From 7d5ff30b6e9180dbeb1781bf51f7f2b2df9eac83 Mon Sep 17 00:00:00 2001 From: fresleven <khotayush@gmail.com> Date: Wed, 12 Apr 2023 10:10:21 -0500 Subject: [PATCH] changes to simdata --- crop/SimData.ipynb | 2025 +++++++++++++++++--------------------------- 1 file changed, 775 insertions(+), 1250 deletions(-) diff --git a/crop/SimData.ipynb b/crop/SimData.ipynb index 6988fab..6a7e91d 100644 --- a/crop/SimData.ipynb +++ b/crop/SimData.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 200, "metadata": {}, "outputs": [], "source": [ @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 201, "metadata": {}, "outputs": [], "source": [ @@ -80,11 +80,16 @@ " # get random beetle image\n", " beetle_id = np.random.randint(0, set_size)\n", " beetle_img = beetle_set[beetle_id]\n", - " \n", " # get random beetle rotation\n", " angle = np.random.randint(0, 360)\n", " beetle_img = beetle_img.rotate(angle, resample=Image.BICUBIC, expand=1)\n", " \n", + " #randomly resize beetle to be smaller as they are much bigger on image\n", + " \n", + " beetle_width, beetle_height = beetle_img.size\n", + " beetle_max = np.max([beetle_width, beetle_height])\n", + " factor = np.random.uniform((height/(5*9))/beetle_max, (height/(4*9))/beetle_max)\n", + " beetle_img = beetle_img.resize((int(factor * beetle_width), int(factor * beetle_height)), resample=Image.BICUBIC)\n", " beetle_width, beetle_height = beetle_img.size\n", " \n", " # get random x,y coords to paste beetle\n", @@ -121,7 +126,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 202, "metadata": {}, "outputs": [], "source": [ @@ -139,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 203, "metadata": {}, "outputs": [], "source": [ @@ -154,6 +159,7 @@ " backgrounds.append(bg)\n", " continue\n", " bg = Image.open(file)\n", + " \n", " backgrounds.append(bg);\n", "\n", "beetles = []\n", @@ -168,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 204, "metadata": {}, "outputs": [ { @@ -189,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 188, "metadata": {}, "outputs": [], "source": [ @@ -201,7 +207,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 189, "metadata": {}, "outputs": [], "source": [ @@ -226,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 190, "metadata": {}, "outputs": [ { @@ -242,1247 +248,7 @@ "6\n", "7\n", "8\n", - "9\n", - "10\n", - "11\n", - "12\n", - "13\n", - "14\n", - "15\n", - "16\n", - "17\n", - "18\n", - "19\n", - "20\n", - "21\n", - "22\n", - "23\n", - "24\n", - "25\n", - "26\n", - "27\n", - "28\n", - "29\n", - "30\n", - "31\n", - "32\n", - "33\n", - "34\n", - "35\n", - "36\n", - "37\n", - "38\n", - "39\n", - "40\n", - "41\n", - "42\n", - "43\n", - "44\n", - "45\n", - "46\n", - "47\n", - "48\n", - "49\n", - "50\n", - "51\n", - "52\n", - "53\n", - "54\n", - "55\n", - "56\n", - "57\n", - "58\n", - "59\n", - "60\n", - "61\n", - "62\n", - "63\n", - "64\n", - "65\n", - "66\n", - "67\n", - "68\n", - "69\n", - "70\n", - "71\n", - "72\n", - "73\n", - "74\n", - "75\n", - "76\n", - "77\n", - "78\n", - "79\n", - "80\n", - "81\n", - "82\n", - "83\n", - "84\n", - "85\n", - "86\n", - "87\n", - "88\n", - "89\n", - "90\n", - "91\n", - "92\n", - "93\n", - "94\n", - "95\n", - "96\n", - "97\n", - "98\n", - "99\n", - "100\n", - "101\n", - "102\n", - "103\n", - "104\n", - "105\n", - "106\n", - "107\n", - "108\n", - "109\n", - "110\n", - "111\n", - "112\n", - "113\n", - "114\n", - "115\n", - "116\n", - "117\n", - "118\n", - "119\n", - "120\n", - "121\n", - "122\n", - "123\n", - "124\n", - "125\n", - "126\n", - "127\n", - "128\n", - "129\n", - "130\n", - "131\n", - "132\n", - "133\n", - "134\n", - "135\n", - "136\n", - "137\n", - "138\n", - "139\n", - "140\n", - "141\n", - "142\n", - "143\n", - "144\n", - "145\n", - "146\n", - "147\n", - "148\n", - "149\n", - "150\n", - "151\n", - "152\n", - "153\n", - "154\n", - "155\n", - "156\n", - "157\n", - "158\n", - "159\n", - "160\n", - "161\n", - "162\n", - "163\n", - "164\n", - "165\n", - "166\n", - "167\n", - "168\n", - "169\n", - "170\n", - "171\n", - "172\n", - "173\n", - "174\n", - "175\n", - "176\n", - "177\n", - "178\n", - "179\n", - "180\n", - "181\n", - "182\n", - "183\n", - "184\n", - "185\n", - "186\n", - "187\n", - "188\n", - "189\n", - "190\n", - "191\n", - "192\n", - "193\n", - "194\n", - "195\n", - "196\n", - "197\n", - "198\n", - "199\n", - "200\n", - "201\n", - "202\n", - "203\n", - "204\n", - "205\n", - "206\n", - "207\n", - "208\n", - "209\n", - "210\n", - "211\n", - "212\n", - "213\n", - "214\n", - "215\n", - "216\n", - "217\n", - "218\n", - "219\n", - "220\n", - "221\n", - "222\n", - "223\n", - "224\n", - "225\n", - "226\n", - "227\n", - "228\n", - "229\n", - "230\n", - "231\n", - "232\n", - "233\n", - "234\n", - "235\n", - "236\n", - "237\n", - "238\n", - "239\n", - "240\n", - "241\n", - "242\n", - "243\n", - "244\n", - "245\n", - "246\n", - "247\n", - "248\n", - "249\n", - "250\n", - "251\n", - "252\n", - "253\n", - "254\n", - "255\n", - "256\n", - "257\n", - "258\n", - "259\n", - "260\n", - "261\n", - "262\n", - "263\n", - "264\n", - "265\n", - "266\n", - "267\n", - "268\n", - "269\n", - "270\n", - "271\n", - "272\n", - "273\n", - "274\n", - "275\n", - "276\n", - "277\n", - "278\n", - "279\n", - "280\n", - "281\n", - "282\n", - "283\n", - "284\n", - "285\n", - "286\n", - "287\n", - "288\n", - "289\n", - "290\n", - "291\n", - "292\n", - "293\n", - "294\n", - "295\n", - "296\n", - "297\n", - "298\n", - "299\n", - "300\n", - "301\n", - "302\n", - "303\n", - "304\n", - "305\n", - "306\n", - "307\n", - "308\n", - "309\n", - "310\n", - "311\n", - "312\n", - "313\n", - "314\n", - "315\n", - "316\n", - "317\n", - "318\n", - "319\n", - "320\n", - "321\n", - "322\n", - "323\n", - "324\n", - "325\n", - "326\n", - "327\n", - "328\n", - "329\n", - "330\n", - "331\n", - "332\n", - "333\n", - "334\n", - "335\n", - "336\n", - "337\n", - "338\n", - "339\n", - "340\n", - "341\n", - "342\n", - "343\n", - "344\n", - "345\n", - "346\n", - "347\n", - "348\n", - "349\n", - "350\n", - "351\n", - "352\n", - "353\n", - "354\n", - "355\n", - "356\n", - "357\n", - "358\n", - "359\n", - "360\n", - "361\n", - "362\n", - "363\n", - "364\n", - "365\n", - "366\n", - "367\n", - "368\n", - "369\n", - "370\n", - "371\n", - "372\n", - "373\n", - "374\n", - "375\n", - "376\n", - "377\n", - "378\n", - "379\n", - "380\n", - "381\n", - "382\n", - "383\n", - "384\n", - "385\n", - "386\n", - "387\n", - "388\n", - "389\n", - "390\n", - "391\n", - "392\n", - "393\n", - "394\n", - "395\n", - "396\n", - "397\n", - "398\n", - "399\n", - "400\n", - "401\n", - "402\n", - "403\n", - "404\n", - "405\n", - "406\n", - "407\n", - "408\n", - "409\n", - "410\n", - "411\n", - "412\n", - "413\n", - "414\n", - "415\n", - "416\n", - "417\n", - "418\n", - "419\n", - "420\n", - "421\n", - "422\n", - "423\n", - "424\n", - "425\n", - "426\n", - "427\n", - "428\n", - "429\n", - "430\n", - "431\n", - "432\n", - "433\n", - "434\n", - "435\n", - "436\n", - "437\n", - "438\n", - "439\n", - "440\n", - "441\n", - "442\n", - "443\n", - "444\n", - "445\n", - "446\n", - "447\n", - "448\n", - "449\n", - "450\n", - "451\n", - "452\n", - "453\n", - "454\n", - "455\n", - "456\n", - "457\n", - "458\n", - "459\n", - "460\n", - "461\n", - "462\n", - "463\n", - "464\n", - "465\n", - "466\n", - "467\n", - "468\n", - "469\n", - "470\n", - "471\n", - "472\n", - "473\n", - "474\n", - "475\n", - "476\n", - "477\n", - "478\n", - "479\n", - "480\n", - "481\n", - "482\n", - "483\n", - "484\n", - "485\n", - "486\n", - "487\n", - "488\n", - "489\n", - "490\n", - "491\n", - "492\n", - "493\n", - "494\n", - "495\n", - "496\n", - "497\n", - "498\n", - "499\n", - "500\n", - "501\n", - "502\n", - "503\n", - "504\n", - "505\n", - "506\n", - "507\n", - "508\n", - "509\n", - "510\n", - "511\n", - "512\n", - "513\n", - "514\n", - "515\n", - "516\n", - "517\n", - "518\n", - "519\n", - "520\n", - "521\n", - "522\n", - "523\n", - "524\n", - "525\n", - "526\n", - "527\n", - "528\n", - "529\n", - "530\n", - "531\n", - "532\n", - "533\n", - "534\n", - "535\n", - "536\n", - "537\n", - "538\n", - "539\n", - "540\n", - "541\n", - "542\n", - "543\n", - "544\n", - "545\n", - "546\n", - "547\n", - "548\n", - "549\n", - "550\n", - "551\n", - "552\n", - "553\n", - "554\n", - "555\n", - "556\n", - "557\n", - "558\n", - "559\n", - "560\n", - "561\n", - "562\n", - "563\n", - "564\n", - "565\n", - "566\n", - "567\n", - "568\n", - "569\n", - "570\n", - "571\n", - "572\n", - "573\n", - "574\n", - "575\n", - "576\n", - "577\n", - "578\n", - "579\n", - "580\n", - "581\n", - "582\n", - "583\n", - "584\n", - "585\n", - "586\n", - "587\n", - "588\n", - "589\n", - "590\n", - "591\n", - "592\n", - "593\n", - "594\n", - "595\n", - "596\n", - "597\n", - "598\n", - "599\n", - "600\n", - "601\n", - "602\n", - "603\n", - "604\n", - "605\n", - "606\n", - "607\n", - "608\n", - "609\n", - "610\n", - "611\n", - "612\n", - "613\n", - "614\n", - "615\n", - "616\n", - "617\n", - "618\n", - "619\n", - "620\n", - "621\n", - "622\n", - "623\n", - "624\n", - "625\n", - "626\n", - "627\n", - "628\n", - "629\n", - "630\n", - "631\n", - "632\n", - "633\n", - "634\n", - "635\n", - "636\n", - "637\n", - "638\n", - "639\n", - "640\n", - "641\n", - "642\n", - "643\n", - "644\n", - "645\n", - "646\n", - "647\n", - "648\n", - "649\n", - "650\n", - "651\n", - "652\n", - "653\n", - "654\n", - "655\n", - "656\n", - "657\n", - "658\n", - "659\n", - "660\n", - "661\n", - "662\n", - "663\n", - "664\n", - "665\n", - "666\n", - "667\n", - "668\n", - "669\n", - "670\n", - "671\n", - "672\n", - "673\n", - "674\n", - "675\n", - "676\n", - "677\n", - "678\n", - "679\n", - "680\n", - "681\n", - "682\n", - "683\n", - "684\n", - "685\n", - "686\n", - "687\n", - "688\n", - "689\n", - "690\n", - "691\n", - "692\n", - "693\n", - "694\n", - "695\n", - "696\n", - "697\n", - "698\n", - "699\n", - "700\n", - "701\n", - "702\n", - "703\n", - "704\n", - "705\n", - "706\n", - "707\n", - "708\n", - "709\n", - "710\n", - "711\n", - "712\n", - "713\n", - "714\n", - "715\n", - "716\n", - "717\n", - "718\n", - "719\n", - "720\n", - "721\n", - "722\n", - "723\n", - "724\n", - "725\n", - "726\n", - "727\n", - "728\n", - "729\n", - "730\n", - "731\n", - "732\n", - "733\n", - "734\n", - "735\n", - "736\n", - "737\n", - "738\n", - "739\n", - "740\n", - "741\n", - "742\n", - "743\n", - "744\n", - "745\n", - "746\n", - "747\n", - "748\n", - "749\n", - "750\n", - "751\n", - "752\n", - "753\n", - "754\n", - "755\n", - "756\n", - "757\n", - "758\n", - "759\n", - "760\n", - "761\n", - "762\n", - "763\n", - "764\n", - "765\n", - "766\n", - "767\n", - "768\n", - "769\n", - "770\n", - "771\n", - "772\n", - "773\n", - "774\n", - "775\n", - "776\n", - "777\n", - "778\n", - "779\n", - "780\n", - "781\n", - "782\n", - "783\n", - "784\n", - "785\n", - "786\n", - "787\n", - "788\n", - "789\n", - "790\n", - "791\n", - "792\n", - "793\n", - "794\n", - "795\n", - "796\n", - "797\n", - "798\n", - "799\n", - "800\n", - "801\n", - "802\n", - "803\n", - "804\n", - "805\n", - "806\n", - "807\n", - "808\n", - "809\n", - "810\n", - "811\n", - "812\n", - "813\n", - "814\n", - "815\n", - "816\n", - "817\n", - "818\n", - "819\n", - "820\n", - "821\n", - "822\n", - "823\n", - "824\n", - "825\n", - "826\n", - "827\n", - "828\n", - "829\n", - "830\n", - "831\n", - "832\n", - "833\n", - "834\n", - "835\n", - "836\n", - "837\n", - "838\n", - "839\n", - "840\n", - "841\n", - "842\n", - "843\n", - "844\n", - "845\n", - "846\n", - "847\n", - "848\n", - "849\n", - "850\n", - "851\n", - "852\n", - "853\n", - "854\n", - "855\n", - "856\n", - "857\n", - "858\n", - "859\n", - "860\n", - "861\n", - "862\n", - "863\n", - "864\n", - "865\n", - "866\n", - "867\n", - "868\n", - "869\n", - "870\n", - "871\n", - "872\n", - "873\n", - "874\n", - "875\n", - "876\n", - "877\n", - "878\n", - "879\n", - "880\n", - "881\n", - "882\n", - "883\n", - "884\n", - "885\n", - "886\n", - "887\n", - "888\n", - "889\n", - "890\n", - "891\n", - "892\n", - "893\n", - "894\n", - "895\n", - "896\n", - "897\n", - "898\n", - "899\n", - "900\n", - "901\n", - "902\n", - "903\n", - "904\n", - "905\n", - "906\n", - "907\n", - "908\n", - "909\n", - "910\n", - "911\n", - "912\n", - "913\n", - "914\n", - "915\n", - "916\n", - "917\n", - "918\n", - "919\n", - "920\n", - "921\n", - "922\n", - "923\n", - "924\n", - "925\n", - "926\n", - "927\n", - "928\n", - "929\n", - "930\n", - "931\n", - "932\n", - "933\n", - "934\n", - "935\n", - "936\n", - "937\n", - "938\n", - "939\n", - "940\n", - "941\n", - "942\n", - "943\n", - "944\n", - "945\n", - "946\n", - "947\n", - "948\n", - "949\n", - "950\n", - "951\n", - "952\n", - "953\n", - "954\n", - "955\n", - "956\n", - "957\n", - "958\n", - "959\n", - "960\n", - "961\n", - "962\n", - "963\n", - "964\n", - "965\n", - "966\n", - "967\n", - "968\n", - "969\n", - "970\n", - "971\n", - "972\n", - "973\n", - "974\n", - "975\n", - "976\n", - "977\n", - "978\n", - "979\n", - "980\n", - "981\n", - "982\n", - "983\n", - "984\n", - "985\n", - "986\n", - "987\n", - "988\n", - "989\n", - "990\n", - "991\n", - "992\n", - "993\n", - "994\n", - "995\n", - "996\n", - "997\n", - "998\n", - "999\n", - "1000\n", - "1001\n", - "1002\n", - "1003\n", - "1004\n", - "1005\n", - "1006\n", - "1007\n", - "1008\n", - "1009\n", - "1010\n", - "1011\n", - "1012\n", - "1013\n", - "1014\n", - "1015\n", - "1016\n", - "1017\n", - "1018\n", - "1019\n", - "1020\n", - "1021\n", - "1022\n", - "1023\n", - "1024\n", - "1025\n", - "1026\n", - "1027\n", - "1028\n", - "1029\n", - "1030\n", - "1031\n", - "1032\n", - "1033\n", - "1034\n", - "1035\n", - "1036\n", - "1037\n", - "1038\n", - "1039\n", - "1040\n", - "1041\n", - "1042\n", - "1043\n", - "1044\n", - "1045\n", - "1046\n", - "1047\n", - "1048\n", - "1049\n", - "1050\n", - "1051\n", - "1052\n", - "1053\n", - "1054\n", - "1055\n", - "1056\n", - "1057\n", - "1058\n", - "1059\n", - "1060\n", - "1061\n", - "1062\n", - "1063\n", - "1064\n", - "1065\n", - "1066\n", - "1067\n", - "1068\n", - "1069\n", - "1070\n", - "1071\n", - "1072\n", - "1073\n", - "1074\n", - "1075\n", - "1076\n", - "1077\n", - "1078\n", - "1079\n", - "1080\n", - "1081\n", - "1082\n", - "1083\n", - "1084\n", - "1085\n", - "1086\n", - "1087\n", - "1088\n", - "1089\n", - "1090\n", - "1091\n", - "1092\n", - "1093\n", - "1094\n", - "1095\n", - "1096\n", - "1097\n", - "1098\n", - "1099\n", - "1100\n", - "1101\n", - "1102\n", - "1103\n", - "1104\n", - "1105\n", - "1106\n", - "1107\n", - "1108\n", - "1109\n", - "1110\n", - "1111\n", - "1112\n", - "1113\n", - "1114\n", - "1115\n", - "1116\n", - "1117\n", - "1118\n", - "1119\n", - "1120\n", - "1121\n", - "1122\n", - "1123\n", - "1124\n", - "1125\n", - "1126\n", - "1127\n", - "1128\n", - "1129\n", - "1130\n", - "1131\n", - "1132\n", - "1133\n", - "1134\n", - "1135\n", - "1136\n", - "1137\n", - "1138\n", - "1139\n", - "1140\n", - "1141\n", - "1142\n", - "1143\n", - "1144\n", - "1145\n", - "1146\n", - "1147\n", - "1148\n", - "1149\n", - "1150\n", - "1151\n", - "1152\n", - "1153\n", - "1154\n", - "1155\n", - "1156\n", - "1157\n", - "1158\n", - "1159\n", - "1160\n", - "1161\n", - "1162\n", - "1163\n", - "1164\n", - "1165\n", - "1166\n", - "1167\n", - "1168\n", - "1169\n", - "1170\n", - "1171\n", - "1172\n", - "1173\n", - "1174\n", - "1175\n", - "1176\n", - "1177\n", - "1178\n", - "1179\n", - "1180\n", - "1181\n", - "1182\n", - "1183\n", - "1184\n", - "1185\n", - "1186\n", - "1187\n", - "1188\n", - "1189\n", - "1190\n", - "1191\n", - "1192\n", - "1193\n", - "1194\n", - "1195\n", - "1196\n", - "1197\n", - "1198\n", - "1199\n", - "1200\n", - "1201\n", - "1202\n", - "1203\n", - "1204\n", - "1205\n", - "1206\n", - "1207\n", - "1208\n", - "1209\n", - "1210\n", - "1211\n", - "1212\n", - "1213\n", - "1214\n", - "1215\n", - "1216\n", - "1217\n", - "1218\n", - "1219\n", - "1220\n", - "1221\n", - "1222\n", - "1223\n", - "1224\n", - "1225\n", - "1226\n", - "1227\n", - "1228\n", - "1229\n", - "1230\n", - "1231\n", - "1232\n", - "1233\n", - "1234\n", - "1235\n", - "1236\n", - "1237\n", - "1238\n", - "1239\n", - "1240\n", - "1241\n", - "1242\n", - "1243\n", - "1244\n", - "1245\n", - "1246\n", - "1247\n", - "1248\n", - "1249\n" + "9\n" ] } ], @@ -1649,6 +415,765 @@ "len(backgrounds)" ] }, + { + "cell_type": "code", + "execution_count": 196, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using cache found in /home/akhot2/.cache/torch/hub/ultralytics_yolov5_master\n", + "YOLOv5 🚀 2023-3-31 Python-3.9.12 torch-1.11.0 CUDA:0 (A100-SXM4-40GB, 40537MiB)\n", + "\n", + "Fusing layers... \n", + "Model summary: 212 layers, 20852934 parameters, 0 gradients, 47.9 GFLOPs\n", + "Adding AutoShape... \n" + ] + }, + { + "data": { + "text/plain": [ + "AutoShape(\n", + " (model): DetectMultiBackend(\n", + " (model): DetectionModel(\n", + " (model): Sequential(\n", + " (0): Conv(\n", + " (conv): Conv2d(3, 48, kernel_size=(6, 6), stride=(2, 2), padding=(2, 2))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (1): Conv(\n", + " (conv): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (2): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (3): Conv(\n", + " (conv): Conv2d(96, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (4): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (2): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (3): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (5): Conv(\n", + " (conv): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (6): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (2): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (3): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (4): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (5): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (7): Conv(\n", + " (conv): Conv2d(384, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (8): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (9): SPPF(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(1536, 768, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)\n", + " )\n", + " (10): Conv(\n", + " (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (11): Upsample(scale_factor=2.0, mode=nearest)\n", + " (12): Concat()\n", + " (13): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (14): Conv(\n", + " (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (15): Upsample(scale_factor=2.0, mode=nearest)\n", + " (16): Concat()\n", + " (17): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (18): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (19): Concat()\n", + " (20): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (21): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (22): Concat()\n", + " (23): C3(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv3): Conv(\n", + " (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (m): Sequential(\n", + " (0): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " (1): Bottleneck(\n", + " (cv1): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " (cv2): Conv(\n", + " (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", + " (act): SiLU(inplace=True)\n", + " )\n", + " )\n", + " )\n", + " )\n", + " (24): Detect(\n", + " (m): ModuleList(\n", + " (0): Conv2d(192, 18, kernel_size=(1, 1), stride=(1, 1))\n", + " (1): Conv2d(384, 18, kernel_size=(1, 1), stride=(1, 1))\n", + " (2): Conv2d(768, 18, kernel_size=(1, 1), stride=(1, 1))\n", + " )\n", + " )\n", + " )\n", + " )\n", + " )\n", + ")" + ] + }, + "execution_count": 196, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "model = torch.hub.load('ultralytics/yolov5', 'custom', '/raid/projects/akhot2/group-01-phys371-sp2023/yolov5_model/runs/train/20beetle_40-non_20dirt_bkg_overlap/weights/best.pt')\n", + "model.eval()" + ] + }, + { + "cell_type": "code", + "execution_count": 199, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "YOLOv5 <class 'models.common.Detections'> instance\n", + "image 1/1: 2746x1610 3 beetless\n", + "Speed: 125.2ms pre-process, 13.4ms inference, 1.1ms NMS per image at shape (1, 3, 640, 384)" + ] + }, + "execution_count": 199, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model('/raid/projects/akhot2/group-01-phys371-sp2023/crop/data/train/images/sim1.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real18.jpg\n", + "(1744, 2778)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real16.jpg\n", + "(1894, 3155)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real7.jpg\n", + "(1837, 2978)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real8.jpg\n", + "(1680, 2791)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real10.jpg\n", + "(1880, 3101)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real13.jpg\n", + "(1572, 2582)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real15.jpg\n", + "(1486, 2422)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real6.jpg\n", + "(1635, 2699)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/F28_3AUGUST2022_cropped.jpg\n", + "(1850, 2765)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/bg.png\n", + "(2114, 3236)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real17.jpg\n", + "(1769, 3095)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real1.jpg\n", + "(1751, 2631)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real20.jpg\n", + "(1521, 2306)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real4.jpg\n", + "(1640, 2289)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real3.jpg\n", + "(1610, 2746)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real19.jpg\n", + "(1662, 2767)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real9.jpg\n", + "(1627, 2155)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real14.jpg\n", + "(1548, 2187)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real5.jpg\n", + "(1940, 2713)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real12.jpg\n", + "(1494, 2695)\n", + "/raid/projects/akhot2/group-01-phys371-sp2023/crop/cropped_imgs/real2.jpg\n", + "(1940, 2713)\n" + ] + } + ], + "source": [ + "width = []\n", + "height = []\n", + "for file in glob.glob('/raid/projects/akhot2/group-01-phys371-sp2023/crop/data/train/sim0.png'):\n", + " print(file)\n", + " n_b0 = Image.open(file)\n", + " print(n_b0.size)\n", + " w, h = n_b0.size\n", + " width.append(w)\n", + " height.append(h)\n", + " #f = model(file)\n", + " #print(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "78.57894736842105" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(width)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "92.47368421052632" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(height)" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1723.5238095238096" + ] + }, + "execution_count": 154, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(width)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2704.9523809523807" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(height)" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "94.5" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "width[8]*.7" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "54.599999999999994" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "height[8]*.7" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1744,\n", + " 1894,\n", + " 1837,\n", + " 1680,\n", + " 1880,\n", + " 1572,\n", + " 1486,\n", + " 1635,\n", + " 1850,\n", + " 2114,\n", + " 1769,\n", + " 1751,\n", + " 1521,\n", + " 1640,\n", + " 1610,\n", + " 1662,\n", + " 1627,\n", + " 1548,\n", + " 1940,\n", + " 1494,\n", + " 1940]" + ] + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "width" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "51.44444444444444\n", + "41.15555555555556\n", + "58.425925925925924\n", + "46.74074074074074\n", + "55.148148148148145\n", + "44.11851851851852\n", + "51.68518518518518\n", + "41.34814814814815\n", + "57.425925925925924\n", + "45.94074074074074\n", + "47.81481481481482\n", + "38.25185185185185\n", + "44.851851851851855\n", + "35.88148148148148\n", + "49.98148148148148\n", + "39.98518518518519\n", + "51.2037037037037\n", + "40.96296296296296\n", + "59.925925925925924\n", + "47.94074074074074\n", + "57.31481481481482\n", + "45.851851851851855\n", + "48.72222222222222\n", + "38.977777777777774\n", + "42.7037037037037\n", + "34.162962962962965\n", + "42.388888888888886\n", + "33.91111111111111\n", + "50.851851851851855\n", + "40.681481481481484\n", + "51.24074074074074\n", + "40.992592592592594\n", + "39.907407407407405\n", + "31.925925925925927\n", + "40.5\n", + "32.4\n", + "50.24074074074074\n", + "40.19259259259259\n", + "49.907407407407405\n", + "39.925925925925924\n", + "50.24074074074074\n", + "40.19259259259259\n" + ] + } + ], + "source": [ + "for i in height:\n", + " print((i/(6*9)))\n", + " print((i/(7.5*9)))" + ] + }, { "cell_type": "code", "execution_count": null, -- GitLab