4h0YUhkpRAqIlCSJTIBrUhGDZGWrGWllLaKtFC08YYA25U6s/FeSe9aafl/pk5c+/M95O8OXfeOffOmZM+vWdOO++TqkJa6d611AcgTQODIGEQJMAgSIBBkACDIAFLEIQkm5McSXIsyY6+v740n/T57whJVgGvAp8FTgB7ga9U1cu9HYQ0j77fETYBx6rqz1X1H+AJYGvPxyCd55Kev971wN8GPj4BfOLcnZJsB7a3Dz/ew3FpGaqqDLtv30GY78DOuzarql3ALoAk/h8QLbq+L41OADcMfPxB4I2ej0E6T99B2AusS7I2yaXAncDTPR+DdJ5eL42q6u0k9wK/BlYBj1bVoT6PQZpPr7dPx+HPCBrXKD8s+y/LEgZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgARMGIclrSV5Ksj/Jvja3JsmeJEfb9qqB/b/dmnKOJPn8pAcvLZSFeEf4dFWtr6qN7eMdwLNVtQ54tn1MkpvpFv39CLAZ+HFr0JGW3GJcGm0FdrfHu4EvDsw/UVX/rqq/AMfoGnSkJTdpEAr4TZI/tJYbgGur6iRA217T5udry7l+vhdNsj3JvrnLLWmxTbos/G1V9UaSa4A9SV65yL5DteWAjTnq30TvCFX1RtueBp6iu9Q5leQ6gLY93Xa3LUdTa+wgJHlPkivnHgOfAw7SNeBsa7ttA37ZHj8N3JnksiRrgXXAC+N+fWkhTXJpdC3wVJK51/lZVf0qyV7gySR3AX8FvgxQVYeSPAm8DLwN3FNVZyY6emmB2JijZcvGHGlEBkHCIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkYIghJHk1yOsnBgbmRy0CSfLyVihxL8qO0JfKkaTDMO8JjdMUeg8YpA3kI2E635um6eV5TWjLvGISqeh74xznTI5WBtFWx31tVv6tujcmfDDxHWnLj/owwahnI9e3xufPSVJi0KORcFyoDGbokBLrGHLrLKKkX474jjFoGcqI9Pnd+XlW1q6o2DhQUSotq3CCMVAbSLp/eSnJru1v0tYHnSEuvqi46gMeBk8B/6f5mvwu4mu5u0dG2XTOw/33AceAI8IWB+Y10jTrHgQdp3QxDfP1yOMYZw/z5mhsWhWjZsihEGpFBkDAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBIzfmLMzyetJ9rexZeBzNuZo9gyx9ugdwAbg4MDcTuBb8+x7M/An4DJgLd06p6va514APkm3RPwzDKyL6tqnjsUYo6x9Om5jzoVsxcYczaBJfka4N8mBduk0Vya4II05SbYn2Zdk3wTHJw1t3CA8BNwErKdbMv4HbX5BGnMsClHfxgpCVZ2qqjNV9T/gYWBT+9SCNOZIfRsrCHO1Uc2X6ApAwMYczah3LBNM8jjwKeD9SU4A3wM+lWQ93eXNa8DdAFV1KMmTwMvA28A9VXWmvdTX6TqbL6e7a/TMAn4f0kRszNGyZWOONCKDIGEQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBBgECRiuMeeGJM8lOZzkUJJvtPk1SfYkOdq2Vw08x9YczZYhGmuuAza0x1cCr9I14zwA7GjzO4D7F6M1hyloXnHM5ljoxpyTVfVie/wWcJiu5GMrsLvttpuzDThbsTVHM2aknxGS3AjcAvweuLYt907bXtN2m7g1x8Yc9e0dl4Wfk+QK4OfAN6vqzYtc3k/cmlNVu4Bd7evOu4+0kIZ6R0iymi4EP62qX7TpU3OFIW17us3bmqOZM8xdowCPAIer6ocDn3oa2NYeb+NsA46tOZo9Q9y1uZ3uEuYAsL+NLcDVwLPA0bZdM/Cc++juFh1h4M4QsJGuZuo48CCtqMS7Ro7FGKPcNbIxR8uWjTnSiAyChEGQAIMgAQZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSMFlRyM4kryfZ38aWgedYFKLZMkFRyE7gW/Psb1GIYypGX0UhF7IVi0I0YyYpCgG4N8mBJI8OdKhZFKKZM3QQzi0KAR4CbgLWAyeBH8ztOs/T6yLz509W7aqqjVW1cdjjkyYxdlFIVZ2qqjNV9T/gYWBT292iEM2csYtC5tpymi/R9R6ARSGaQcN0qN0GfBV4Kcn+Nvcd4CtJ1tNd3rwG3A1QVYeSPAm8DLwN3FNVZ9rzvg48BlxOd9fomYX4JqRJWRSiZcuiEGlEBkHCIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBIw3Nqn707yQpI/tcac77f5NUn2JDnatlcNPMfGHM2WIRprAlzRHq+m60a4FXgA2NHmdwD325jjmKax0I05VVX/ah+ubqPomnF2t/ndnG2/2YqNOZoxw/YjrGorYZ8G9lTV74Fr21LvtO01bXcbczRzhgpCKwRZT1fusSnJRy+yu405mjkj3TWqqn8CvwU2A6fmykLa9nTbzcYczZxh7hp9IMn72uPLgc8Ar9A142xru23jbPuNjTmaPUPctfkY8EfgAF091Hfb/NXAs8DRtl0z8Jz76O4WHWHgzhCwsb3GceBBWlGJd40cizFGuWtkY46WLRtzpBEZBAmDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAuGSpD2AI/6L7P0uC9wN/X+qDmBLvdC4+NMqLzUIQjvh7CZ0k+zwXnYU+F14aSRgECZiNIOxa6gOYIp6Lsxb0XEz97yNIfZiFdwRp0RkEiSkOQpLNbcnIY0l2LPXxLIYkjyY5neTgwNyKXEozyQ1JnktyuC0t+o0238/5GOUXnPsawCq6X/D/MHAp3RKSNy/1cS3C93kHsAE4ODDXy1Ka0zaA64AN7fGVwKvte+7lfEzrO8Im4FhV/bmq/gM8QbeU5LJSVc8D/zhneisrcCnNqjpZVS+2x28Bh+lWQuzlfExrEC60bORKsGhLac6KJDcCt9AtON3L+ZjWIAy9POQKMvFSmrMgyRXAz4FvVtWbF9t1nrmxz8e0BuFCy0auBCt2Kc0kq+lC8NOq+kWb7uV8TGsQ9gLrkqxNcilwJ91SkivBilxKsx37I8DhqvrhwKf6OR9LfbfgIncRttDdOTgO3LfUx7NI3+PjwEngv3R/k91FT0tpTtsAbqe7hDkA7G9jS1/nw/9iITG9l0ZSrwyChEGQAIMgAQZBAgyCBBgECYD/A79FAQx8InyaAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMIAAAD8CAYAAAAlkXvsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAKeklEQVR4nO3dT4xdZR3G8e9jKUgEI0UhBIlU0g0aU2pTMRCiiX9qN9WFCS60C5ISA4kuXFRJtC4h0YUhkpRAqIlCSJTIBrUhGDZGWrGWllLaKtFC08YYA25U6s/FeSe9aafl/pk5c+/M95O8OXfeOffOmZM+vWdOO++TqkJa6d611AcgTQODIGEQJMAgSIBBkACDIAFLEIQkm5McSXIsyY6+v740n/T57whJVgGvAp8FTgB7ga9U1cu9HYQ0j77fETYBx6rqz1X1H+AJYGvPxyCd55Kev971wN8GPj4BfOLcnZJsB7a3Dz/ew3FpGaqqDLtv30GY78DOuzarql3ALoAk/h8QLbq+L41OADcMfPxB4I2ej0E6T99B2AusS7I2yaXAncDTPR+DdJ5eL42q6u0k9wK/BlYBj1bVoT6PQZpPr7dPx+HPCBrXKD8s+y/LEgZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgARMGIclrSV5Ksj/Jvja3JsmeJEfb9qqB/b/dmnKOJPn8pAcvLZSFeEf4dFWtr6qN7eMdwLNVtQ54tn1MkpvpFv39CLAZ+HFr0JGW3GJcGm0FdrfHu4EvDsw/UVX/rqq/AMfoGnSkJTdpEAr4TZI/tJYbgGur6iRA217T5udry7l+vhdNsj3JvrnLLWmxTbos/G1V9UaSa4A9SV65yL5DteWAjTnq30TvCFX1RtueBp6iu9Q5leQ6gLY93Xa3LUdTa+wgJHlPkivnHgOfAw7SNeBsa7ttA37ZHj8N3JnksiRrgXXAC+N+fWkhTXJpdC3wVJK51/lZVf0qyV7gySR3AX8FvgxQVYeSPAm8DLwN3FNVZyY6emmB2JijZcvGHGlEBkHCIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkYIghJHk1yOsnBgbmRy0CSfLyVihxL8qO0JfKkaTDMO8JjdMUeg8YpA3kI2E635um6eV5TWjLvGISqeh74xznTI5WBtFWx31tVv6tujcmfDDxHWnLj/owwahnI9e3xufPSVJi0KORcFyoDGbokBLrGHLrLKKkX474jjFoGcqI9Pnd+XlW1q6o2DhQUSotq3CCMVAbSLp/eSnJru1v0tYHnSEuvqi46gMeBk8B/6f5mvwu4mu5u0dG2XTOw/33AceAI8IWB+Y10jTrHgQdp3QxDfP1yOMYZw/z5mhsWhWjZsihEGpFBkDAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBIzfmLMzyetJ9rexZeBzNuZo9gyx9ugdwAbg4MDcTuBb8+x7M/An4DJgLd06p6va514APkm3RPwzDKyL6tqnjsUYo6x9Om5jzoVsxcYczaBJfka4N8mBduk0Vya4II05SbYn2Zdk3wTHJw1t3CA8BNwErKdbMv4HbX5BGnMsClHfxgpCVZ2qqjNV9T/gYWBT+9SCNOZIfRsrCHO1Uc2X6ApAwMYczah3LBNM8jjwKeD9SU4A3wM+lWQ93eXNa8DdAFV1KMmTwMvA28A9VXWmvdTX6TqbL6e7a/TMAn4f0kRszNGyZWOONCKDIGEQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBBgECRiuMeeGJM8lOZzkUJJvtPk1SfYkOdq2Vw08x9YczZYhGmuuAza0x1cCr9I14zwA7GjzO4D7F6M1hyloXnHM5ljoxpyTVfVie/wWcJiu5GMrsLvttpuzDThbsTVHM2aknxGS3AjcAvweuLYt907bXtN2m7g1x8Yc9e0dl4Wfk+QK4OfAN6vqzYtc3k/cmlNVu4Bd7evOu4+0kIZ6R0iymi4EP62qX7TpU3OFIW17us3bmqOZM8xdowCPAIer6ocDn3oa2NYeb+NsA46tOZo9Q9y1uZ3uEuYAsL+NLcDVwLPA0bZdM/Cc++juFh1h4M4QsJGuZuo48CCtqMS7Ro7FGKPcNbIxR8uWjTnSiAyChEGQAIMgAQZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAgyABBkECDIIEGAQJMAgSMFlRyM4kryfZ38aWgedYFKLZMkFRyE7gW/Psb1GIYypGX0UhF7IVi0I0YyYpCgG4N8mBJI8OdKhZFKKZM3QQzi0KAR4CbgLWAyeBH8ztOs/T6yLz509W7aqqjVW1cdjjkyYxdlFIVZ2qqjNV9T/gYWBT292iEM2csYtC5tpymi/R9R6ARSGaQcN0qN0GfBV4Kcn+Nvcd4CtJ1tNd3rwG3A1QVYeSPAm8DLwN3FNVZ9rzvg48BlxOd9fomYX4JqRJWRSiZcuiEGlEBkHCIEiAQZAAgyABBkECDIIEGAQJMAgSYBAkwCBIgEGQAIMgAQZBAgyCBBgECTAIEmAQJMAgSIBBkACDIAEGQQIMggQYBAkwCBIw3Nqn707yQpI/tcac77f5NUn2JDnatlcNPMfGHM2WIRprAlzRHq+m60a4FXgA2NHmdwD325jjmKax0I05VVX/ah+ubqPomnF2t/ndnG2/2YqNOZoxw/YjrGorYZ8G9lTV74Fr21LvtO01bXcbczRzhgpCKwRZT1fusSnJRy+yu405mjkj3TWqqn8CvwU2A6fmykLa9nTbzcYczZxh7hp9IMn72uPLgc8Ar9A142xru23jbPuNjTmaPUPctfkY8EfgAF091Hfb/NXAs8DRtl0z8Jz76O4WHWHgzhCwsb3GceBBWlGJd40cizFGuWtkY46WLRtzpBEZBAmDIAEGQQIMggQYBAkwCBJgECTAIEiAQZAAuGSpD2AI/6L7P0uC9wN/X+qDmBLvdC4+NMqLzUIQjvh7CZ0k+zwXnYU+F14aSRgECZiNIOxa6gOYIp6Lsxb0XEz97yNIfZiFdwRp0RkEiSkOQpLNbcnIY0l2LPXxLIYkjyY5neTgwNyKXEozyQ1JnktyuC0t+o0238/5GOUXnPsawCq6X/D/MHAp3RKSNy/1cS3C93kHsAE4ODDXy1Ka0zaA64AN7fGVwKvte+7lfEzrO8Im4FhV/bmq/gM8QbeU5LJSVc8D/zhneisrcCnNqjpZVS+2x28Bh+lWQuzlfExrEC60bORKsGhLac6KJDcCt9AtON3L+ZjWIAy9POQKMvFSmrMgyRXAz4FvVtWbF9t1nrmxz8e0BuFCy0auBCt2Kc0kq+lC8NOq+kWb7uV8TGsQ9gLrkqxNcilwJ91SkivBilxKsx37I8DhqvrhwKf6OR9LfbfgIncRttDdOTgO3LfUx7NI3+PjwEngv3R/k91FT0tpTtsAbqe7hDkA7G9jS1/nw/9iITG9l0ZSrwyChEGQAIMgAQZBAgyCBBgECYD/A79FAQx8InyaAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "from torchvision.utils import draw_bounding_boxes\n",
    "import torch\n",
    "import torchvision\n",
    "transform = transforms.Compose([transforms.ToTensor()])\n",
    "for i in range(len(sim_img_arr)):\n",
    "    print(sim_img_arr[i].mode)\n",
    "    \n",
    "    tensor = transform(sim_img_arr[i].convert(\"RGB\")).type(torch.uint8)\n",
    "    coords_list = np.zeros((len(coords_arr[i]), 4))\n",
    "    j=0\n",
    "    for k in coords_arr[i]:\n",
    "        c, x, y, w, h, a = k\n",
    "        coords_list[j, 0] = x\n",
    "        coords_list[j, 1] = y\n",
    "        coords_list[j, 2] = int(x+w)\n",
    "        coords_list[j, 3] = int(y+h)\n",
    "        j+=1\n",
    "    print(coords_list.shape)\n",
    "    draw_bounding_boxes(tensor, torch.Tensor(coords_list))\n",
    "    plt.imshow(tensor.permute(1,2,0)[:,:,0:3])\n",
    "    plt.show()\n",
    "    break\n",
    "    \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "First:\n",
    " - created 1250 images on a clean background variable 1 to 5 of the same beetle, model detected well on test set of 100 images (val/exp or exp2 or exp3) (proof of concept)\n",
    " \n",
    " fixed labels, making sure it's in the center\n",
    " \n",
    " - created 1250 images on a clean background variable 0 to 5 beetles of 6 different types of beetles, performing nearly 100%\n",
    " https://wandb.ai/akhot2/YOLOv5/runs/294etqct?workspace=user-fresleven\n",
    " https://wandb.ai/akhot2/YOLOv5/runs/i0ykd1a6?workspace=user-fresleven\n",
    " \n",
    "TODO:\n",
    " - (fixed autocropping during rotation and added option for not overlapping and multiple backgrounds and non beetles)\n",
    " - created 1250 images on a clean background variable 0 to 7 beetles of 6 different images and 0 to 5 non-beetles 7 different images, performing \n",
    " - created 1250 images on a clean and dirty background variables 0 to 15 beetles of 15 different images and 0 to 10 non-beetle of 10 different images, overlap True\n",
    " \n",
    " - created 1250 images on a clean and dirty background variables 0 to 10 beetles of 15 different images and 0 to 10 non-beetle of 10 different images, overlap False\n",
    " \n",
    " - perform auto cropping on arduino and include "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(backgrounds)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 196,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using cache found in /home/akhot2/.cache/torch/hub/ultralytics_yolov5_master\n",
      "YOLOv5 🚀 2023-3-31 Python-3.9.12 torch-1.11.0 CUDA:0 (A100-SXM4-40GB, 40537MiB)\n",
      "\n",
      "Fusing layers... \n",
      "Model summary: 212 layers, 20852934 parameters, 0 gradients, 47.9 GFLOPs\n",
      "Adding AutoShape... \n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "AutoShape(\n",
       "  (model): DetectMultiBackend(\n",
       "    (model): DetectionModel(\n",
       "      (model): Sequential(\n",
       "        (0): Conv(\n",
       "          (conv): Conv2d(3, 48, kernel_size=(6, 6), stride=(2, 2), padding=(2, 2))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (1): Conv(\n",
       "          (conv): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (2): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (3): Conv(\n",
       "          (conv): Conv2d(96, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (4): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (2): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (3): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (5): Conv(\n",
       "          (conv): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (6): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (2): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (3): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (4): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (5): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (7): Conv(\n",
       "          (conv): Conv2d(384, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (8): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (9): SPPF(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(1536, 768, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)\n",
       "        )\n",
       "        (10): Conv(\n",
       "          (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (11): Upsample(scale_factor=2.0, mode=nearest)\n",
       "        (12): Concat()\n",
       "        (13): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (14): Conv(\n",
       "          (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (15): Upsample(scale_factor=2.0, mode=nearest)\n",
       "        (16): Concat()\n",
       "        (17): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (18): Conv(\n",
       "          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (19): Concat()\n",
       "        (20): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (21): Conv(\n",
       "          (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n",
       "          (act): SiLU(inplace=True)\n",
       "        )\n",
       "        (22): Concat()\n",
       "        (23): C3(\n",
       "          (cv1): Conv(\n",
       "            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv2): Conv(\n",
       "            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (cv3): Conv(\n",
       "            (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (act): SiLU(inplace=True)\n",
       "          )\n",
       "          (m): Sequential(\n",
       "            (0): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "            (1): Bottleneck(\n",
       "              (cv1): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "              (cv2): Conv(\n",
       "                (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
       "                (act): SiLU(inplace=True)\n",
       "              )\n",
       "            )\n",
       "          )\n",
       "        )\n",
       "        (24): Detect(\n",
       "          (m): ModuleList(\n",
       "            (0): Conv2d(192, 18, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (1): Conv2d(384, 18, kernel_size=(1, 1), stride=(1, 1))\n",
       "            (2): Conv2d(768, 18, kernel_size=(1, 1), stride=(1, 1))\n",
       "          )\n",
       "        )\n",
       "      )\n",
       "    )\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 196,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import torch\n",
    "model = torch.hub.load('ultralytics/yolov5', 'custom', '/raid/projects/akhot2/group-01-phys371-sp2023/yolov5_model/runs/train/20beetle_40-non_20dirt_bkg_overlap/weights/best.pt')\n",
    "model.eval()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 199,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "YOLOv5 <class 'models.common.Detections'> instance\n",
       "image 1/1: 2746x1610 3 beetless\n",
       "Speed: 125.2ms pre-process, 13.4ms inference, 1.1ms NMS per image at shape (1, 3, 640, 384)"
      ]
     },
     "execution_count": 199,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model('/raid/projects/akhot2/group-01-phys371-sp2023/crop/data/train/images/sim1.png')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 153,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real18.jpg\n",
      "(1744, 2778)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real16.jpg\n",
      "(1894, 3155)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real7.jpg\n",
      "(1837, 2978)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real8.jpg\n",
      "(1680, 2791)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real10.jpg\n",
      "(1880, 3101)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real13.jpg\n",
      "(1572, 2582)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real15.jpg\n",
      "(1486, 2422)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real6.jpg\n",
      "(1635, 2699)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/F28_3AUGUST2022_cropped.jpg\n",
      "(1850, 2765)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/bg.png\n",
      "(2114, 3236)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real17.jpg\n",
      "(1769, 3095)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real1.jpg\n",
      "(1751, 2631)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real20.jpg\n",
      "(1521, 2306)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real4.jpg\n",
      "(1640, 2289)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real3.jpg\n",
      "(1610, 2746)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real19.jpg\n",
      "(1662, 2767)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real9.jpg\n",
      "(1627, 2155)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real14.jpg\n",
      "(1548, 2187)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real5.jpg\n",
      "(1940, 2713)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real12.jpg\n",
      "(1494, 2695)\n",
      "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real2.jpg\n",
      "(1940, 2713)\n"
     ]
    }
   ],
   "source": [
    "width = []\n",
    "height = []\n",
    "for file in glob.glob('/raid/projects/akhot2/group-01-phys371-sp2023/crop/data/train/sim0.png'):\n",
    "    print(file)\n",
    "    n_b0 = Image.open(file)\n",
    "    print(n_b0.size)\n",
    "    w, h = n_b0.size\n",
    "    width.append(w)\n",
    "    height.append(h)\n",
    "    #f = model(file)\n",
    "    #print(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "78.57894736842105"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(width)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "92.47368421052632"
      ]
     },
     "execution_count": 77,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(height)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 154,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1723.5238095238096"
      ]
     },
     "execution_count": 154,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(width)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 155,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2704.9523809523807"
      ]
     },
     "execution_count": 155,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.mean(height)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "94.5"
      ]
     },
     "execution_count": 93,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "width[8]*.7"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "54.599999999999994"
      ]
     },
     "execution_count": 94,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "height[8]*.7"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 156,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[1744,\n",
       " 1894,\n",
       " 1837,\n",
       " 1680,\n",
       " 1880,\n",
       " 1572,\n",
       " 1486,\n",
       " 1635,\n",
       " 1850,\n",
       " 2114,\n",
       " 1769,\n",
       " 1751,\n",
       " 1521,\n",
       " 1640,\n",
       " 1610,\n",
       " 1662,\n",
       " 1627,\n",
       " 1548,\n",
       " 1940,\n",
       " 1494,\n",
       " 1940]"
      ]
     },
     "execution_count": 156,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "width"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 166,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "51.44444444444444\n",
      "41.15555555555556\n",
      "58.425925925925924\n",
      "46.74074074074074\n",
      "55.148148148148145\n",
      "44.11851851851852\n",
      "51.68518518518518\n",
      "41.34814814814815\n",
      "57.425925925925924\n",
      "45.94074074074074\n",
      "47.81481481481482\n",
      "38.25185185185185\n",
      "44.851851851851855\n",
      "35.88148148148148\n",
      "49.98148148148148\n",
      "39.98518518518519\n",
      "51.2037037037037\n",
      "40.96296296296296\n",
      "59.925925925925924\n",
      "47.94074074074074\n",
      "57.31481481481482\n",
      "45.851851851851855\n",
      "48.72222222222222\n",
      "38.977777777777774\n",
      "42.7037037037037\n",
      "34.162962962962965\n",
      "42.388888888888886\n",
      "33.91111111111111\n",
      "50.851851851851855\n",
      "40.681481481481484\n",
      "51.24074074074074\n",
      "40.992592592592594\n",
      "39.907407407407405\n",
      "31.925925925925927\n",
      "40.5\n",
      "32.4\n",
      "50.24074074074074\n",
      "40.19259259259259\n",
      "49.907407407407405\n",
      "39.925925925925924\n",
      "50.24074074074074\n",
      "40.19259259259259\n"
     ]
    }
   ],
   "source": [
    "for i in height:\n",
    "    print((i/(6*9)))\n",
    "    print((i/(7.5*9)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "vscode": {
   "interpreter": {
    "hash": "5501471bf458387d76cdb9f487659a1abd30d9114d99ffb68b67c5dd3feef292"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}