diff --git a/crop/SimData.ipynb b/crop/SimData.ipynb
index 16b2c2ebe39c7e5bfb1f8f1deb0a4c1a5439ff49..d767f96a117d43b08d4edac8e1000949d7f60a2c 100644
--- a/crop/SimData.ipynb
+++ b/crop/SimData.ipynb
@@ -32,16 +32,16 @@
     "        beetle_coords = []\n",
     "        for _ in range(num_beetles):\n",
     "            # get random beetle image\n",
-    "            beetle_id = randint(0, set_size-1)\n",
+    "            beetle_id = np.random.randint(0, set_size-1)\n",
     "            beetle_img = beetle_set[beetle_id]\n",
     "            beetle_width, beetle_height = beetle_img.size\n",
     "\n",
     "            # get random x,y coords to paste beetle\n",
-    "            x = randint(0, width - beetle_width)\n",
-    "            y = randint(0, height - beetle_height)\n",
+    "            x = np.random.randint(0, width - beetle_width)\n",
+    "            y = np.random.randint(0, height - beetle_height)\n",
     "\n",
     "            # get random beetle rotation\n",
-    "            angle = randint(0, 359)\n",
+    "            angle = np.random.randint(0, 359)\n",
     "            beetle_img = beetle_img.rotate(angle, resample=Image.BICUBIC)\n",
     "\n",
     "            bg_temp.paste(beetle_img, box=(x,y), mask=beetle_img)\n",
diff --git a/output.png b/output.png
deleted file mode 100644
index ff9d66066633ce902d61acf3daa1a0cb47a70e42..0000000000000000000000000000000000000000
Binary files a/output.png and /dev/null differ
diff --git a/yolov5 b/yolov5
deleted file mode 160000
index 226a5e43cbceff5de43a71c4fb3f3f7478a9bb03..0000000000000000000000000000000000000000
--- a/yolov5
+++ /dev/null
@@ -1 +0,0 @@
-Subproject commit 226a5e43cbceff5de43a71c4fb3f3f7478a9bb03
diff --git a/yolov5_model/CITATION.cff b/yolov5_model/CITATION.cff
new file mode 100644
index 0000000000000000000000000000000000000000..8e2cf1148b92517c722256f2473bb4eb040d59dd
--- /dev/null
+++ b/yolov5_model/CITATION.cff
@@ -0,0 +1,14 @@
+cff-version: 1.2.0
+preferred-citation:
+  type: software
+  message: If you use YOLOv5, please cite it as below.
+  authors:
+  - family-names: Jocher
+    given-names: Glenn
+    orcid: "https://orcid.org/0000-0001-5950-6979"
+  title: "YOLOv5 by Ultralytics"
+  version: 7.0
+  doi: 10.5281/zenodo.3908559
+  date-released: 2020-5-29
+  license: GPL-3.0
+  url: "https://github.com/ultralytics/yolov5"
diff --git a/yolov5_model/CONTRIBUTING.md b/yolov5_model/CONTRIBUTING.md
new file mode 100644
index 0000000000000000000000000000000000000000..71857faddb89ddbcd91f4a1a8f355f359229360b
--- /dev/null
+++ b/yolov5_model/CONTRIBUTING.md
@@ -0,0 +1,93 @@
+## Contributing to YOLOv5 🚀
+
+We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
+
+- Reporting a bug
+- Discussing the current state of the code
+- Submitting a fix
+- Proposing a new feature
+- Becoming a maintainer
+
+YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
+helping push the frontiers of what's possible in AI 😃!
+
+## Submitting a Pull Request (PR) 🛠️
+
+Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
+
+### 1. Select File to Update
+
+Select `requirements.txt` to update by clicking on it in GitHub.
+
+<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
+
+### 2. Click 'Edit this file'
+
+The button is in the top-right corner.
+
+<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
+
+### 3. Make Changes
+
+Change the `matplotlib` version from `3.2.2` to `3.3`.
+
+<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
+
+### 4. Preview Changes and Submit PR
+
+Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
+for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
+changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
+
+<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
+
+### PR recommendations
+
+To allow your work to be integrated as seamlessly as possible, we advise you to:
+
+- ✅ Verify your PR is **up-to-date** with `ultralytics/yolov5` `master` branch. If your PR is behind you can update
+  your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
+
+<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 15" src="https://user-images.githubusercontent.com/26833433/187295893-50ed9f44-b2c9-4138-a614-de69bd1753d7.png"></p>
+
+- ✅ Verify all YOLOv5 Continuous Integration (CI) **checks are passing**.
+
+<p align="center"><img width="751" alt="Screenshot 2022-08-29 at 22 47 03" src="https://user-images.githubusercontent.com/26833433/187296922-545c5498-f64a-4d8c-8300-5fa764360da6.png"></p>
+
+- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
+  but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_  — Bruce Lee
+
+## Submitting a Bug Report 🐛
+
+If you spot a problem with YOLOv5 please submit a Bug Report!
+
+For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
+short guidelines below to help users provide what we need to get started.
+
+When asking a question, people will be better able to provide help if you provide **code** that they can easily
+understand and use to **reproduce** the problem. This is referred to by community members as creating
+a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
+the problem should be:
+
+- ✅ **Minimal** – Use as little code as possible that still produces the same problem
+- ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
+- ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
+
+In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
+should be:
+
+- ✅ **Current** – Verify that your code is up-to-date with the current
+  GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
+  copy to ensure your problem has not already been resolved by previous commits.
+- ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
+  repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
+
+If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
+**Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and provide
+a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
+understand and diagnose your problem.
+
+## License
+
+By contributing, you agree that your contributions will be licensed under
+the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
diff --git a/yolov5_model/LICENSE b/yolov5_model/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..92b370f0e0e1b91cf8baf5d0f78c56a9824c39f1
--- /dev/null
+++ b/yolov5_model/LICENSE
@@ -0,0 +1,674 @@
+GNU GENERAL PUBLIC LICENSE
+                       Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.  We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors.  You can apply it to
+your programs, too.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights.  Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+  For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received.  You must make sure that they, too, receive
+or can get the source code.  And you must show them these terms so they
+know their rights.
+
+  Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+  For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software.  For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+  Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so.  This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software.  The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable.  Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products.  If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+  Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary.  To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Use with the GNU Affero General Public License.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time.  Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    <one line to give the program's name and a brief idea of what it does.>
+    Copyright (C) <year>  <name of author>
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+    <program>  Copyright (C) <year>  <name of author>
+    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+    This is free software, and you are welcome to redistribute it
+    under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License.  Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<http://www.gnu.org/licenses/>.
+
+  The GNU General Public License does not permit incorporating your program
+into proprietary programs.  If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library.  If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.  But first, please read
+<http://www.gnu.org/philosophy/why-not-lgpl.html>.
diff --git a/yolov5_model/README.md b/yolov5_model/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..16dfd9fca08585d60cff3d3d3612c1ac1a0821ad
--- /dev/null
+++ b/yolov5_model/README.md
@@ -0,0 +1,493 @@
+<div align="center">
+  <p>
+    <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
+  </p>
+
+[English](README.md) | [简体中文](README.zh-CN.md)
+<br>
+
+<div>
+    <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
+    <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
+    <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+    <br>
+    <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
+    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
+    <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+  </div>
+  <br>
+
+YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
+
+To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
+
+<div align="center">
+    <a href="https://github.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
+  </div>
+</div>
+<br>
+
+## <div align="center">YOLOv8 🚀 NEW</div>
+
+We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model
+released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
+YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
+object detection, image segmentation and image classification tasks.
+
+See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
+
+```commandline
+pip install ultralytics
+```
+
+<div align="center">
+  <a href="https://ultralytics.com/yolov8" target="_blank">
+  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
+</div>
+
+## <div align="center">Documentation</div>
+
+See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. See below for quickstart examples.
+
+<details open>
+<summary>Install</summary>
+
+Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
+[**Python>=3.7.0**](https://www.python.org/) environment, including
+[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
+
+```bash
+git clone https://github.com/ultralytics/yolov5  # clone
+cd yolov5
+pip install -r requirements.txt  # install
+```
+
+</details>
+
+<details>
+<summary>Inference</summary>
+
+YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
+YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
+
+```python
+import torch
+
+# Model
+model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom
+
+# Images
+img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list
+
+# Inference
+results = model(img)
+
+# Results
+results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
+```
+
+</details>
+
+<details>
+<summary>Inference with detect.py</summary>
+
+`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
+the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
+
+```bash
+python detect.py --weights yolov5s.pt --source 0                               # webcam
+                                               img.jpg                         # image
+                                               vid.mp4                         # video
+                                               screen                          # screenshot
+                                               path/                           # directory
+                                               list.txt                        # list of images
+                                               list.streams                    # list of streams
+                                               'path/*.jpg'                    # glob
+                                               'https://youtu.be/Zgi9g1ksQHc'  # YouTube
+                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+```
+
+</details>
+
+<details>
+<summary>Training</summary>
+
+The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
+results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
+and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
+YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
+1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
+largest `--batch-size` possible, or pass `--batch-size -1` for
+YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
+
+```bash
+python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
+                                                                 yolov5s                    64
+                                                                 yolov5m                    40
+                                                                 yolov5l                    24
+                                                                 yolov5x                    16
+```
+
+<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
+
+</details>
+
+<details open>
+<summary>Tutorials</summary>
+
+- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
+- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
+  RECOMMENDED
+- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
+- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 🌟 NEW
+- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
+- [NVIDIA Jetson Nano Deployment](https://github.com/ultralytics/yolov5/issues/9627) 🌟 NEW
+- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
+- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
+- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
+- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
+- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
+- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
+- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
+- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
+- [YOLOv5 with Neural Magic's Deepsparse](https://bit.ly/yolov5-neuralmagic) 🌟 NEW
+- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet) 🌟 NEW
+
+</details>
+
+## <div align="center">Integrations</div>
+
+<br>
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
+<br>
+<br>
+
+<div align="center">
+  <a href="https://roboflow.com/?ref=ultralytics">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://cutt.ly/yolov5-readme-clearml">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-readme-comet2">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-neuralmagic">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
+</div>
+
+|                                                           Roboflow                                                           |                                                            ClearML ⭐ NEW                                                            |                                                                        Comet ⭐ NEW                                                                         |                                           Neural Magic ⭐ NEW                                           |
+| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
+| Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions | Run YOLOv5 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
+
+## <div align="center">Ultralytics HUB</div>
+
+Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
+
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
+
+## <div align="center">Why YOLOv5</div>
+
+YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
+<details>
+  <summary>YOLOv5-P5 640 Figure</summary>
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
+</details>
+<details>
+  <summary>Figure Notes</summary>
+
+- **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
+- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
+- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
+- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
+
+</details>
+
+### Pretrained Checkpoints
+
+| Model                                                                                           | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | Speed<br><sup>CPU b1<br>(ms) | Speed<br><sup>V100 b1<br>(ms) | Speed<br><sup>V100 b32<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ----------------------------------------------------------------------------------------------- | --------------------- | -------------------- | ----------------- | ---------------------------- | ----------------------------- | ------------------------------ | ------------------ | ---------------------- |
+| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt)              | 640                   | 28.0                 | 45.7              | **45**                       | **6.3**                       | **0.6**                        | **1.9**            | **4.5**                |
+| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt)              | 640                   | 37.4                 | 56.8              | 98                           | 6.4                           | 0.9                            | 7.2                | 16.5                   |
+| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt)              | 640                   | 45.4                 | 64.1              | 224                          | 8.2                           | 1.7                            | 21.2               | 49.0                   |
+| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt)              | 640                   | 49.0                 | 67.3              | 430                          | 10.1                          | 2.7                            | 46.5               | 109.1                  |
+| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt)              | 640                   | 50.7                 | 68.9              | 766                          | 12.1                          | 4.8                            | 86.7               | 205.7                  |
+|                                                                                                 |                       |                      |                   |                              |                               |                                |                    |                        |
+| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt)            | 1280                  | 36.0                 | 54.4              | 153                          | 8.1                           | 2.1                            | 3.2                | 4.6                    |
+| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt)            | 1280                  | 44.8                 | 63.7              | 385                          | 8.2                           | 3.6                            | 12.6               | 16.8                   |
+| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt)            | 1280                  | 51.3                 | 69.3              | 887                          | 11.1                          | 6.8                            | 35.7               | 50.0                   |
+| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt)            | 1280                  | 53.7                 | 71.3              | 1784                         | 15.8                          | 10.5                           | 76.8               | 111.4                  |
+| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+ [TTA] | 1280<br>1536          | 55.0<br>**55.8**     | 72.7<br>**72.7**  | 3136<br>-                    | 26.2<br>-                     | 19.4<br>-                      | 140.7<br>-         | 209.8<br>-             |
+
+<details>
+  <summary>Table Notes</summary>
+
+- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
+- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
+- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
+- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
+
+</details>
+
+## <div align="center">Segmentation</div>
+
+Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
+
+<details>
+  <summary>Segmentation Checkpoints</summary>
+
+<div align="center">
+<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
+</div>
+
+We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.
+
+| Model                                                                                      | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- |
+| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640                   | 27.6                 | 23.4                  | 80:17                                         | **62.7**                       | **1.2**                        | **2.0**            | **7.1**                |
+| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640                   | 37.6                 | 31.7                  | 88:16                                         | 173.3                          | 1.4                            | 7.6                | 26.4                   |
+| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640                   | 45.0                 | 37.1                  | 108:36                                        | 427.0                          | 2.2                            | 22.0               | 70.8                   |
+| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640                   | 49.0                 | 39.9                  | 66:43 (2x)                                    | 857.4                          | 2.9                            | 47.9               | 147.7                  |
+| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640                   | **50.7**             | **41.4**              | 62:56 (3x)                                    | 1579.2                         | 4.5                            | 88.8               | 265.7                  |
+
+- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official
+- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
+- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image). <br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
+- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
+
+</details>
+
+<details>
+  <summary>Segmentation Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### Train
+
+YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`.
+
+```bash
+# Single-GPU
+python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
+
+# Multi-GPU DDP
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
+```
+
+### Val
+
+Validate YOLOv5s-seg mask mAP on COCO dataset:
+
+```bash
+bash data/scripts/get_coco.sh --val --segments  # download COCO val segments split (780MB, 5000 images)
+python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # validate
+```
+
+### Predict
+
+Use pretrained YOLOv5m-seg.pt to predict bus.jpg:
+
+```bash
+python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5m-seg.pt"
+)  # load from PyTorch Hub (WARNING: inference not yet supported)
+```
+
+| ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
+| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
+
+### Export
+
+Export YOLOv5s-seg model to ONNX and TensorRT:
+
+```bash
+python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
+```
+
+</details>
+
+## <div align="center">Classification</div>
+
+YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation and deployment! See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v6.2) and visit our [YOLOv5 Classification Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) for quickstart tutorials.
+
+<details>
+  <summary>Classification Checkpoints</summary>
+
+<br>
+
+We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.
+
+| Model                                                                                              | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
+| -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- |
+| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt)         | 224                   | 64.6             | 85.4             | 7:59                                         | **3.3**                        | **0.5**                             | **2.5**            | **0.5**                |
+| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt)         | 224                   | 71.5             | 90.2             | 8:09                                         | 6.6                            | 0.6                                 | 5.4                | 1.4                    |
+| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt)         | 224                   | 75.9             | 92.9             | 10:06                                        | 15.5                           | 0.9                                 | 12.9               | 3.9                    |
+| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt)         | 224                   | 78.0             | 94.0             | 11:56                                        | 26.9                           | 1.4                                 | 26.5               | 8.5                    |
+| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt)         | 224                   | **79.0**         | **94.4**         | 15:04                                        | 54.3                           | 1.8                                 | 48.1               | 15.9                   |
+|                                                                                                    |                       |                  |                  |                                              |                                |                                     |                    |                        |
+| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt)               | 224                   | 70.3             | 89.5             | **6:47**                                     | 11.2                           | 0.5                                 | 11.7               | 3.7                    |
+| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt)               | 224                   | 73.9             | 91.8             | 8:33                                         | 20.6                           | 0.9                                 | 21.8               | 7.4                    |
+| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt)               | 224                   | 76.8             | 93.4             | 11:10                                        | 23.4                           | 1.0                                 | 25.6               | 8.5                    |
+| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt)             | 224                   | 78.5             | 94.3             | 17:10                                        | 42.1                           | 1.9                                 | 44.5               | 15.9                   |
+|                                                                                                    |                       |                  |                  |                                              |                                |                                     |                    |                        |
+| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224                   | 75.1             | 92.4             | 13:03                                        | 12.5                           | 1.3                                 | 5.3                | 1.0                    |
+| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224                   | 76.4             | 93.2             | 17:04                                        | 14.9                           | 1.6                                 | 7.8                | 1.5                    |
+| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224                   | 76.6             | 93.4             | 17:10                                        | 15.9                           | 1.6                                 | 9.1                | 1.7                    |
+| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224                   | 77.7             | 94.0             | 19:19                                        | 18.9                           | 1.9                                 | 12.2               | 2.4                    |
+
+<details>
+  <summary>Table Notes (click to expand)</summary>
+
+- All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
+- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
+- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
+- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
+
+</details>
+</details>
+
+<details>
+  <summary>Classification Usage Examples &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### Train
+
+YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.
+
+```bash
+# Single-GPU
+python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
+
+# Multi-GPU DDP
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
+```
+
+### Val
+
+Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:
+
+```bash
+bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
+python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate
+```
+
+### Predict
+
+Use pretrained YOLOv5s-cls.pt to predict bus.jpg:
+
+```bash
+python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5s-cls.pt"
+)  # load from PyTorch Hub
+```
+
+### Export
+
+Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:
+
+```bash
+python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
+```
+
+</details>
+
+## <div align="center">Environments</div>
+
+Get started in seconds with our verified environments. Click each icon below for details.
+
+<div align="center">
+  <a href="https://bit.ly/yolov5-paperspace-notebook">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://www.kaggle.com/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://hub.docker.com/r/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
+</div>
+
+## <div align="center">Contribute</div>
+
+We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
+
+<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
+
+<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
+<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
+
+## <div align="center">License</div>
+
+YOLOv5 is available under two different licenses:
+
+- **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/yolov5/blob/master/LICENSE) file for details.
+- **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license).
+
+## <div align="center">Contact</div>
+
+For YOLOv5 bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues) or the [Ultralytics Community Forum](https://community.ultralytics.com/).
+
+<br>
+<div align="center">
+  <a href="https://github.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
+</div>
+
+[tta]: https://github.com/ultralytics/yolov5/issues/303
diff --git a/yolov5_model/README.zh-CN.md b/yolov5_model/README.zh-CN.md
new file mode 100644
index 0000000000000000000000000000000000000000..800a670cfb4f54e9857f941e5784a59781ad2b17
--- /dev/null
+++ b/yolov5_model/README.zh-CN.md
@@ -0,0 +1,488 @@
+<div align="center">
+  <p>
+    <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
+  </p>
+
+[英文](README.md)|[简体中文](README.zh-CN.md)<br>
+
+<div>
+    <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
+    <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
+    <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+    <br>
+    <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
+    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
+    <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+  </div>
+  <br>
+
+YOLOv5 🚀 是世界上最受欢迎的视觉 AI,代表<a href="https://ultralytics.com"> Ultralytics </a>对未来视觉 AI 方法的开源研究,结合在数千小时的研究和开发中积累的经验教训和最佳实践。
+
+如果要申请企业许可证,请填写表格<a href="https://ultralytics.com/license">Ultralytics 许可</a>.
+
+<div align="center">
+    <a href="https://github.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="2%" alt="" /></a>
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
+    <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
+      <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
+  </div>
+</div>
+
+## <div align="center">YOLOv8 🚀 NEW</div>
+
+We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model
+released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
+YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
+object detection, image segmentation and image classification tasks.
+
+See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
+
+```commandline
+pip install ultralytics
+```
+
+<div align="center">
+  <a href="https://ultralytics.com/yolov8" target="_blank">
+  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
+</div>
+
+## <div align="center">文档</div>
+
+有关训练、测试和部署的完整文档见[YOLOv5 文档](https://docs.ultralytics.com)。请参阅下面的快速入门示例。
+
+<details open>
+<summary>安装</summary>
+
+克隆 repo,并要求在 [**Python>=3.7.0**](https://www.python.org/) 环境中安装 [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) ,且要求 [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/) 。
+
+```bash
+git clone https://github.com/ultralytics/yolov5  # clone
+cd yolov5
+pip install -r requirements.txt  # install
+```
+
+</details>
+
+<details>
+<summary>推理</summary>
+
+使用 YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) 推理。最新 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 将自动的从
+YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
+
+```python
+import torch
+
+# Model
+model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom
+
+# Images
+img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list
+
+# Inference
+results = model(img)
+
+# Results
+results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
+```
+
+</details>
+
+<details>
+<summary>使用 detect.py 推理</summary>
+
+`detect.py` 在各种来源上运行推理, [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从
+最新的YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载,并将结果保存到 `runs/detect` 。
+
+```bash
+python detect.py --weights yolov5s.pt --source 0                               # webcam
+                                               img.jpg                         # image
+                                               vid.mp4                         # video
+                                               screen                          # screenshot
+                                               path/                           # directory
+                                               list.txt                        # list of images
+                                               list.streams                    # list of streams
+                                               'path/*.jpg'                    # glob
+                                               'https://youtu.be/Zgi9g1ksQHc'  # YouTube
+                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+```
+
+</details>
+
+<details>
+<summary>训练</summary>
+
+下面的命令重现 YOLOv5 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数据集上的结果。
+最新的 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data)
+将自动的从 YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
+YOLOv5n/s/m/l/x 在 V100 GPU 的训练时间为 1/2/4/6/8 天( [多GPU](https://github.com/ultralytics/yolov5/issues/475) 训练速度更快)。
+尽可能使用更大的 `--batch-size` ,或通过 `--batch-size -1` 实现
+YOLOv5 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092) 。下方显示的 batchsize 适用于 V100-16GB。
+
+```bash
+python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
+                                                                 yolov5s                    64
+                                                                 yolov5m                    40
+                                                                 yolov5l                    24
+                                                                 yolov5x                    16
+```
+
+<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
+
+</details>
+
+<details open>
+<summary>教程</summary>
+
+- [训练自定义数据](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)🚀 推荐
+- [获得最佳训练结果的技巧](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)☘️ 推荐
+- [多 GPU 训练](https://github.com/ultralytics/yolov5/issues/475)
+- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)🌟 新
+- [TFLite、ONNX、CoreML、TensorRT 导出](https://github.com/ultralytics/yolov5/issues/251)🚀
+- [NVIDIA Jetson Nano 部署](https://github.com/ultralytics/yolov5/issues/9627)🌟 新
+- [测试时数据增强 (TTA)](https://github.com/ultralytics/yolov5/issues/303)
+- [模型集成](https://github.com/ultralytics/yolov5/issues/318)
+- [模型修剪/稀疏度](https://github.com/ultralytics/yolov5/issues/304)
+- [超参数进化](https://github.com/ultralytics/yolov5/issues/607)
+- [使用冻结层进行迁移学习](https://github.com/ultralytics/yolov5/issues/1314)
+- [架构总结](https://github.com/ultralytics/yolov5/issues/6998)🌟 新
+- [用于数据集、标签和主动学习的 Roboflow](https://github.com/ultralytics/yolov5/issues/4975)🌟 新
+- [ClearML 记录](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml)🌟 新
+- [Deci 平台](https://github.com/ultralytics/yolov5/wiki/Deci-Platform)🌟 新
+- [Comet Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet)🌟 新
+
+</details>
+
+## <div align="center">模块集成</div>
+
+<br>
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png"></a>
+<br>
+<br>
+
+<div align="center">
+  <a href="https://roboflow.com/?ref=ultralytics">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://cutt.ly/yolov5-readme-clearml">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-readme-comet2">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
+  <a href="https://bit.ly/yolov5-neuralmagic">
+    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
+</div>
+
+|                                      Roboflow                                      |                                 ClearML ⭐ 新                                 |                                     Comet ⭐ 新                                      |                                    Neural Magic ⭐ 新                                    |
+| :--------------------------------------------------------------------------------: | :-------------------------------------------------------------------------: | :--------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------: |
+| 将您的自定义数据集进行标注并直接导出到 YOLOv5 以进行训练 [Roboflow](https://roboflow.com/?ref=ultralytics) | 自动跟踪、可视化甚至远程训练 YOLOv5 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!) | 永远免费,[Comet](https://bit.ly/yolov5-readme-comet2)可让您保存 YOLOv5 模型、恢复训练以及交互式可视化和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic),运行 YOLOv5 推理的速度最高可提高6倍 |
+
+## <div align="center">Ultralytics HUB</div>
+
+[Ultralytics HUB](https://bit.ly/ultralytics_hub) 是我们的⭐**新的**用于可视化数据集、训练 YOLOv5 🚀 模型并以无缝体验部署到现实世界的无代码解决方案。现在开始 **免费** 使用他!
+
+<a align="center" href="https://bit.ly/ultralytics_hub" target="_blank">
+<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
+
+## <div align="center">为什么选择 YOLOv5</div>
+
+YOLOv5 超级容易上手,简单易学。我们优先考虑现实世界的结果。
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
+<details>
+  <summary>YOLOv5-P5 640 图</summary>
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
+</details>
+<details>
+  <summary>图表笔记</summary>
+
+- **COCO AP val** 表示 mAP@0.5:0.95 指标,在 [COCO val2017](http://cocodataset.org) 数据集的 5000 张图像上测得, 图像包含 256 到 1536 各种推理大小。
+- **显卡推理速度** 为在 [COCO val2017](http://cocodataset.org) 数据集上的平均推理时间,使用 [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100实例,batchsize 为 32 。
+- **EfficientDet** 数据来自 [google/automl](https://github.com/google/automl) , batchsize 为32。
+- **复现命令** 为 `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
+
+</details>
+
+### 预训练模型
+
+| 模型                                                                                             | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | 推理速度<br><sup>CPU b1<br>(ms) | 推理速度<br><sup>V100 b1<br>(ms) | 速度<br><sup>V100 b32<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ---------------------------------------------------------------------------------------------- | --------------- | -------------------- | ----------------- | --------------------------- | ---------------------------- | --------------------------- | --------------- | ---------------------- |
+| [YOLOv5n](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n.pt)             | 640             | 28.0                 | 45.7              | **45**                      | **6.3**                      | **0.6**                     | **1.9**         | **4.5**                |
+| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt)             | 640             | 37.4                 | 56.8              | 98                          | 6.4                          | 0.9                         | 7.2             | 16.5                   |
+| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt)             | 640             | 45.4                 | 64.1              | 224                         | 8.2                          | 1.7                         | 21.2            | 49.0                   |
+| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l.pt)             | 640             | 49.0                 | 67.3              | 430                         | 10.1                         | 2.7                         | 46.5            | 109.1                  |
+| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x.pt)             | 640             | 50.7                 | 68.9              | 766                         | 12.1                         | 4.8                         | 86.7            | 205.7                  |
+|                                                                                                |                 |                      |                   |                             |                              |                             |                 |                        |
+| [YOLOv5n6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n6.pt)           | 1280            | 36.0                 | 54.4              | 153                         | 8.1                          | 2.1                         | 3.2             | 4.6                    |
+| [YOLOv5s6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s6.pt)           | 1280            | 44.8                 | 63.7              | 385                         | 8.2                          | 3.6                         | 12.6            | 16.8                   |
+| [YOLOv5m6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m6.pt)           | 1280            | 51.3                 | 69.3              | 887                         | 11.1                         | 6.8                         | 35.7            | 50.0                   |
+| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l6.pt)           | 1280            | 53.7                 | 71.3              | 1784                        | 15.8                         | 10.5                        | 76.8            | 111.4                  |
+| [YOLOv5x6](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x6.pt)<br>+[TTA] | 1280<br>1536    | 55.0<br>**55.8**     | 72.7<br>**72.7**  | 3136<br>-                   | 26.2<br>-                    | 19.4<br>-                   | 140.7<br>-      | 209.8<br>-             |
+
+<details>
+  <summary>笔记</summary>
+
+- 所有模型都使用默认配置,训练 300 epochs。n和s模型使用 [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) ,其他模型都使用 [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml) 。
+- \*\*mAP<sup>val</sup>\*\*在单模型单尺度上计算,数据集使用 [COCO val2017](http://cocodataset.org) 。<br>复现命令 `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
+- **推理速度**在 COCO val 图像总体时间上进行平均得到,测试环境使用[AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/)实例。 NMS 时间 (大约 1 ms/img) 不包括在内。<br>复现命令 `python val.py --data coco.yaml --img 640 --task speed --batch 1`
+- **TTA** [测试时数据增强](https://github.com/ultralytics/yolov5/issues/303) 包括反射和尺度变换。<br>复现命令 `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
+
+</details>
+
+## <div align="center">实例分割模型 ⭐  新</div>
+
+我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) 实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0) 或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。
+
+<details>
+  <summary>实例分割模型列表</summary>
+
+<br>
+
+<div align="center">
+<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+<img width="800" src="https://user-images.githubusercontent.com/61612323/204180385-84f3aca9-a5e9-43d8-a617-dda7ca12e54a.png"></a>
+</div>
+
+我们使用 A100 GPU 在 COCO 上以 640 图像大小训练了 300 epochs 得到 YOLOv5 分割模型。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于再现,我们在 Google [Colab Pro](https://colab.research.google.com/signup) 上进行了所有速度测试。
+
+| 模型                                                                                         | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 训练时长<br><sup>300 epochs<br>A100 GPU(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TRT A100<br>(ms) | 参数量<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| ------------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------- | --------------------------------------- | ----------------------------- | ----------------------------- | --------------- | ---------------------- |
+| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640             | 27.6                 | 23.4                  | 80:17                                   | **62.7**                      | **1.2**                       | **2.0**         | **7.1**                |
+| [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640             | 37.6                 | 31.7                  | 88:16                                   | 173.3                         | 1.4                           | 7.6             | 26.4                   |
+| [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640             | 45.0                 | 37.1                  | 108:36                                  | 427.0                         | 2.2                           | 22.0            | 70.8                   |
+| [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640             | 49.0                 | 39.9                  | 66:43 (2x)                              | 857.4                         | 2.9                           | 47.9            | 147.7                  |
+| [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640             | **50.7**             | **41.4**              | 62:56 (3x)                              | 1579.2                        | 4.5                           | 88.8            | 265.7                  |
+
+- 所有模型使用 SGD 优化器训练, 都使用 `lr0=0.01` 和 `weight_decay=5e-5` 参数, 图像大小为 640 。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5_v70_official
+- **准确性**结果都在 COCO 数据集上,使用单模型单尺度测试得到。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`
+- **推理速度**是使用 100 张图像推理时间进行平均得到,测试环境使用 [Colab Pro](https://colab.research.google.com/signup) 上 A100 高 RAM 实例。结果仅表示推理速度(NMS 每张图像增加约 1 毫秒)。<br>复现命令 `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1`
+- **模型转换**到 FP32 的 ONNX 和 FP16 的 TensorRT 脚本为 `export.py`.<br>运行命令 `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
+
+</details>
+
+<details>
+  <summary>分割模型使用示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### 训练
+
+YOLOv5分割训练支持自动下载 COCO128-seg 分割数据集,用户仅需在启动指令中包含 `--data coco128-seg.yaml` 参数。 若要手动下载,使用命令 `bash data/scripts/get_coco.sh --train --val --segments`, 在下载完毕后,使用命令 `python train.py --data coco.yaml` 开启训练。
+
+```bash
+# 单 GPU
+python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640
+
+# 多 GPU, DDP 模式
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
+```
+
+### 验证
+
+在 COCO 数据集上验证 YOLOv5s-seg mask mAP:
+
+```bash
+bash data/scripts/get_coco.sh --val --segments  # 下载 COCO val segments 数据集 (780MB, 5000 images)
+python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # 验证
+```
+
+### 预测
+
+使用预训练的 YOLOv5m-seg.pt 来预测 bus.jpg:
+
+```bash
+python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5m-seg.pt"
+)  # 从load from PyTorch Hub 加载模型 (WARNING: 推理暂未支持)
+```
+
+| ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) |
+| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
+
+### 模型导出
+
+将 YOLOv5s-seg 模型导出到 ONNX 和 TensorRT:
+
+```bash
+python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0
+```
+
+</details>
+
+## <div align="center">分类网络 ⭐ 新</div>
+
+YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) 带来对分类模型训练、验证和部署的支持!详情请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v6.2) 或访问我们的 [YOLOv5 分类 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/classify/tutorial.ipynb) 以快速入门。
+
+<details>
+  <summary>分类网络模型</summary>
+
+<br>
+
+我们使用 4xA100 实例在 ImageNet 上训练了 90 个 epochs 得到 YOLOv5-cls 分类模型,我们训练了 ResNet 和 EfficientNet 模型以及相同的默认训练设置以进行比较。我们将所有模型导出到 ONNX FP32 以进行 CPU 速度测试,并导出到 TensorRT FP16 以进行 GPU 速度测试。为了便于重现,我们在 Google 上进行了所有速度测试 [Colab Pro](https://colab.research.google.com/signup) 。
+
+| 模型                                                                                                 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 训练时长<br><sup>90 epochs<br>4xA100(小时) | 推理速度<br><sup>ONNX CPU<br>(ms) | 推理速度<br><sup>TensorRT V100<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>@640 (B) |
+| -------------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | ------------------------------------ | ----------------------------- | ---------------------------------- | -------------- | ---------------------- |
+| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt)         | 224             | 64.6             | 85.4             | 7:59                                 | **3.3**                       | **0.5**                            | **2.5**        | **0.5**                |
+| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt)         | 224             | 71.5             | 90.2             | 8:09                                 | 6.6                           | 0.6                                | 5.4            | 1.4                    |
+| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt)         | 224             | 75.9             | 92.9             | 10:06                                | 15.5                          | 0.9                                | 12.9           | 3.9                    |
+| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt)         | 224             | 78.0             | 94.0             | 11:56                                | 26.9                          | 1.4                                | 26.5           | 8.5                    |
+| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt)         | 224             | **79.0**         | **94.4**         | 15:04                                | 54.3                          | 1.8                                | 48.1           | 15.9                   |
+|                                                                                                    |                 |                  |                  |                                      |                               |                                    |                |                        |
+| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt)               | 224             | 70.3             | 89.5             | **6:47**                             | 11.2                          | 0.5                                | 11.7           | 3.7                    |
+| [Resnetzch](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt)              | 224             | 73.9             | 91.8             | 8:33                                 | 20.6                          | 0.9                                | 21.8           | 7.4                    |
+| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt)               | 224             | 76.8             | 93.4             | 11:10                                | 23.4                          | 1.0                                | 25.6           | 8.5                    |
+| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt)             | 224             | 78.5             | 94.3             | 17:10                                | 42.1                          | 1.9                                | 44.5           | 15.9                   |
+|                                                                                                    |                 |                  |                  |                                      |                               |                                    |                |                        |
+| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224             | 75.1             | 92.4             | 13:03                                | 12.5                          | 1.3                                | 5.3            | 1.0                    |
+| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224             | 76.4             | 93.2             | 17:04                                | 14.9                          | 1.6                                | 7.8            | 1.5                    |
+| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224             | 76.6             | 93.4             | 17:10                                | 15.9                          | 1.6                                | 9.1            | 1.7                    |
+| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224             | 77.7             | 94.0             | 19:19                                | 18.9                          | 1.9                                | 12.2           | 2.4                    |
+
+<details>
+  <summary>Table Notes (点击以展开)</summary>
+
+- 所有模型都使用 SGD 优化器训练 90 个 epochs,都使用 `lr0=0.001` 和 `weight_decay=5e-5` 参数, 图像大小为 224 ,且都使用默认设置。<br>训练 log 可以查看 https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
+- **准确性**都在单模型单尺度上计算,数据集使用 [ImageNet-1k](https://www.image-net.org/index.php) 。<br>复现命令 `python classify/val.py --data ../datasets/imagenet --img 224`
+- **推理速度**是使用 100 个推理图像进行平均得到,测试环境使用谷歌 [Colab Pro](https://colab.research.google.com/signup) V100 高 RAM 实例。<br>复现命令 `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
+- **模型导出**到 FP32 的 ONNX 和 FP16 的 TensorRT 使用 `export.py` 。<br>复现命令 `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
+  </details>
+  </details>
+
+<details>
+  <summary>分类训练示例 &nbsp;<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a></summary>
+
+### 训练
+
+YOLOv5 分类训练支持自动下载 MNIST、Fashion-MNIST、CIFAR10、CIFAR100、Imagenette、Imagewoof 和 ImageNet 数据集,命令中使用 `--data` 即可。 MNIST 示例 `--data mnist` 。
+
+```bash
+# 单 GPU
+python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
+
+# 多 GPU, DDP 模式
+python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
+```
+
+### 验证
+
+在 ImageNet-1k 数据集上验证 YOLOv5m-cls 的准确性:
+
+```bash
+bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
+python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate
+```
+
+### 预测
+
+使用预训练的 YOLOv5s-cls.pt 来预测 bus.jpg:
+
+```bash
+python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
+```
+
+```python
+model = torch.hub.load(
+    "ultralytics/yolov5", "custom", "yolov5s-cls.pt"
+)  # load from PyTorch Hub
+```
+
+### 模型导出
+
+将一组经过训练的 YOLOv5s-cls、ResNet 和 EfficientNet 模型导出到 ONNX 和 TensorRT:
+
+```bash
+python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
+```
+
+</details>
+
+## <div align="center">环境</div>
+
+使用下面我们经过验证的环境,在几秒钟内开始使用 YOLOv5 。单击下面的图标了解详细信息。
+
+<div align="center">
+  <a href="https://bit.ly/yolov5-paperspace-notebook">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gradient.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://www.kaggle.com/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://hub.docker.com/r/ultralytics/yolov5">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="10%" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="5%" alt="" />
+  <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="10%" /></a>
+</div>
+
+## <div align="center">贡献</div>
+
+我们喜欢您的意见或建议!我们希望尽可能简单和透明地为 YOLOv5 做出贡献。请看我们的 [投稿指南](CONTRIBUTING.md),并填写 [YOLOv5调查](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我们发送您的体验反馈。感谢我们所有的贡献者!
+
+<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
+
+<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
+<img src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" /></a>
+
+## <div align="center">License</div>
+
+YOLOv5 在两种不同的 License 下可用:
+
+- **GPL-3.0 License**: 查看 [License](https://github.com/ultralytics/yolov5/blob/master/LICENSE) 文件的详细信息。
+- **企业License**:在没有 GPL-3.0 开源要求的情况下为商业产品开发提供更大的灵活性。典型用例是将 Ultralytics 软件和 AI 模型嵌入到商业产品和应用程序中。在以下位置申请企业许可证 [Ultralytics 许可](https://ultralytics.com/license) 。
+
+## <div align="center">联系我们</div>
+
+请访问 [GitHub Issues](https://github.com/ultralytics/yolov5/issues) 或 [Ultralytics Community Forum](https://community.ultralytis.com) 以报告 YOLOv5 错误和请求功能。
+
+<br>
+<div align="center">
+  <a href="https://github.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://twitter.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-producthunt.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://youtube.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-facebook.png" width="3%" alt="" /></a>
+  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
+  <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
+    <img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
+</div>
+
+[tta]: https://github.com/ultralytics/yolov5/issues/303
diff --git a/yolov5_model/__pycache__/export.cpython-39.pyc b/yolov5_model/__pycache__/export.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..79ee215a5374e69b7588a91afd3b6c0ec149b907
Binary files /dev/null and b/yolov5_model/__pycache__/export.cpython-39.pyc differ
diff --git a/yolov5_model/__pycache__/val.cpython-39.pyc b/yolov5_model/__pycache__/val.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..80232793f6b0c61dbe84cb974cca847cbee866ab
Binary files /dev/null and b/yolov5_model/__pycache__/val.cpython-39.pyc differ
diff --git a/yolov5_model/benchmarks.py b/yolov5_model/benchmarks.py
new file mode 100644
index 0000000000000000000000000000000000000000..09108b8a7cc4ef07c97e3835d428bba106b71629
--- /dev/null
+++ b/yolov5_model/benchmarks.py
@@ -0,0 +1,169 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run YOLOv5 benchmarks on all supported export formats
+
+Format                      | `export.py --include`         | Model
+---                         | ---                           | ---
+PyTorch                     | -                             | yolov5s.pt
+TorchScript                 | `torchscript`                 | yolov5s.torchscript
+ONNX                        | `onnx`                        | yolov5s.onnx
+OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
+TensorRT                    | `engine`                      | yolov5s.engine
+CoreML                      | `coreml`                      | yolov5s.mlmodel
+TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
+TensorFlow GraphDef         | `pb`                          | yolov5s.pb
+TensorFlow Lite             | `tflite`                      | yolov5s.tflite
+TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
+TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
+
+Requirements:
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
+    $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com  # TensorRT
+
+Usage:
+    $ python benchmarks.py --weights yolov5s.pt --img 640
+"""
+
+import argparse
+import platform
+import sys
+import time
+from pathlib import Path
+
+import pandas as pd
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd())  # relative
+
+import export
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from segment.val import run as val_seg
+from utils import notebook_init
+from utils.general import LOGGER, check_yaml, file_size, print_args
+from utils.torch_utils import select_device
+from val import run as val_det
+
+
+def run(
+        weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=640,  # inference size (pixels)
+        batch_size=1,  # batch size
+        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        half=False,  # use FP16 half-precision inference
+        test=False,  # test exports only
+        pt_only=False,  # test PyTorch only
+        hard_fail=False,  # throw error on benchmark failure
+):
+    y, t = [], time.time()
+    device = select_device(device)
+    model_type = type(attempt_load(weights, fuse=False))  # DetectionModel, SegmentationModel, etc.
+    for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, CPU, GPU)
+        try:
+            assert i not in (9, 10), 'inference not supported'  # Edge TPU and TF.js are unsupported
+            assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13'  # CoreML
+            if 'cpu' in device.type:
+                assert cpu, 'inference not supported on CPU'
+            if 'cuda' in device.type:
+                assert gpu, 'inference not supported on GPU'
+
+            # Export
+            if f == '-':
+                w = weights  # PyTorch format
+            else:
+                w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # all others
+            assert suffix in str(w), 'export failed'
+
+            # Validate
+            if model_type == SegmentationModel:
+                result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
+                metric = result[0][7]  # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
+            else:  # DetectionModel:
+                result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
+                metric = result[0][3]  # (p, r, map50, map, *loss(box, obj, cls))
+            speed = result[2][1]  # times (preprocess, inference, postprocess)
+            y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)])  # MB, mAP, t_inference
+        except Exception as e:
+            if hard_fail:
+                assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
+            LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
+            y.append([name, None, None, None])  # mAP, t_inference
+        if pt_only and i == 0:
+            break  # break after PyTorch
+
+    # Print results
+    LOGGER.info('\n')
+    parse_opt()
+    notebook_init()  # print system info
+    c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
+    py = pd.DataFrame(y, columns=c)
+    LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
+    LOGGER.info(str(py if map else py.iloc[:, :2]))
+    if hard_fail and isinstance(hard_fail, str):
+        metrics = py['mAP50-95'].array  # values to compare to floor
+        floor = eval(hard_fail)  # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
+        assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
+    return py
+
+
+def test(
+        weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=640,  # inference size (pixels)
+        batch_size=1,  # batch size
+        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        half=False,  # use FP16 half-precision inference
+        test=False,  # test exports only
+        pt_only=False,  # test PyTorch only
+        hard_fail=False,  # throw error on benchmark failure
+):
+    y, t = [], time.time()
+    device = select_device(device)
+    for i, (name, f, suffix, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, gpu-capable)
+        try:
+            w = weights if f == '-' else \
+                export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # weights
+            assert suffix in str(w), 'export failed'
+            y.append([name, True])
+        except Exception:
+            y.append([name, False])  # mAP, t_inference
+
+    # Print results
+    LOGGER.info('\n')
+    parse_opt()
+    notebook_init()  # print system info
+    py = pd.DataFrame(y, columns=['Format', 'Export'])
+    LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
+    LOGGER.info(str(py))
+    return py
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--test', action='store_true', help='test exports only')
+    parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
+    parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    test(**vars(opt)) if opt.test else run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/classify/predict.py b/yolov5_model/classify/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..5f0d40787b521c09378fdfdd96961aeee67e1e8c
--- /dev/null
+++ b/yolov5_model/classify/predict.py
@@ -0,0 +1,226 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
+
+Usage - sources:
+    $ python classify/predict.py --weights yolov5s-cls.pt --source 0                               # webcam
+                                                                   img.jpg                         # image
+                                                                   vid.mp4                         # video
+                                                                   screen                          # screenshot
+                                                                   path/                           # directory
+                                                                   list.txt                        # list of images
+                                                                   list.streams                    # list of streams
+                                                                   'path/*.jpg'                    # glob
+                                                                   'https://youtu.be/Zgi9g1ksQHc'  # YouTube
+                                                                   'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python classify/predict.py --weights yolov5s-cls.pt                 # PyTorch
+                                           yolov5s-cls.torchscript        # TorchScript
+                                           yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                           yolov5s-cls_openvino_model     # OpenVINO
+                                           yolov5s-cls.engine             # TensorRT
+                                           yolov5s-cls.mlmodel            # CoreML (macOS-only)
+                                           yolov5s-cls_saved_model        # TensorFlow SavedModel
+                                           yolov5s-cls.pb                 # TensorFlow GraphDef
+                                           yolov5s-cls.tflite             # TensorFlow Lite
+                                           yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU
+                                           yolov5s-cls_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+import torch.nn.functional as F
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.augmentations import classify_transforms
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+                           increment_path, print_args, strip_optimizer)
+from utils.plots import Annotator
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+        weights=ROOT / 'yolov5s-cls.pt',  # model.pt path(s)
+        source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
+        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+        imgsz=(224, 224),  # inference size (height, width)
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        view_img=False,  # show results
+        save_txt=False,  # save results to *.txt
+        nosave=False,  # do not save images/videos
+        augment=False,  # augmented inference
+        visualize=False,  # visualize features
+        update=False,  # update all models
+        project=ROOT / 'runs/predict-cls',  # save results to project/name
+        name='exp',  # save results to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=False,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        vid_stride=1,  # video frame-rate stride
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith('.txt')  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+    webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
+    screenshot = source.lower().startswith('screen')
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.Tensor(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+
+        # Inference
+        with dt[1]:
+            results = model(im)
+
+        # Post-process
+        with dt[2]:
+            pred = F.softmax(results, dim=1)  # probabilities
+
+        # Process predictions
+        for i, prob in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f'{i}: '
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
+
+            s += '%gx%g ' % im.shape[2:]  # print string
+            annotator = Annotator(im0, example=str(names), pil=True)
+
+            # Print results
+            top5i = prob.argsort(0, descending=True)[:5].tolist()  # top 5 indices
+            s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
+
+            # Write results
+            text = '\n'.join(f'{prob[j]:.2f} {names[j]}' for j in top5i)
+            if save_img or view_img:  # Add bbox to image
+                annotator.text((32, 32), text, txt_color=(255, 255, 255))
+            if save_txt:  # Write to file
+                with open(f'{txt_path}.txt', 'a') as f:
+                    f.write(text + '\n')
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == 'Linux' and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                cv2.waitKey(1)  # 1 millisecond
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == 'image':
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f'{s}{dt[1].dt * 1E3:.1f}ms')
+
+    # Print results
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model path(s)')
+    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[224], help='inference size h,w')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--view-img', action='store_true', help='show results')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--visualize', action='store_true', help='visualize features')
+    parser.add_argument('--update', action='store_true', help='update all models')
+    parser.add_argument('--project', default=ROOT / 'runs/predict-cls', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save results to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(exclude=('tensorboard', 'thop'))
+    run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/classify/train.py b/yolov5_model/classify/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae2363ccf056bb456ce7ac29488d7a8f9d57f818
--- /dev/null
+++ b/yolov5_model/classify/train.py
@@ -0,0 +1,333 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Train a YOLOv5 classifier model on a classification dataset
+
+Usage - Single-GPU training:
+    $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
+
+Usage - Multi-GPU DDP training:
+    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
+
+Datasets:           --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
+YOLOv5-cls models:  --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
+Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
+"""
+
+import argparse
+import os
+import subprocess
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.hub as hub
+import torch.optim.lr_scheduler as lr_scheduler
+import torchvision
+from torch.cuda import amp
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from classify import val as validate
+from models.experimental import attempt_load
+from models.yolo import ClassificationModel, DetectionModel
+from utils.dataloaders import create_classification_dataloader
+from utils.general import (DATASETS_DIR, LOGGER, TQDM_BAR_FORMAT, WorkingDirectory, check_git_info, check_git_status,
+                           check_requirements, colorstr, download, increment_path, init_seeds, print_args, yaml_save)
+from utils.loggers import GenericLogger
+from utils.plots import imshow_cls
+from utils.torch_utils import (ModelEMA, de_parallel, model_info, reshape_classifier_output, select_device, smart_DDP,
+                               smart_optimizer, smartCrossEntropyLoss, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = check_git_info()
+
+
+def train(opt, device):
+    init_seeds(opt.seed + 1 + RANK, deterministic=True)
+    save_dir, data, bs, epochs, nw, imgsz, pretrained = \
+        opt.save_dir, Path(opt.data), opt.batch_size, opt.epochs, min(os.cpu_count() - 1, opt.workers), \
+        opt.imgsz, str(opt.pretrained).lower() == 'true'
+    cuda = device.type != 'cpu'
+
+    # Directories
+    wdir = save_dir / 'weights'
+    wdir.mkdir(parents=True, exist_ok=True)  # make dir
+    last, best = wdir / 'last.pt', wdir / 'best.pt'
+
+    # Save run settings
+    yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+    # Logger
+    logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK in {-1, 0} else None
+
+    # Download Dataset
+    with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
+        data_dir = data if data.is_dir() else (DATASETS_DIR / data)
+        if not data_dir.is_dir():
+            LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
+            t = time.time()
+            if str(data) == 'imagenet':
+                subprocess.run(['bash', str(ROOT / 'data/scripts/get_imagenet.sh')], shell=True, check=True)
+            else:
+                url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip'
+                download(url, dir=data_dir.parent)
+            s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
+            LOGGER.info(s)
+
+    # Dataloaders
+    nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()])  # number of classes
+    trainloader = create_classification_dataloader(path=data_dir / 'train',
+                                                   imgsz=imgsz,
+                                                   batch_size=bs // WORLD_SIZE,
+                                                   augment=True,
+                                                   cache=opt.cache,
+                                                   rank=LOCAL_RANK,
+                                                   workers=nw)
+
+    test_dir = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val'  # data/test or data/val
+    if RANK in {-1, 0}:
+        testloader = create_classification_dataloader(path=test_dir,
+                                                      imgsz=imgsz,
+                                                      batch_size=bs // WORLD_SIZE * 2,
+                                                      augment=False,
+                                                      cache=opt.cache,
+                                                      rank=-1,
+                                                      workers=nw)
+
+    # Model
+    with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
+        if Path(opt.model).is_file() or opt.model.endswith('.pt'):
+            model = attempt_load(opt.model, device='cpu', fuse=False)
+        elif opt.model in torchvision.models.__dict__:  # TorchVision models i.e. resnet50, efficientnet_b0
+            model = torchvision.models.__dict__[opt.model](weights='IMAGENET1K_V1' if pretrained else None)
+        else:
+            m = hub.list('ultralytics/yolov5')  # + hub.list('pytorch/vision')  # models
+            raise ModuleNotFoundError(f'--model {opt.model} not found. Available models are: \n' + '\n'.join(m))
+        if isinstance(model, DetectionModel):
+            LOGGER.warning("WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")
+            model = ClassificationModel(model=model, nc=nc, cutoff=opt.cutoff or 10)  # convert to classification model
+        reshape_classifier_output(model, nc)  # update class count
+    for m in model.modules():
+        if not pretrained and hasattr(m, 'reset_parameters'):
+            m.reset_parameters()
+        if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
+            m.p = opt.dropout  # set dropout
+    for p in model.parameters():
+        p.requires_grad = True  # for training
+    model = model.to(device)
+
+    # Info
+    if RANK in {-1, 0}:
+        model.names = trainloader.dataset.classes  # attach class names
+        model.transforms = testloader.dataset.torch_transforms  # attach inference transforms
+        model_info(model)
+        if opt.verbose:
+            LOGGER.info(model)
+        images, labels = next(iter(trainloader))
+        file = imshow_cls(images[:25], labels[:25], names=model.names, f=save_dir / 'train_images.jpg')
+        logger.log_images(file, name='Train Examples')
+        logger.log_graph(model, imgsz)  # log model
+
+    # Optimizer
+    optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay)
+
+    # Scheduler
+    lrf = 0.01  # final lr (fraction of lr0)
+    # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf  # cosine
+    lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf  # linear
+    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
+    # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
+    #                                    final_div_factor=1 / 25 / lrf)
+
+    # EMA
+    ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+    # DDP mode
+    if cuda and RANK != -1:
+        model = smart_DDP(model)
+
+    # Train
+    t0 = time.time()
+    criterion = smartCrossEntropyLoss(label_smoothing=opt.label_smoothing)  # loss function
+    best_fitness = 0.0
+    scaler = amp.GradScaler(enabled=cuda)
+    val = test_dir.stem  # 'val' or 'test'
+    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} test\n'
+                f'Using {nw * WORLD_SIZE} dataloader workers\n'
+                f"Logging results to {colorstr('bold', save_dir)}\n"
+                f'Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n'
+                f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}")
+    for epoch in range(epochs):  # loop over the dataset multiple times
+        tloss, vloss, fitness = 0.0, 0.0, 0.0  # train loss, val loss, fitness
+        model.train()
+        if RANK != -1:
+            trainloader.sampler.set_epoch(epoch)
+        pbar = enumerate(trainloader)
+        if RANK in {-1, 0}:
+            pbar = tqdm(enumerate(trainloader), total=len(trainloader), bar_format=TQDM_BAR_FORMAT)
+        for i, (images, labels) in pbar:  # progress bar
+            images, labels = images.to(device, non_blocking=True), labels.to(device)
+
+            # Forward
+            with amp.autocast(enabled=cuda):  # stability issues when enabled
+                loss = criterion(model(images), labels)
+
+            # Backward
+            scaler.scale(loss).backward()
+
+            # Optimize
+            scaler.unscale_(optimizer)  # unscale gradients
+            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
+            scaler.step(optimizer)
+            scaler.update()
+            optimizer.zero_grad()
+            if ema:
+                ema.update(model)
+
+            if RANK in {-1, 0}:
+                # Print
+                tloss = (tloss * i + loss.item()) / (i + 1)  # update mean losses
+                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
+                pbar.desc = f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
+
+                # Test
+                if i == len(pbar) - 1:  # last batch
+                    top1, top5, vloss = validate.run(model=ema.ema,
+                                                     dataloader=testloader,
+                                                     criterion=criterion,
+                                                     pbar=pbar)  # test accuracy, loss
+                    fitness = top1  # define fitness as top1 accuracy
+
+        # Scheduler
+        scheduler.step()
+
+        # Log metrics
+        if RANK in {-1, 0}:
+            # Best fitness
+            if fitness > best_fitness:
+                best_fitness = fitness
+
+            # Log
+            metrics = {
+                'train/loss': tloss,
+                f'{val}/loss': vloss,
+                'metrics/accuracy_top1': top1,
+                'metrics/accuracy_top5': top5,
+                'lr/0': optimizer.param_groups[0]['lr']}  # learning rate
+            logger.log_metrics(metrics, epoch)
+
+            # Save model
+            final_epoch = epoch + 1 == epochs
+            if (not opt.nosave) or final_epoch:
+                ckpt = {
+                    'epoch': epoch,
+                    'best_fitness': best_fitness,
+                    'model': deepcopy(ema.ema).half(),  # deepcopy(de_parallel(model)).half(),
+                    'ema': None,  # deepcopy(ema.ema).half(),
+                    'updates': ema.updates,
+                    'optimizer': None,  # optimizer.state_dict(),
+                    'opt': vars(opt),
+                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
+                    'date': datetime.now().isoformat()}
+
+                # Save last, best and delete
+                torch.save(ckpt, last)
+                if best_fitness == fitness:
+                    torch.save(ckpt, best)
+                del ckpt
+
+    # Train complete
+    if RANK in {-1, 0} and final_epoch:
+        LOGGER.info(f'\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)'
+                    f"\nResults saved to {colorstr('bold', save_dir)}"
+                    f'\nPredict:         python classify/predict.py --weights {best} --source im.jpg'
+                    f'\nValidate:        python classify/val.py --weights {best} --data {data_dir}'
+                    f'\nExport:          python export.py --weights {best} --include onnx'
+                    f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
+                    f'\nVisualize:       https://netron.app\n')
+
+        # Plot examples
+        images, labels = (x[:25] for x in next(iter(testloader)))  # first 25 images and labels
+        pred = torch.max(ema.ema(images.to(device)), 1)[1]
+        file = imshow_cls(images, labels, pred, de_parallel(model).names, verbose=False, f=save_dir / 'test_images.jpg')
+
+        # Log results
+        meta = {'epochs': epochs, 'top1_acc': best_fitness, 'date': datetime.now().isoformat()}
+        logger.log_images(file, name='Test Examples (true-predicted)', epoch=epoch)
+        logger.log_model(best, epochs, metadata=meta)
+
+
+def parse_opt(known=False):
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--model', type=str, default='yolov5s-cls.pt', help='initial weights path')
+    parser.add_argument('--data', type=str, default='imagenette160', help='cifar10, cifar100, mnist, imagenet, ...')
+    parser.add_argument('--epochs', type=int, default=10, help='total training epochs')
+    parser.add_argument('--batch-size', type=int, default=64, help='total batch size for all GPUs')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='train, val image size (pixels)')
+    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--project', default=ROOT / 'runs/train-cls', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--pretrained', nargs='?', const=True, default=True, help='start from i.e. --pretrained False')
+    parser.add_argument('--optimizer', choices=['SGD', 'Adam', 'AdamW', 'RMSProp'], default='Adam', help='optimizer')
+    parser.add_argument('--lr0', type=float, default=0.001, help='initial learning rate')
+    parser.add_argument('--decay', type=float, default=5e-5, help='weight decay')
+    parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
+    parser.add_argument('--cutoff', type=int, default=None, help='Model layer cutoff index for Classify() head')
+    parser.add_argument('--dropout', type=float, default=None, help='Dropout (fraction)')
+    parser.add_argument('--verbose', action='store_true', help='Verbose mode')
+    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt):
+    # Checks
+    if RANK in {-1, 0}:
+        print_args(vars(opt))
+        check_git_status()
+        check_requirements()
+
+    # DDP mode
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    if LOCAL_RANK != -1:
+        assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size'
+        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+        torch.cuda.set_device(LOCAL_RANK)
+        device = torch.device('cuda', LOCAL_RANK)
+        dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')
+
+    # Parameters
+    opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)  # increment run
+
+    # Train
+    train(opt, device)
+
+
+def run(**kwargs):
+    # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
+    opt = parse_opt(True)
+    for k, v in kwargs.items():
+        setattr(opt, k, v)
+    main(opt)
+    return opt
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/classify/tutorial.ipynb b/yolov5_model/classify/tutorial.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..58723608bdbedc33b2aac8cef0f60ca5df5013bf
--- /dev/null
+++ b/yolov5_model/classify/tutorial.ipynb
@@ -0,0 +1,1480 @@
+{
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "t6MPjfT5NrKQ"
+      },
+      "source": [
+        "<div align=\"center\">\n",
+        "\n",
+        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
+        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
+        "\n",
+        "\n",
+        "<br>\n",
+        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
+        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
+        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "<br>\n",
+        "\n",
+        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
+        "\n",
+        "</div>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7mGmQbAO5pQb"
+      },
+      "source": [
+        "# Setup\n",
+        "\n",
+        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "wbvMlHd_QwMG",
+        "outputId": "0806e375-610d-4ec0-c867-763dbb518279"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
+          ]
+        }
+      ],
+      "source": [
+        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
+        "%cd yolov5\n",
+        "%pip install -qr requirements.txt  # install\n",
+        "\n",
+        "import torch\n",
+        "import utils\n",
+        "display = utils.notebook_init()  # checks"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4JnkELT0cIJg"
+      },
+      "source": [
+        "# 1. Predict\n",
+        "\n",
+        "`classify/predict.py` runs YOLOv5 Classification inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict-cls`. Example inference sources are:\n",
+        "\n",
+        "```shell\n",
+        "python classify/predict.py --source 0  # webcam\n",
+        "                              img.jpg  # image \n",
+        "                              vid.mp4  # video\n",
+        "                              screen  # screenshot\n",
+        "                              path/  # directory\n",
+        "                              'path/*.jpg'  # glob\n",
+        "                              'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
+        "                              'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "zR9ZbuQCH7FX",
+        "outputId": "50504ef7-aa3e-4281-a4e3-d0c7df3c0ffe"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mclassify/predict: \u001b[0mweights=['yolov5s-cls.pt'], source=data/images, data=data/coco128.yaml, imgsz=[224, 224], device=, view_img=False, save_txt=False, nosave=False, augment=False, visualize=False, update=False, project=runs/predict-cls, name=exp, exist_ok=False, half=False, dnn=False, vid_stride=1\n",
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt to yolov5s-cls.pt...\n",
+            "100% 10.5M/10.5M [00:00<00:00, 12.3MB/s]\n",
+            "\n",
+            "Fusing layers... \n",
+            "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
+            "image 1/2 /content/yolov5/data/images/bus.jpg: 224x224 minibus 0.39, police van 0.24, amphibious vehicle 0.05, recreational vehicle 0.04, trolleybus 0.03, 3.9ms\n",
+            "image 2/2 /content/yolov5/data/images/zidane.jpg: 224x224 suit 0.38, bow tie 0.19, bridegroom 0.18, rugby ball 0.04, stage 0.02, 4.6ms\n",
+            "Speed: 0.3ms pre-process, 4.3ms inference, 1.5ms NMS per image at shape (1, 3, 224, 224)\n",
+            "Results saved to \u001b[1mruns/predict-cls/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "!python classify/predict.py --weights yolov5s-cls.pt --img 224 --source data/images\n",
+        "# display.Image(filename='runs/predict-cls/exp/zidane.jpg', width=600)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "hkAzDWJ7cWTr"
+      },
+      "source": [
+        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
+        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/202808393-50deb439-ae1b-4246-a685-7560c9b37211.jpg\" width=\"600\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0eq1SMWl6Sfn"
+      },
+      "source": [
+        "# 2. Validate\n",
+        "Validate a model's accuracy on the [Imagenet](https://image-net.org/) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "WQPtK1QYVaD_",
+        "outputId": "20fc0630-141e-4a90-ea06-342cbd7ce496"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "--2022-11-22 19:53:40--  https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar\n",
+            "Resolving image-net.org (image-net.org)... 171.64.68.16\n",
+            "Connecting to image-net.org (image-net.org)|171.64.68.16|:443... connected.\n",
+            "HTTP request sent, awaiting response... 200 OK\n",
+            "Length: 6744924160 (6.3G) [application/x-tar]\n",
+            "Saving to: ‘ILSVRC2012_img_val.tar’\n",
+            "\n",
+            "ILSVRC2012_img_val. 100%[===================>]   6.28G  16.1MB/s    in 10m 52s \n",
+            "\n",
+            "2022-11-22 20:04:32 (9.87 MB/s) - ‘ILSVRC2012_img_val.tar’ saved [6744924160/6744924160]\n",
+            "\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Download Imagenet val (6.3G, 50000 images)\n",
+        "!bash data/scripts/get_imagenet.sh --val"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "X58w8JLpMnjH",
+        "outputId": "41843132-98e2-4c25-d474-4cd7b246fb8e"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mclassify/val: \u001b[0mdata=../datasets/imagenet, weights=['yolov5s-cls.pt'], batch_size=128, imgsz=224, device=, workers=8, verbose=True, project=runs/val-cls, name=exp, exist_ok=False, half=True, dnn=False\n",
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Fusing layers... \n",
+            "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
+            "validating: 100% 391/391 [04:57<00:00,  1.31it/s]\n",
+            "                   Class      Images    top1_acc    top5_acc\n",
+            "                     all       50000       0.715       0.902\n",
+            "                   tench          50        0.94        0.98\n",
+            "                goldfish          50        0.88        0.92\n",
+            "       great white shark          50        0.78        0.96\n",
+            "             tiger shark          50        0.68        0.96\n",
+            "        hammerhead shark          50        0.82        0.92\n",
+            "            electric ray          50        0.76         0.9\n",
+            "                stingray          50         0.7         0.9\n",
+            "                    cock          50        0.78        0.92\n",
+            "                     hen          50        0.84        0.96\n",
+            "                 ostrich          50        0.98           1\n",
+            "               brambling          50         0.9        0.96\n",
+            "               goldfinch          50        0.92        0.98\n",
+            "             house finch          50        0.88        0.96\n",
+            "                   junco          50        0.94        0.98\n",
+            "          indigo bunting          50        0.86        0.88\n",
+            "          American robin          50         0.9        0.96\n",
+            "                  bulbul          50        0.84        0.96\n",
+            "                     jay          50         0.9        0.96\n",
+            "                  magpie          50        0.84        0.96\n",
+            "               chickadee          50         0.9           1\n",
+            "         American dipper          50        0.82        0.92\n",
+            "                    kite          50        0.76        0.94\n",
+            "              bald eagle          50        0.92           1\n",
+            "                 vulture          50        0.96           1\n",
+            "          great grey owl          50        0.94        0.98\n",
+            "         fire salamander          50        0.96        0.98\n",
+            "             smooth newt          50        0.58        0.94\n",
+            "                    newt          50        0.74         0.9\n",
+            "      spotted salamander          50        0.86        0.94\n",
+            "                 axolotl          50        0.86        0.96\n",
+            "       American bullfrog          50        0.78        0.92\n",
+            "               tree frog          50        0.84        0.96\n",
+            "             tailed frog          50        0.48         0.8\n",
+            "   loggerhead sea turtle          50        0.68        0.94\n",
+            "  leatherback sea turtle          50         0.5         0.8\n",
+            "              mud turtle          50        0.64        0.84\n",
+            "                terrapin          50        0.52        0.98\n",
+            "              box turtle          50        0.84        0.98\n",
+            "            banded gecko          50         0.7        0.88\n",
+            "            green iguana          50        0.76        0.94\n",
+            "          Carolina anole          50        0.58        0.96\n",
+            "desert grassland whiptail lizard          50        0.82        0.94\n",
+            "                   agama          50        0.74        0.92\n",
+            "   frilled-necked lizard          50        0.84        0.86\n",
+            "        alligator lizard          50        0.58        0.78\n",
+            "            Gila monster          50        0.72         0.8\n",
+            "   European green lizard          50        0.42         0.9\n",
+            "               chameleon          50        0.76        0.84\n",
+            "           Komodo dragon          50        0.86        0.96\n",
+            "          Nile crocodile          50         0.7        0.84\n",
+            "      American alligator          50        0.76        0.96\n",
+            "             triceratops          50         0.9        0.94\n",
+            "              worm snake          50        0.76        0.88\n",
+            "       ring-necked snake          50         0.8        0.92\n",
+            " eastern hog-nosed snake          50        0.58        0.88\n",
+            "      smooth green snake          50         0.6        0.94\n",
+            "               kingsnake          50        0.82         0.9\n",
+            "            garter snake          50        0.88        0.94\n",
+            "             water snake          50         0.7        0.94\n",
+            "              vine snake          50        0.66        0.76\n",
+            "             night snake          50        0.34        0.82\n",
+            "         boa constrictor          50         0.8        0.96\n",
+            "     African rock python          50        0.48        0.76\n",
+            "            Indian cobra          50        0.82        0.94\n",
+            "             green mamba          50        0.54        0.86\n",
+            "               sea snake          50        0.62         0.9\n",
+            "    Saharan horned viper          50        0.56        0.86\n",
+            "eastern diamondback rattlesnake          50         0.6        0.86\n",
+            "              sidewinder          50        0.28        0.86\n",
+            "               trilobite          50        0.98        0.98\n",
+            "              harvestman          50        0.86        0.94\n",
+            "                scorpion          50        0.86        0.94\n",
+            "    yellow garden spider          50        0.92        0.96\n",
+            "             barn spider          50        0.38        0.98\n",
+            "  European garden spider          50        0.62        0.98\n",
+            "    southern black widow          50        0.88        0.94\n",
+            "               tarantula          50        0.94           1\n",
+            "             wolf spider          50        0.82        0.92\n",
+            "                    tick          50        0.74        0.84\n",
+            "               centipede          50        0.68        0.82\n",
+            "            black grouse          50        0.88        0.98\n",
+            "               ptarmigan          50        0.78        0.94\n",
+            "           ruffed grouse          50        0.88           1\n",
+            "          prairie grouse          50        0.92           1\n",
+            "                 peacock          50        0.88         0.9\n",
+            "                   quail          50         0.9        0.94\n",
+            "               partridge          50        0.74        0.96\n",
+            "             grey parrot          50         0.9        0.96\n",
+            "                   macaw          50        0.88        0.98\n",
+            "sulphur-crested cockatoo          50        0.86        0.92\n",
+            "                lorikeet          50        0.96           1\n",
+            "                  coucal          50        0.82        0.88\n",
+            "               bee eater          50        0.96        0.98\n",
+            "                hornbill          50         0.9        0.96\n",
+            "             hummingbird          50        0.88        0.96\n",
+            "                 jacamar          50        0.92        0.94\n",
+            "                  toucan          50        0.84        0.94\n",
+            "                    duck          50        0.76        0.94\n",
+            "  red-breasted merganser          50        0.86        0.96\n",
+            "                   goose          50        0.74        0.96\n",
+            "              black swan          50        0.94        0.98\n",
+            "                  tusker          50        0.54        0.92\n",
+            "                 echidna          50        0.98           1\n",
+            "                platypus          50        0.72        0.84\n",
+            "                 wallaby          50        0.78        0.88\n",
+            "                   koala          50        0.84        0.92\n",
+            "                  wombat          50        0.78        0.84\n",
+            "               jellyfish          50        0.88        0.96\n",
+            "             sea anemone          50        0.72         0.9\n",
+            "             brain coral          50        0.88        0.96\n",
+            "                flatworm          50         0.8        0.98\n",
+            "                nematode          50        0.86         0.9\n",
+            "                   conch          50        0.74        0.88\n",
+            "                   snail          50        0.78        0.88\n",
+            "                    slug          50        0.74        0.82\n",
+            "                sea slug          50        0.88        0.98\n",
+            "                  chiton          50        0.88        0.98\n",
+            "      chambered nautilus          50        0.88        0.92\n",
+            "          Dungeness crab          50        0.78        0.94\n",
+            "               rock crab          50        0.68        0.86\n",
+            "            fiddler crab          50        0.64        0.86\n",
+            "           red king crab          50        0.76        0.96\n",
+            "        American lobster          50        0.78        0.96\n",
+            "           spiny lobster          50        0.74        0.88\n",
+            "                crayfish          50        0.56        0.86\n",
+            "             hermit crab          50        0.78        0.96\n",
+            "                  isopod          50        0.66        0.78\n",
+            "             white stork          50        0.88        0.96\n",
+            "             black stork          50        0.84        0.98\n",
+            "               spoonbill          50        0.96           1\n",
+            "                flamingo          50        0.94           1\n",
+            "       little blue heron          50        0.92        0.98\n",
+            "             great egret          50         0.9        0.96\n",
+            "                 bittern          50        0.86        0.94\n",
+            "            crane (bird)          50        0.62         0.9\n",
+            "                 limpkin          50        0.98           1\n",
+            "        common gallinule          50        0.92        0.96\n",
+            "           American coot          50         0.9        0.98\n",
+            "                 bustard          50        0.92        0.96\n",
+            "         ruddy turnstone          50        0.94           1\n",
+            "                  dunlin          50        0.86        0.94\n",
+            "         common redshank          50         0.9        0.96\n",
+            "               dowitcher          50        0.84        0.96\n",
+            "           oystercatcher          50        0.86        0.94\n",
+            "                 pelican          50        0.92        0.96\n",
+            "            king penguin          50        0.88        0.96\n",
+            "               albatross          50         0.9           1\n",
+            "              grey whale          50        0.84        0.92\n",
+            "            killer whale          50        0.92           1\n",
+            "                  dugong          50        0.84        0.96\n",
+            "                sea lion          50        0.82        0.92\n",
+            "               Chihuahua          50        0.66        0.84\n",
+            "           Japanese Chin          50        0.72        0.98\n",
+            "                 Maltese          50        0.76        0.94\n",
+            "               Pekingese          50        0.84        0.94\n",
+            "                Shih Tzu          50        0.74        0.96\n",
+            "    King Charles Spaniel          50        0.88        0.98\n",
+            "                Papillon          50        0.86        0.94\n",
+            "             toy terrier          50        0.48        0.94\n",
+            "     Rhodesian Ridgeback          50        0.76        0.98\n",
+            "            Afghan Hound          50        0.84           1\n",
+            "            Basset Hound          50         0.8        0.92\n",
+            "                  Beagle          50        0.82        0.96\n",
+            "              Bloodhound          50        0.48        0.72\n",
+            "      Bluetick Coonhound          50        0.86        0.94\n",
+            " Black and Tan Coonhound          50        0.54         0.8\n",
+            "Treeing Walker Coonhound          50        0.66        0.98\n",
+            "        English foxhound          50        0.32        0.84\n",
+            "       Redbone Coonhound          50        0.62        0.94\n",
+            "                  borzoi          50        0.92           1\n",
+            "         Irish Wolfhound          50        0.48        0.88\n",
+            "       Italian Greyhound          50        0.76        0.98\n",
+            "                 Whippet          50        0.74        0.92\n",
+            "            Ibizan Hound          50         0.6        0.86\n",
+            "      Norwegian Elkhound          50        0.88        0.98\n",
+            "              Otterhound          50        0.62         0.9\n",
+            "                  Saluki          50        0.72        0.92\n",
+            "      Scottish Deerhound          50        0.86        0.98\n",
+            "              Weimaraner          50        0.88        0.94\n",
+            "Staffordshire Bull Terrier          50        0.66        0.98\n",
+            "American Staffordshire Terrier          50        0.64        0.92\n",
+            "      Bedlington Terrier          50         0.9        0.92\n",
+            "          Border Terrier          50        0.86        0.92\n",
+            "      Kerry Blue Terrier          50        0.78        0.98\n",
+            "           Irish Terrier          50         0.7        0.96\n",
+            "         Norfolk Terrier          50        0.68         0.9\n",
+            "         Norwich Terrier          50        0.72           1\n",
+            "       Yorkshire Terrier          50        0.66         0.9\n",
+            "        Wire Fox Terrier          50        0.64        0.98\n",
+            "        Lakeland Terrier          50        0.74        0.92\n",
+            "        Sealyham Terrier          50        0.76         0.9\n",
+            "        Airedale Terrier          50        0.82        0.92\n",
+            "           Cairn Terrier          50        0.76         0.9\n",
+            "      Australian Terrier          50        0.48        0.84\n",
+            "  Dandie Dinmont Terrier          50        0.82        0.92\n",
+            "          Boston Terrier          50        0.92           1\n",
+            "     Miniature Schnauzer          50        0.68         0.9\n",
+            "         Giant Schnauzer          50        0.72        0.98\n",
+            "      Standard Schnauzer          50        0.74           1\n",
+            "        Scottish Terrier          50        0.76        0.96\n",
+            "         Tibetan Terrier          50        0.48           1\n",
+            "Australian Silky Terrier          50        0.66        0.96\n",
+            "Soft-coated Wheaten Terrier          50        0.74        0.96\n",
+            "West Highland White Terrier          50        0.88        0.96\n",
+            "              Lhasa Apso          50        0.68        0.96\n",
+            "   Flat-Coated Retriever          50        0.72        0.94\n",
+            "  Curly-coated Retriever          50        0.82        0.94\n",
+            "        Golden Retriever          50        0.86        0.94\n",
+            "      Labrador Retriever          50        0.82        0.94\n",
+            "Chesapeake Bay Retriever          50        0.76        0.96\n",
+            "German Shorthaired Pointer          50         0.8        0.96\n",
+            "                  Vizsla          50        0.68        0.96\n",
+            "          English Setter          50         0.7           1\n",
+            "            Irish Setter          50         0.8         0.9\n",
+            "           Gordon Setter          50        0.84        0.92\n",
+            "                Brittany          50        0.84        0.96\n",
+            "         Clumber Spaniel          50        0.92        0.96\n",
+            "English Springer Spaniel          50        0.88           1\n",
+            "  Welsh Springer Spaniel          50        0.92           1\n",
+            "         Cocker Spaniels          50         0.7        0.94\n",
+            "          Sussex Spaniel          50        0.72        0.92\n",
+            "     Irish Water Spaniel          50        0.88        0.98\n",
+            "                  Kuvasz          50        0.66         0.9\n",
+            "              Schipperke          50         0.9        0.98\n",
+            "             Groenendael          50         0.8        0.94\n",
+            "                Malinois          50        0.86        0.98\n",
+            "                  Briard          50        0.52         0.8\n",
+            "       Australian Kelpie          50         0.6        0.88\n",
+            "                Komondor          50        0.88        0.94\n",
+            "    Old English Sheepdog          50        0.94        0.98\n",
+            "       Shetland Sheepdog          50        0.74         0.9\n",
+            "                  collie          50         0.6        0.96\n",
+            "           Border Collie          50        0.74        0.96\n",
+            "    Bouvier des Flandres          50        0.78        0.94\n",
+            "              Rottweiler          50        0.88        0.96\n",
+            "     German Shepherd Dog          50         0.8        0.98\n",
+            "               Dobermann          50        0.68        0.96\n",
+            "      Miniature Pinscher          50        0.76        0.88\n",
+            "Greater Swiss Mountain Dog          50        0.68        0.94\n",
+            "    Bernese Mountain Dog          50        0.96           1\n",
+            "  Appenzeller Sennenhund          50        0.22           1\n",
+            "  Entlebucher Sennenhund          50        0.64        0.98\n",
+            "                   Boxer          50         0.7        0.92\n",
+            "             Bullmastiff          50        0.78        0.98\n",
+            "         Tibetan Mastiff          50        0.88        0.96\n",
+            "          French Bulldog          50        0.84        0.94\n",
+            "              Great Dane          50        0.54         0.9\n",
+            "             St. Bernard          50        0.92           1\n",
+            "                   husky          50        0.46        0.98\n",
+            "        Alaskan Malamute          50        0.76        0.96\n",
+            "          Siberian Husky          50        0.46        0.98\n",
+            "               Dalmatian          50        0.94        0.98\n",
+            "           Affenpinscher          50        0.78         0.9\n",
+            "                 Basenji          50        0.92        0.94\n",
+            "                     pug          50        0.94        0.98\n",
+            "              Leonberger          50           1           1\n",
+            "            Newfoundland          50        0.78        0.96\n",
+            "   Pyrenean Mountain Dog          50        0.78        0.96\n",
+            "                 Samoyed          50        0.96           1\n",
+            "              Pomeranian          50        0.98           1\n",
+            "               Chow Chow          50         0.9        0.96\n",
+            "                Keeshond          50        0.88        0.94\n",
+            "      Griffon Bruxellois          50        0.84        0.98\n",
+            "    Pembroke Welsh Corgi          50        0.82        0.94\n",
+            "    Cardigan Welsh Corgi          50        0.66        0.98\n",
+            "              Toy Poodle          50        0.52        0.88\n",
+            "        Miniature Poodle          50        0.52        0.92\n",
+            "         Standard Poodle          50         0.8           1\n",
+            "    Mexican hairless dog          50        0.88        0.98\n",
+            "               grey wolf          50        0.82        0.92\n",
+            "     Alaskan tundra wolf          50        0.78        0.98\n",
+            "                red wolf          50        0.48         0.9\n",
+            "                  coyote          50        0.64        0.86\n",
+            "                   dingo          50        0.76        0.88\n",
+            "                   dhole          50         0.9        0.98\n",
+            "        African wild dog          50        0.98           1\n",
+            "                   hyena          50        0.88        0.96\n",
+            "                 red fox          50        0.54        0.92\n",
+            "                 kit fox          50        0.72        0.98\n",
+            "              Arctic fox          50        0.94           1\n",
+            "                grey fox          50         0.7        0.94\n",
+            "               tabby cat          50        0.54        0.92\n",
+            "               tiger cat          50        0.22        0.94\n",
+            "             Persian cat          50         0.9        0.98\n",
+            "             Siamese cat          50        0.96           1\n",
+            "            Egyptian Mau          50        0.54         0.8\n",
+            "                  cougar          50         0.9           1\n",
+            "                    lynx          50        0.72        0.88\n",
+            "                 leopard          50        0.78        0.98\n",
+            "            snow leopard          50         0.9        0.98\n",
+            "                  jaguar          50         0.7        0.94\n",
+            "                    lion          50         0.9        0.98\n",
+            "                   tiger          50        0.92        0.98\n",
+            "                 cheetah          50        0.94        0.98\n",
+            "              brown bear          50        0.94        0.98\n",
+            "     American black bear          50         0.8           1\n",
+            "              polar bear          50        0.84        0.96\n",
+            "              sloth bear          50        0.72        0.92\n",
+            "                mongoose          50         0.7        0.92\n",
+            "                 meerkat          50        0.82        0.92\n",
+            "            tiger beetle          50        0.92        0.94\n",
+            "                 ladybug          50        0.86        0.94\n",
+            "           ground beetle          50        0.64        0.94\n",
+            "         longhorn beetle          50        0.62        0.88\n",
+            "             leaf beetle          50        0.64        0.98\n",
+            "             dung beetle          50        0.86        0.98\n",
+            "       rhinoceros beetle          50        0.86        0.94\n",
+            "                  weevil          50         0.9           1\n",
+            "                     fly          50        0.78        0.94\n",
+            "                     bee          50        0.68        0.94\n",
+            "                     ant          50        0.68        0.78\n",
+            "             grasshopper          50         0.5        0.92\n",
+            "                 cricket          50        0.64        0.92\n",
+            "            stick insect          50        0.64        0.92\n",
+            "               cockroach          50        0.72         0.8\n",
+            "                  mantis          50        0.64        0.86\n",
+            "                  cicada          50         0.9        0.96\n",
+            "              leafhopper          50        0.88        0.94\n",
+            "                lacewing          50        0.78        0.92\n",
+            "               dragonfly          50        0.82        0.98\n",
+            "               damselfly          50        0.82           1\n",
+            "             red admiral          50        0.94        0.96\n",
+            "                 ringlet          50        0.86        0.98\n",
+            "       monarch butterfly          50         0.9        0.92\n",
+            "             small white          50         0.9           1\n",
+            "       sulphur butterfly          50        0.92           1\n",
+            "gossamer-winged butterfly          50        0.88           1\n",
+            "                starfish          50        0.88        0.92\n",
+            "              sea urchin          50        0.84        0.94\n",
+            "            sea cucumber          50        0.66        0.84\n",
+            "       cottontail rabbit          50        0.72        0.94\n",
+            "                    hare          50        0.84        0.96\n",
+            "           Angora rabbit          50        0.94        0.98\n",
+            "                 hamster          50        0.96           1\n",
+            "               porcupine          50        0.88        0.98\n",
+            "            fox squirrel          50        0.76        0.94\n",
+            "                  marmot          50        0.92        0.96\n",
+            "                  beaver          50        0.78        0.94\n",
+            "              guinea pig          50        0.78        0.94\n",
+            "           common sorrel          50        0.96        0.98\n",
+            "                   zebra          50        0.94        0.96\n",
+            "                     pig          50         0.5        0.76\n",
+            "               wild boar          50        0.84        0.96\n",
+            "                 warthog          50        0.84        0.96\n",
+            "            hippopotamus          50        0.88        0.96\n",
+            "                      ox          50        0.48        0.94\n",
+            "           water buffalo          50        0.78        0.94\n",
+            "                   bison          50        0.88        0.96\n",
+            "                     ram          50        0.58        0.92\n",
+            "           bighorn sheep          50        0.66           1\n",
+            "             Alpine ibex          50        0.92        0.98\n",
+            "              hartebeest          50        0.94           1\n",
+            "                  impala          50        0.82        0.96\n",
+            "                 gazelle          50         0.7        0.96\n",
+            "               dromedary          50         0.9           1\n",
+            "                   llama          50        0.82        0.94\n",
+            "                  weasel          50        0.44        0.92\n",
+            "                    mink          50        0.78        0.96\n",
+            "        European polecat          50        0.46         0.9\n",
+            "     black-footed ferret          50        0.68        0.96\n",
+            "                   otter          50        0.66        0.88\n",
+            "                   skunk          50        0.96        0.96\n",
+            "                  badger          50        0.86        0.92\n",
+            "               armadillo          50        0.88         0.9\n",
+            "        three-toed sloth          50        0.96           1\n",
+            "               orangutan          50        0.78        0.92\n",
+            "                 gorilla          50        0.82        0.94\n",
+            "              chimpanzee          50        0.84        0.94\n",
+            "                  gibbon          50        0.76        0.86\n",
+            "                 siamang          50        0.68        0.94\n",
+            "                  guenon          50         0.8        0.94\n",
+            "            patas monkey          50        0.62        0.82\n",
+            "                  baboon          50         0.9        0.98\n",
+            "                 macaque          50         0.8        0.86\n",
+            "                  langur          50         0.6        0.82\n",
+            " black-and-white colobus          50        0.86         0.9\n",
+            "        proboscis monkey          50           1           1\n",
+            "                marmoset          50        0.74        0.98\n",
+            "   white-headed capuchin          50        0.72         0.9\n",
+            "           howler monkey          50        0.86        0.94\n",
+            "                    titi          50         0.5         0.9\n",
+            "Geoffroy's spider monkey          50        0.42         0.8\n",
+            "  common squirrel monkey          50        0.76        0.92\n",
+            "       ring-tailed lemur          50        0.72        0.94\n",
+            "                   indri          50         0.9        0.96\n",
+            "          Asian elephant          50        0.58        0.92\n",
+            "   African bush elephant          50         0.7        0.98\n",
+            "               red panda          50        0.94        0.94\n",
+            "             giant panda          50        0.94        0.98\n",
+            "                   snoek          50        0.74         0.9\n",
+            "                     eel          50         0.6        0.84\n",
+            "             coho salmon          50        0.84        0.96\n",
+            "             rock beauty          50        0.88        0.98\n",
+            "               clownfish          50        0.78        0.98\n",
+            "                sturgeon          50        0.68        0.94\n",
+            "                 garfish          50        0.62         0.8\n",
+            "                lionfish          50        0.96        0.96\n",
+            "              pufferfish          50        0.88        0.96\n",
+            "                  abacus          50        0.74        0.88\n",
+            "                   abaya          50        0.84        0.92\n",
+            "           academic gown          50        0.42        0.86\n",
+            "               accordion          50         0.8         0.9\n",
+            "         acoustic guitar          50         0.5        0.76\n",
+            "        aircraft carrier          50         0.8        0.96\n",
+            "                airliner          50        0.92           1\n",
+            "                 airship          50        0.76        0.82\n",
+            "                   altar          50        0.64        0.98\n",
+            "               ambulance          50        0.88        0.98\n",
+            "      amphibious vehicle          50        0.64        0.94\n",
+            "            analog clock          50        0.52        0.92\n",
+            "                  apiary          50        0.82        0.96\n",
+            "                   apron          50         0.7        0.84\n",
+            "         waste container          50         0.4         0.8\n",
+            "           assault rifle          50        0.42        0.84\n",
+            "                backpack          50        0.34        0.64\n",
+            "                  bakery          50         0.4        0.68\n",
+            "            balance beam          50         0.8        0.98\n",
+            "                 balloon          50        0.86        0.96\n",
+            "           ballpoint pen          50        0.52        0.96\n",
+            "                Band-Aid          50         0.7         0.9\n",
+            "                   banjo          50        0.84           1\n",
+            "                baluster          50        0.68        0.94\n",
+            "                 barbell          50        0.56         0.9\n",
+            "            barber chair          50         0.7        0.92\n",
+            "              barbershop          50        0.54        0.86\n",
+            "                    barn          50        0.96        0.96\n",
+            "               barometer          50        0.84        0.98\n",
+            "                  barrel          50        0.56        0.88\n",
+            "             wheelbarrow          50        0.66        0.88\n",
+            "                baseball          50        0.74        0.98\n",
+            "              basketball          50        0.88        0.98\n",
+            "                bassinet          50        0.66        0.92\n",
+            "                 bassoon          50        0.74        0.98\n",
+            "            swimming cap          50        0.62        0.88\n",
+            "              bath towel          50        0.54        0.78\n",
+            "                 bathtub          50         0.4        0.88\n",
+            "           station wagon          50        0.66        0.84\n",
+            "              lighthouse          50        0.78        0.94\n",
+            "                  beaker          50        0.52        0.68\n",
+            "            military cap          50        0.84        0.96\n",
+            "             beer bottle          50        0.66        0.88\n",
+            "              beer glass          50         0.6        0.84\n",
+            "                bell-cot          50        0.56        0.96\n",
+            "                     bib          50        0.58        0.82\n",
+            "          tandem bicycle          50        0.86        0.96\n",
+            "                  bikini          50        0.56        0.88\n",
+            "             ring binder          50        0.64        0.84\n",
+            "              binoculars          50        0.54        0.78\n",
+            "               birdhouse          50        0.86        0.94\n",
+            "               boathouse          50        0.74        0.92\n",
+            "               bobsleigh          50        0.92        0.96\n",
+            "                bolo tie          50         0.8        0.94\n",
+            "             poke bonnet          50        0.64        0.86\n",
+            "                bookcase          50        0.66        0.92\n",
+            "               bookstore          50        0.62        0.88\n",
+            "              bottle cap          50        0.58         0.7\n",
+            "                     bow          50        0.72        0.86\n",
+            "                 bow tie          50         0.7         0.9\n",
+            "                   brass          50        0.92        0.96\n",
+            "                     bra          50         0.5         0.7\n",
+            "              breakwater          50        0.62        0.86\n",
+            "             breastplate          50         0.4         0.9\n",
+            "                   broom          50         0.6        0.86\n",
+            "                  bucket          50        0.66         0.8\n",
+            "                  buckle          50         0.5        0.68\n",
+            "        bulletproof vest          50         0.5        0.78\n",
+            "        high-speed train          50        0.94        0.96\n",
+            "            butcher shop          50        0.74        0.94\n",
+            "                 taxicab          50        0.64        0.86\n",
+            "                cauldron          50        0.44        0.66\n",
+            "                  candle          50        0.48        0.74\n",
+            "                  cannon          50        0.88        0.94\n",
+            "                   canoe          50        0.94           1\n",
+            "              can opener          50        0.66        0.86\n",
+            "                cardigan          50        0.68         0.8\n",
+            "              car mirror          50        0.94        0.96\n",
+            "                carousel          50        0.94        0.98\n",
+            "                tool kit          50        0.56        0.78\n",
+            "                  carton          50        0.42         0.7\n",
+            "               car wheel          50        0.38        0.74\n",
+            "automated teller machine          50        0.76        0.94\n",
+            "                cassette          50        0.52         0.8\n",
+            "         cassette player          50        0.28         0.9\n",
+            "                  castle          50        0.78        0.88\n",
+            "               catamaran          50        0.78           1\n",
+            "               CD player          50        0.52        0.82\n",
+            "                   cello          50        0.82           1\n",
+            "            mobile phone          50        0.68        0.86\n",
+            "                   chain          50        0.38        0.66\n",
+            "        chain-link fence          50         0.7        0.84\n",
+            "              chain mail          50        0.64         0.9\n",
+            "                chainsaw          50        0.84        0.92\n",
+            "                   chest          50        0.68        0.92\n",
+            "              chiffonier          50        0.26        0.64\n",
+            "                   chime          50        0.62        0.84\n",
+            "           china cabinet          50        0.82        0.96\n",
+            "      Christmas stocking          50        0.92        0.94\n",
+            "                  church          50        0.62         0.9\n",
+            "           movie theater          50        0.58        0.88\n",
+            "                 cleaver          50        0.32        0.62\n",
+            "          cliff dwelling          50        0.88           1\n",
+            "                   cloak          50        0.32        0.64\n",
+            "                   clogs          50        0.58        0.88\n",
+            "         cocktail shaker          50        0.62         0.7\n",
+            "              coffee mug          50        0.44        0.72\n",
+            "             coffeemaker          50        0.64        0.92\n",
+            "                    coil          50        0.66        0.84\n",
+            "        combination lock          50        0.64        0.84\n",
+            "       computer keyboard          50         0.7        0.82\n",
+            "     confectionery store          50        0.54        0.86\n",
+            "          container ship          50        0.82        0.98\n",
+            "             convertible          50        0.78        0.98\n",
+            "               corkscrew          50        0.82        0.92\n",
+            "                  cornet          50        0.46        0.88\n",
+            "             cowboy boot          50        0.64         0.8\n",
+            "              cowboy hat          50        0.64        0.82\n",
+            "                  cradle          50        0.38         0.8\n",
+            "         crane (machine)          50        0.78        0.94\n",
+            "            crash helmet          50        0.92        0.96\n",
+            "                   crate          50        0.52        0.82\n",
+            "              infant bed          50        0.74           1\n",
+            "               Crock Pot          50        0.78         0.9\n",
+            "            croquet ball          50         0.9        0.96\n",
+            "                  crutch          50        0.46         0.7\n",
+            "                 cuirass          50        0.54        0.86\n",
+            "                     dam          50        0.74        0.92\n",
+            "                    desk          50         0.6        0.86\n",
+            "        desktop computer          50        0.54        0.94\n",
+            "   rotary dial telephone          50        0.88        0.94\n",
+            "                  diaper          50        0.68        0.84\n",
+            "           digital clock          50        0.54        0.76\n",
+            "           digital watch          50        0.58        0.86\n",
+            "            dining table          50        0.76         0.9\n",
+            "               dishcloth          50        0.94           1\n",
+            "              dishwasher          50        0.44        0.78\n",
+            "              disc brake          50        0.98           1\n",
+            "                    dock          50        0.54        0.94\n",
+            "                dog sled          50        0.84           1\n",
+            "                    dome          50        0.72        0.92\n",
+            "                 doormat          50        0.56        0.82\n",
+            "            drilling rig          50        0.84        0.96\n",
+            "                    drum          50        0.38        0.68\n",
+            "               drumstick          50        0.56        0.72\n",
+            "                dumbbell          50        0.62         0.9\n",
+            "              Dutch oven          50         0.7        0.84\n",
+            "            electric fan          50        0.82        0.86\n",
+            "         electric guitar          50        0.62        0.84\n",
+            "     electric locomotive          50        0.92        0.98\n",
+            "    entertainment center          50         0.9        0.98\n",
+            "                envelope          50        0.44        0.86\n",
+            "        espresso machine          50        0.72        0.94\n",
+            "             face powder          50         0.7        0.92\n",
+            "             feather boa          50         0.7        0.84\n",
+            "          filing cabinet          50        0.88        0.98\n",
+            "                fireboat          50        0.94        0.98\n",
+            "             fire engine          50        0.84         0.9\n",
+            "       fire screen sheet          50        0.62        0.76\n",
+            "                flagpole          50        0.74        0.88\n",
+            "                   flute          50        0.36        0.72\n",
+            "           folding chair          50        0.62        0.84\n",
+            "         football helmet          50        0.86        0.94\n",
+            "                forklift          50         0.8        0.92\n",
+            "                fountain          50        0.84        0.94\n",
+            "            fountain pen          50        0.76        0.92\n",
+            "         four-poster bed          50        0.78        0.94\n",
+            "             freight car          50        0.96           1\n",
+            "             French horn          50        0.76        0.92\n",
+            "              frying pan          50        0.36        0.78\n",
+            "                fur coat          50        0.84        0.96\n",
+            "           garbage truck          50         0.9        0.98\n",
+            "                gas mask          50        0.84        0.92\n",
+            "                gas pump          50         0.9        0.98\n",
+            "                  goblet          50        0.68        0.82\n",
+            "                 go-kart          50         0.9           1\n",
+            "               golf ball          50        0.84         0.9\n",
+            "               golf cart          50        0.78        0.86\n",
+            "                 gondola          50        0.98        0.98\n",
+            "                    gong          50        0.74        0.92\n",
+            "                    gown          50        0.62        0.96\n",
+            "             grand piano          50         0.7        0.96\n",
+            "              greenhouse          50         0.8        0.98\n",
+            "                  grille          50        0.72         0.9\n",
+            "           grocery store          50        0.66        0.94\n",
+            "              guillotine          50        0.86        0.92\n",
+            "                barrette          50        0.52        0.66\n",
+            "              hair spray          50         0.5        0.74\n",
+            "              half-track          50        0.78         0.9\n",
+            "                  hammer          50        0.56        0.76\n",
+            "                  hamper          50        0.64        0.84\n",
+            "              hair dryer          50        0.56        0.74\n",
+            "      hand-held computer          50        0.42        0.86\n",
+            "            handkerchief          50        0.78        0.94\n",
+            "         hard disk drive          50        0.76        0.84\n",
+            "               harmonica          50         0.7        0.88\n",
+            "                    harp          50        0.88        0.96\n",
+            "               harvester          50        0.78           1\n",
+            "                 hatchet          50        0.54        0.74\n",
+            "                 holster          50        0.66        0.84\n",
+            "            home theater          50        0.64        0.94\n",
+            "               honeycomb          50        0.56        0.88\n",
+            "                    hook          50         0.3         0.6\n",
+            "              hoop skirt          50        0.64        0.86\n",
+            "          horizontal bar          50        0.68        0.98\n",
+            "     horse-drawn vehicle          50        0.88        0.94\n",
+            "               hourglass          50        0.88        0.96\n",
+            "                    iPod          50        0.76        0.94\n",
+            "            clothes iron          50        0.82        0.88\n",
+            "         jack-o'-lantern          50        0.98        0.98\n",
+            "                   jeans          50        0.68        0.84\n",
+            "                    jeep          50        0.72         0.9\n",
+            "                 T-shirt          50        0.72        0.96\n",
+            "           jigsaw puzzle          50        0.84        0.94\n",
+            "         pulled rickshaw          50        0.86        0.94\n",
+            "                joystick          50         0.8         0.9\n",
+            "                  kimono          50        0.84        0.96\n",
+            "                knee pad          50        0.62        0.88\n",
+            "                    knot          50        0.66         0.8\n",
+            "                lab coat          50         0.8        0.96\n",
+            "                   ladle          50        0.36        0.64\n",
+            "               lampshade          50        0.48        0.84\n",
+            "         laptop computer          50        0.26        0.88\n",
+            "              lawn mower          50        0.78        0.96\n",
+            "                lens cap          50        0.46        0.72\n",
+            "             paper knife          50        0.26         0.5\n",
+            "                 library          50        0.54         0.9\n",
+            "                lifeboat          50        0.92        0.98\n",
+            "                 lighter          50        0.56        0.78\n",
+            "               limousine          50        0.76        0.92\n",
+            "             ocean liner          50        0.88        0.94\n",
+            "                lipstick          50        0.74         0.9\n",
+            "            slip-on shoe          50        0.74        0.92\n",
+            "                  lotion          50         0.5        0.86\n",
+            "                 speaker          50        0.52        0.68\n",
+            "                   loupe          50        0.32        0.52\n",
+            "                 sawmill          50        0.72         0.9\n",
+            "        magnetic compass          50        0.52        0.82\n",
+            "                mail bag          50        0.68        0.92\n",
+            "                 mailbox          50        0.82        0.92\n",
+            "                  tights          50        0.22        0.94\n",
+            "               tank suit          50        0.24         0.9\n",
+            "           manhole cover          50        0.96        0.98\n",
+            "                  maraca          50        0.74         0.9\n",
+            "                 marimba          50        0.84        0.94\n",
+            "                    mask          50        0.44        0.82\n",
+            "                   match          50        0.66         0.9\n",
+            "                 maypole          50        0.96           1\n",
+            "                    maze          50         0.8        0.96\n",
+            "           measuring cup          50        0.54        0.76\n",
+            "          medicine chest          50         0.6        0.84\n",
+            "                megalith          50         0.8        0.92\n",
+            "              microphone          50        0.52         0.7\n",
+            "          microwave oven          50        0.48        0.72\n",
+            "        military uniform          50        0.62        0.84\n",
+            "                milk can          50        0.68        0.82\n",
+            "                 minibus          50         0.7           1\n",
+            "               miniskirt          50        0.46        0.76\n",
+            "                 minivan          50        0.38         0.8\n",
+            "                 missile          50         0.4        0.84\n",
+            "                  mitten          50        0.76        0.88\n",
+            "             mixing bowl          50         0.8        0.92\n",
+            "             mobile home          50        0.54        0.78\n",
+            "                 Model T          50        0.92        0.96\n",
+            "                   modem          50        0.58        0.86\n",
+            "               monastery          50        0.44         0.9\n",
+            "                 monitor          50         0.4        0.86\n",
+            "                   moped          50        0.56        0.94\n",
+            "                  mortar          50        0.68        0.94\n",
+            "     square academic cap          50         0.5        0.84\n",
+            "                  mosque          50         0.9           1\n",
+            "            mosquito net          50         0.9        0.98\n",
+            "                 scooter          50         0.9        0.98\n",
+            "           mountain bike          50        0.78        0.96\n",
+            "                    tent          50        0.88        0.96\n",
+            "          computer mouse          50        0.42        0.82\n",
+            "               mousetrap          50        0.76        0.88\n",
+            "              moving van          50         0.4        0.72\n",
+            "                  muzzle          50         0.5        0.72\n",
+            "                    nail          50        0.68        0.74\n",
+            "              neck brace          50        0.56        0.68\n",
+            "                necklace          50        0.86           1\n",
+            "                  nipple          50         0.7        0.88\n",
+            "       notebook computer          50        0.34        0.84\n",
+            "                 obelisk          50         0.8        0.92\n",
+            "                    oboe          50         0.6        0.84\n",
+            "                 ocarina          50         0.8        0.86\n",
+            "                odometer          50        0.96           1\n",
+            "              oil filter          50        0.58        0.82\n",
+            "                   organ          50        0.82         0.9\n",
+            "            oscilloscope          50         0.9        0.96\n",
+            "               overskirt          50         0.2         0.7\n",
+            "            bullock cart          50         0.7        0.94\n",
+            "             oxygen mask          50        0.46        0.84\n",
+            "                  packet          50         0.5        0.78\n",
+            "                  paddle          50        0.56        0.94\n",
+            "            paddle wheel          50        0.86        0.96\n",
+            "                 padlock          50        0.74        0.78\n",
+            "              paintbrush          50        0.62         0.8\n",
+            "                 pajamas          50        0.56        0.92\n",
+            "                  palace          50        0.64        0.96\n",
+            "               pan flute          50        0.84        0.86\n",
+            "             paper towel          50        0.66        0.84\n",
+            "               parachute          50        0.92        0.94\n",
+            "           parallel bars          50        0.62        0.96\n",
+            "              park bench          50        0.74         0.9\n",
+            "           parking meter          50        0.84        0.92\n",
+            "           passenger car          50         0.5        0.82\n",
+            "                   patio          50        0.58        0.84\n",
+            "                payphone          50        0.74        0.92\n",
+            "                pedestal          50        0.52         0.9\n",
+            "             pencil case          50        0.64        0.92\n",
+            "        pencil sharpener          50        0.52        0.78\n",
+            "                 perfume          50         0.7         0.9\n",
+            "              Petri dish          50         0.6         0.8\n",
+            "             photocopier          50        0.88        0.98\n",
+            "                plectrum          50         0.7        0.84\n",
+            "             Pickelhaube          50        0.72        0.86\n",
+            "            picket fence          50        0.84        0.94\n",
+            "            pickup truck          50        0.64        0.92\n",
+            "                    pier          50        0.52        0.82\n",
+            "              piggy bank          50        0.82        0.94\n",
+            "             pill bottle          50        0.76        0.86\n",
+            "                  pillow          50        0.76         0.9\n",
+            "          ping-pong ball          50        0.84        0.88\n",
+            "                pinwheel          50        0.76        0.88\n",
+            "             pirate ship          50        0.76        0.94\n",
+            "                 pitcher          50        0.46        0.84\n",
+            "              hand plane          50        0.84        0.94\n",
+            "             planetarium          50        0.88        0.98\n",
+            "             plastic bag          50        0.36        0.62\n",
+            "              plate rack          50        0.52        0.78\n",
+            "                    plow          50        0.78        0.88\n",
+            "                 plunger          50        0.42         0.7\n",
+            "         Polaroid camera          50        0.84        0.92\n",
+            "                    pole          50        0.38        0.74\n",
+            "              police van          50        0.76        0.94\n",
+            "                  poncho          50        0.58        0.86\n",
+            "          billiard table          50         0.8        0.88\n",
+            "             soda bottle          50        0.56        0.94\n",
+            "                     pot          50        0.78        0.92\n",
+            "          potter's wheel          50         0.9        0.94\n",
+            "             power drill          50        0.42        0.72\n",
+            "              prayer rug          50         0.7        0.86\n",
+            "                 printer          50        0.54        0.86\n",
+            "                  prison          50         0.7         0.9\n",
+            "              projectile          50        0.28         0.9\n",
+            "               projector          50        0.62        0.84\n",
+            "             hockey puck          50        0.92        0.96\n",
+            "            punching bag          50         0.6        0.68\n",
+            "                   purse          50        0.42        0.78\n",
+            "                   quill          50        0.68        0.84\n",
+            "                   quilt          50        0.64         0.9\n",
+            "                race car          50        0.72        0.92\n",
+            "                  racket          50        0.72         0.9\n",
+            "                radiator          50        0.66        0.76\n",
+            "                   radio          50        0.64        0.92\n",
+            "         radio telescope          50         0.9        0.96\n",
+            "             rain barrel          50         0.8        0.98\n",
+            "    recreational vehicle          50        0.84        0.94\n",
+            "                    reel          50        0.72        0.82\n",
+            "           reflex camera          50        0.72        0.92\n",
+            "            refrigerator          50         0.7         0.9\n",
+            "          remote control          50         0.7        0.88\n",
+            "              restaurant          50         0.5        0.66\n",
+            "                revolver          50        0.82           1\n",
+            "                   rifle          50        0.38         0.7\n",
+            "           rocking chair          50        0.62        0.84\n",
+            "              rotisserie          50        0.88        0.92\n",
+            "                  eraser          50        0.54        0.76\n",
+            "              rugby ball          50        0.86        0.94\n",
+            "                   ruler          50        0.68        0.86\n",
+            "            running shoe          50        0.78        0.94\n",
+            "                    safe          50        0.82        0.92\n",
+            "              safety pin          50         0.4        0.62\n",
+            "             salt shaker          50        0.66         0.9\n",
+            "                  sandal          50        0.66        0.86\n",
+            "                  sarong          50        0.64        0.86\n",
+            "               saxophone          50        0.66        0.88\n",
+            "                scabbard          50        0.76        0.92\n",
+            "          weighing scale          50        0.58        0.78\n",
+            "              school bus          50        0.92           1\n",
+            "                schooner          50        0.84           1\n",
+            "              scoreboard          50         0.9        0.96\n",
+            "              CRT screen          50        0.14         0.7\n",
+            "                   screw          50         0.9        0.98\n",
+            "             screwdriver          50         0.3        0.58\n",
+            "               seat belt          50        0.88        0.94\n",
+            "          sewing machine          50        0.76         0.9\n",
+            "                  shield          50        0.56        0.82\n",
+            "              shoe store          50        0.78        0.96\n",
+            "                   shoji          50         0.8        0.92\n",
+            "         shopping basket          50        0.52        0.88\n",
+            "           shopping cart          50        0.76        0.92\n",
+            "                  shovel          50        0.62        0.84\n",
+            "              shower cap          50         0.7        0.84\n",
+            "          shower curtain          50        0.64        0.82\n",
+            "                     ski          50        0.74        0.92\n",
+            "                ski mask          50        0.72        0.88\n",
+            "            sleeping bag          50        0.68         0.8\n",
+            "              slide rule          50        0.72        0.88\n",
+            "            sliding door          50        0.44        0.78\n",
+            "            slot machine          50        0.94        0.98\n",
+            "                 snorkel          50        0.86        0.98\n",
+            "              snowmobile          50        0.88           1\n",
+            "                snowplow          50        0.84        0.98\n",
+            "          soap dispenser          50        0.56        0.86\n",
+            "             soccer ball          50        0.86        0.96\n",
+            "                    sock          50        0.62        0.76\n",
+            " solar thermal collector          50        0.72        0.96\n",
+            "                sombrero          50         0.6        0.84\n",
+            "               soup bowl          50        0.56        0.94\n",
+            "               space bar          50        0.34        0.88\n",
+            "            space heater          50        0.52        0.74\n",
+            "           space shuttle          50        0.82        0.96\n",
+            "                 spatula          50         0.3         0.6\n",
+            "               motorboat          50        0.86           1\n",
+            "              spider web          50         0.7         0.9\n",
+            "                 spindle          50        0.86        0.98\n",
+            "              sports car          50         0.6        0.94\n",
+            "               spotlight          50        0.26         0.6\n",
+            "                   stage          50        0.68        0.86\n",
+            "        steam locomotive          50        0.94           1\n",
+            "     through arch bridge          50        0.84        0.96\n",
+            "              steel drum          50        0.82         0.9\n",
+            "             stethoscope          50         0.6        0.82\n",
+            "                   scarf          50         0.5        0.92\n",
+            "              stone wall          50        0.76         0.9\n",
+            "               stopwatch          50        0.58         0.9\n",
+            "                   stove          50        0.46        0.74\n",
+            "                strainer          50        0.64        0.84\n",
+            "                    tram          50        0.88        0.96\n",
+            "               stretcher          50         0.6         0.8\n",
+            "                   couch          50         0.8        0.96\n",
+            "                   stupa          50        0.88        0.88\n",
+            "               submarine          50        0.72        0.92\n",
+            "                    suit          50         0.4        0.78\n",
+            "                 sundial          50        0.58        0.74\n",
+            "                sunglass          50        0.14        0.58\n",
+            "              sunglasses          50        0.28        0.58\n",
+            "               sunscreen          50        0.32         0.7\n",
+            "       suspension bridge          50         0.6        0.94\n",
+            "                     mop          50        0.74        0.92\n",
+            "              sweatshirt          50        0.28        0.66\n",
+            "                swimsuit          50        0.52        0.82\n",
+            "                   swing          50        0.76        0.84\n",
+            "                  switch          50        0.56        0.76\n",
+            "                 syringe          50        0.62        0.82\n",
+            "              table lamp          50         0.6        0.88\n",
+            "                    tank          50         0.8        0.96\n",
+            "             tape player          50        0.46        0.76\n",
+            "                  teapot          50        0.84           1\n",
+            "              teddy bear          50        0.82        0.94\n",
+            "              television          50         0.6         0.9\n",
+            "             tennis ball          50         0.7        0.94\n",
+            "           thatched roof          50        0.88         0.9\n",
+            "           front curtain          50         0.8        0.92\n",
+            "                 thimble          50         0.6         0.8\n",
+            "       threshing machine          50        0.56        0.88\n",
+            "                  throne          50        0.72        0.82\n",
+            "               tile roof          50        0.72        0.94\n",
+            "                 toaster          50        0.66        0.84\n",
+            "            tobacco shop          50        0.42         0.7\n",
+            "             toilet seat          50        0.62        0.88\n",
+            "                   torch          50        0.64        0.84\n",
+            "              totem pole          50        0.92        0.98\n",
+            "               tow truck          50        0.62        0.88\n",
+            "               toy store          50         0.6        0.94\n",
+            "                 tractor          50        0.76        0.98\n",
+            "      semi-trailer truck          50        0.78        0.92\n",
+            "                    tray          50        0.46        0.64\n",
+            "             trench coat          50        0.54        0.72\n",
+            "                tricycle          50        0.72        0.94\n",
+            "                trimaran          50         0.7        0.98\n",
+            "                  tripod          50        0.58        0.86\n",
+            "          triumphal arch          50        0.92        0.98\n",
+            "              trolleybus          50         0.9           1\n",
+            "                trombone          50        0.54        0.88\n",
+            "                     tub          50        0.24        0.82\n",
+            "               turnstile          50        0.84        0.94\n",
+            "     typewriter keyboard          50        0.68        0.98\n",
+            "                umbrella          50        0.52         0.7\n",
+            "                unicycle          50        0.74        0.96\n",
+            "           upright piano          50        0.76         0.9\n",
+            "          vacuum cleaner          50        0.62         0.9\n",
+            "                    vase          50         0.5        0.78\n",
+            "                   vault          50        0.76        0.92\n",
+            "                  velvet          50         0.2        0.42\n",
+            "         vending machine          50         0.9           1\n",
+            "                vestment          50        0.54        0.82\n",
+            "                 viaduct          50        0.78        0.86\n",
+            "                  violin          50        0.68        0.78\n",
+            "              volleyball          50        0.86           1\n",
+            "             waffle iron          50        0.72        0.88\n",
+            "              wall clock          50        0.54        0.88\n",
+            "                  wallet          50        0.52         0.9\n",
+            "                wardrobe          50        0.68        0.88\n",
+            "       military aircraft          50         0.9        0.98\n",
+            "                    sink          50        0.72        0.96\n",
+            "         washing machine          50        0.78        0.94\n",
+            "            water bottle          50        0.54        0.74\n",
+            "               water jug          50        0.22        0.74\n",
+            "             water tower          50         0.9        0.96\n",
+            "             whiskey jug          50        0.64        0.74\n",
+            "                 whistle          50        0.72        0.84\n",
+            "                     wig          50        0.84         0.9\n",
+            "           window screen          50        0.68         0.8\n",
+            "            window shade          50        0.52        0.76\n",
+            "             Windsor tie          50        0.22        0.66\n",
+            "             wine bottle          50        0.42        0.82\n",
+            "                    wing          50        0.54        0.96\n",
+            "                     wok          50        0.46        0.82\n",
+            "            wooden spoon          50        0.58         0.8\n",
+            "                    wool          50        0.32        0.82\n",
+            "        split-rail fence          50        0.74         0.9\n",
+            "               shipwreck          50        0.84        0.96\n",
+            "                    yawl          50        0.78        0.96\n",
+            "                    yurt          50        0.84           1\n",
+            "                 website          50        0.98           1\n",
+            "              comic book          50        0.62         0.9\n",
+            "               crossword          50        0.84        0.88\n",
+            "            traffic sign          50        0.78         0.9\n",
+            "           traffic light          50         0.8        0.94\n",
+            "             dust jacket          50        0.72        0.94\n",
+            "                    menu          50        0.82        0.96\n",
+            "                   plate          50        0.44        0.88\n",
+            "               guacamole          50         0.8        0.92\n",
+            "                consomme          50        0.54        0.88\n",
+            "                 hot pot          50        0.86        0.98\n",
+            "                  trifle          50        0.92        0.98\n",
+            "               ice cream          50        0.68        0.94\n",
+            "                 ice pop          50        0.62        0.84\n",
+            "                baguette          50        0.62        0.88\n",
+            "                   bagel          50        0.64        0.92\n",
+            "                 pretzel          50        0.72        0.88\n",
+            "            cheeseburger          50         0.9           1\n",
+            "                 hot dog          50        0.74        0.94\n",
+            "           mashed potato          50        0.74         0.9\n",
+            "                 cabbage          50        0.84        0.96\n",
+            "                broccoli          50         0.9        0.96\n",
+            "             cauliflower          50        0.82           1\n",
+            "                zucchini          50        0.74         0.9\n",
+            "        spaghetti squash          50         0.8        0.96\n",
+            "            acorn squash          50        0.82        0.96\n",
+            "        butternut squash          50         0.7        0.94\n",
+            "                cucumber          50         0.6        0.96\n",
+            "               artichoke          50        0.84        0.94\n",
+            "             bell pepper          50        0.84        0.98\n",
+            "                 cardoon          50        0.88        0.94\n",
+            "                mushroom          50        0.38        0.92\n",
+            "            Granny Smith          50         0.9        0.96\n",
+            "              strawberry          50         0.6        0.88\n",
+            "                  orange          50         0.7        0.92\n",
+            "                   lemon          50        0.78        0.98\n",
+            "                     fig          50        0.82        0.96\n",
+            "               pineapple          50        0.86        0.96\n",
+            "                  banana          50        0.84        0.96\n",
+            "               jackfruit          50         0.9        0.98\n",
+            "           custard apple          50        0.86        0.96\n",
+            "             pomegranate          50        0.82        0.98\n",
+            "                     hay          50         0.8        0.92\n",
+            "               carbonara          50        0.88        0.94\n",
+            "         chocolate syrup          50        0.46        0.84\n",
+            "                   dough          50         0.4         0.6\n",
+            "                meatloaf          50        0.58        0.84\n",
+            "                   pizza          50        0.84        0.96\n",
+            "                 pot pie          50        0.68         0.9\n",
+            "                 burrito          50         0.8        0.98\n",
+            "                red wine          50        0.54        0.82\n",
+            "                espresso          50        0.64        0.88\n",
+            "                     cup          50        0.38         0.7\n",
+            "                  eggnog          50        0.38         0.7\n",
+            "                     alp          50        0.54        0.88\n",
+            "                  bubble          50         0.8        0.96\n",
+            "                   cliff          50        0.64           1\n",
+            "              coral reef          50        0.72        0.96\n",
+            "                  geyser          50        0.94           1\n",
+            "               lakeshore          50        0.54        0.88\n",
+            "              promontory          50        0.58        0.94\n",
+            "                   shoal          50         0.6        0.96\n",
+            "                seashore          50        0.44        0.78\n",
+            "                  valley          50        0.72        0.94\n",
+            "                 volcano          50        0.78        0.96\n",
+            "         baseball player          50        0.72        0.94\n",
+            "              bridegroom          50        0.72        0.88\n",
+            "             scuba diver          50         0.8           1\n",
+            "                rapeseed          50        0.94        0.98\n",
+            "                   daisy          50        0.96        0.98\n",
+            "   yellow lady's slipper          50           1           1\n",
+            "                    corn          50         0.4        0.88\n",
+            "                   acorn          50        0.92        0.98\n",
+            "                rose hip          50        0.92        0.98\n",
+            "     horse chestnut seed          50        0.94        0.98\n",
+            "            coral fungus          50        0.96        0.96\n",
+            "                  agaric          50        0.82        0.94\n",
+            "               gyromitra          50        0.98           1\n",
+            "      stinkhorn mushroom          50         0.8        0.94\n",
+            "              earth star          50        0.98           1\n",
+            "        hen-of-the-woods          50         0.8        0.96\n",
+            "                  bolete          50        0.74        0.94\n",
+            "                     ear          50        0.48        0.94\n",
+            "            toilet paper          50        0.36        0.68\n",
+            "Speed: 0.1ms pre-process, 0.3ms inference, 0.0ms post-process per image at shape (1, 3, 224, 224)\n",
+            "Results saved to \u001b[1mruns/val-cls/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Validate YOLOv5s on Imagenet val\n",
+        "!python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224 --half"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZY2VXXXu74w5"
+      },
+      "source": [
+        "# 3. Train\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
+        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
+        "<br><br>\n",
+        "\n",
+        "Train a YOLOv5s Classification model on the [Imagenette](https://image-net.org/) dataset with `--data imagenet`, starting from pretrained `--pretrained yolov5s-cls.pt`.\n",
+        "\n",
+        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
+        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
+        "- **Training Results** are saved to `runs/train-cls/` with incrementing run directories, i.e. `runs/train-cls/exp2`, `runs/train-cls/exp3` etc.\n",
+        "<br><br>\n",
+        "\n",
+        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
+        "\n",
+        "## Train on Custom Data with Roboflow 🌟 NEW\n",
+        "\n",
+        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
+        "\n",
+        "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-classification-custom-data/](https://blog.roboflow.com/train-yolov5-classification-custom-data/?ref=ultralytics)\n",
+        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KZiKUAjtARHAfZCXbJRv14-pOnIsBLPV?usp=sharing)\n",
+        "<br>\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://user-images.githubusercontent.com/26833433/202802162-92e60571-ab58-4409-948d-b31fddcd3c6f.png\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "i3oKtE4g-aNn"
+      },
+      "outputs": [],
+      "source": [
+        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
+        "logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']\n",
+        "\n",
+        "if logger == 'TensorBoard':\n",
+        "  %load_ext tensorboard\n",
+        "  %tensorboard --logdir runs/train\n",
+        "elif logger == 'Comet':\n",
+        "  %pip install -q comet_ml\n",
+        "  import comet_ml; comet_ml.init()\n",
+        "elif logger == 'ClearML':\n",
+        "  import clearml; clearml.browser_login()"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "1NcFxRcFdJ_O",
+        "outputId": "77c8d487-16db-4073-b3ea-06cabf2e7766"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mclassify/train: \u001b[0mmodel=yolov5s-cls.pt, data=imagenette160, epochs=5, batch_size=64, imgsz=224, nosave=False, cache=ram, device=, workers=8, project=runs/train-cls, name=exp, exist_ok=False, pretrained=True, optimizer=Adam, lr0=0.001, decay=5e-05, label_smoothing=0.1, cutoff=None, dropout=None, verbose=False, seed=0, local_rank=-1\n",
+            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
+            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-cls', view at http://localhost:6006/\n",
+            "\n",
+            "Dataset not found ⚠️, missing path /content/datasets/imagenette160, attempting download...\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenette160.zip to /content/datasets/imagenette160.zip...\n",
+            "100% 103M/103M [00:00<00:00, 347MB/s] \n",
+            "Unzipping /content/datasets/imagenette160.zip...\n",
+            "Dataset download success ✅ (3.3s), saved to \u001b[1m/content/datasets/imagenette160\u001b[0m\n",
+            "\n",
+            "\u001b[34m\u001b[1malbumentations: \u001b[0mRandomResizedCrop(p=1.0, height=224, width=224, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=1), HorizontalFlip(p=0.5), ColorJitter(p=0.5, brightness=[0.6, 1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=[0, 0]), Normalize(p=1.0, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0), ToTensorV2(always_apply=True, p=1.0, transpose_mask=False)\n",
+            "Model summary: 149 layers, 4185290 parameters, 4185290 gradients, 10.5 GFLOPs\n",
+            "\u001b[34m\u001b[1moptimizer:\u001b[0m Adam(lr=0.001) with parameter groups 32 weight(decay=0.0), 33 weight(decay=5e-05), 33 bias\n",
+            "Image sizes 224 train, 224 test\n",
+            "Using 1 dataloader workers\n",
+            "Logging results to \u001b[1mruns/train-cls/exp\u001b[0m\n",
+            "Starting yolov5s-cls.pt training on imagenette160 dataset with 10 classes for 5 epochs...\n",
+            "\n",
+            "     Epoch   GPU_mem  train_loss    val_loss    top1_acc    top5_acc\n",
+            "       1/5     1.47G        1.05       0.974       0.828       0.975: 100% 148/148 [00:38<00:00,  3.82it/s]\n",
+            "       2/5     1.73G       0.895       0.766       0.911       0.994: 100% 148/148 [00:36<00:00,  4.03it/s]\n",
+            "       3/5     1.73G        0.82       0.704       0.934       0.996: 100% 148/148 [00:35<00:00,  4.20it/s]\n",
+            "       4/5     1.73G       0.766       0.664       0.951       0.998: 100% 148/148 [00:36<00:00,  4.05it/s]\n",
+            "       5/5     1.73G       0.724       0.634       0.959       0.997: 100% 148/148 [00:37<00:00,  3.94it/s]\n",
+            "\n",
+            "Training complete (0.052 hours)\n",
+            "Results saved to \u001b[1mruns/train-cls/exp\u001b[0m\n",
+            "Predict:         python classify/predict.py --weights runs/train-cls/exp/weights/best.pt --source im.jpg\n",
+            "Validate:        python classify/val.py --weights runs/train-cls/exp/weights/best.pt --data /content/datasets/imagenette160\n",
+            "Export:          python export.py --weights runs/train-cls/exp/weights/best.pt --include onnx\n",
+            "PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'runs/train-cls/exp/weights/best.pt')\n",
+            "Visualize:       https://netron.app\n",
+            "\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Train YOLOv5s Classification on Imagenette160 for 3 epochs\n",
+        "!python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224 --cache"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "15glLzbQx5u0"
+      },
+      "source": [
+        "# 4. Visualize"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "nWOsI5wJR1o3"
+      },
+      "source": [
+        "## Comet Logging and Visualization 🌟 NEW\n",
+        "\n",
+        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
+        "\n",
+        "Getting started is easy:\n",
+        "```shell\n",
+        "pip install comet_ml  # 1. install\n",
+        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
+        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
+        "```\n",
+        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
+        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
+        "\n",
+        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
+        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Lay2WsTjNJzP"
+      },
+      "source": [
+        "## ClearML Logging and Automation 🌟 NEW\n",
+        "\n",
+        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
+        "\n",
+        "- `pip install clearml`\n",
+        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
+        "\n",
+        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
+        "\n",
+        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n",
+        "\n",
+        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
+        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-WPvRbS5Swl6"
+      },
+      "source": [
+        "## Local Logging\n",
+        "\n",
+        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
+        "\n",
+        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
+        "\n",
+        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Zelyeqbyt3GD"
+      },
+      "source": [
+        "# Environments\n",
+        "\n",
+        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
+        "\n",
+        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
+        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
+        "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "6Qu7Iesl0p54"
+      },
+      "source": [
+        "# Status\n",
+        "\n",
+        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
+        "\n",
+        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "IEijrePND_2I"
+      },
+      "source": [
+        "# Appendix\n",
+        "\n",
+        "Additional content below."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "GMusP4OAxFu6"
+      },
+      "outputs": [],
+      "source": [
+        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
+        "import torch\n",
+        "\n",
+        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # yolov5n - yolov5x6 or custom\n",
+        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
+        "results = model(im)  # inference\n",
+        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
+      ]
+    }
+  ],
+  "metadata": {
+    "accelerator": "GPU",
+    "colab": {
+      "name": "YOLOv5 Classification Tutorial",
+      "provenance": []
+    },
+    "kernelspec": {
+      "display_name": "Python 3 (ipykernel)",
+      "language": "python",
+      "name": "python3"
+    },
+    "language_info": {
+      "codemirror_mode": {
+        "name": "ipython",
+        "version": 3
+      },
+      "file_extension": ".py",
+      "mimetype": "text/x-python",
+      "name": "python",
+      "nbconvert_exporter": "python",
+      "pygments_lexer": "ipython3",
+      "version": "3.7.12"
+    }
+  },
+  "nbformat": 4,
+  "nbformat_minor": 0
+}
diff --git a/yolov5_model/classify/val.py b/yolov5_model/classify/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..4edd5a1f5e9ecd4956337b149e5ac75ad215b8e6
--- /dev/null
+++ b/yolov5_model/classify/val.py
@@ -0,0 +1,170 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Validate a trained YOLOv5 classification model on a classification dataset
+
+Usage:
+    $ bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
+    $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate ImageNet
+
+Usage - formats:
+    $ python classify/val.py --weights yolov5s-cls.pt                 # PyTorch
+                                       yolov5s-cls.torchscript        # TorchScript
+                                       yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                       yolov5s-cls_openvino_model     # OpenVINO
+                                       yolov5s-cls.engine             # TensorRT
+                                       yolov5s-cls.mlmodel            # CoreML (macOS-only)
+                                       yolov5s-cls_saved_model        # TensorFlow SavedModel
+                                       yolov5s-cls.pb                 # TensorFlow GraphDef
+                                       yolov5s-cls.tflite             # TensorFlow Lite
+                                       yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU
+                                       yolov5s-cls_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import sys
+from pathlib import Path
+
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import create_classification_dataloader
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
+                           increment_path, print_args)
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+    data=ROOT / '../datasets/mnist',  # dataset dir
+    weights=ROOT / 'yolov5s-cls.pt',  # model.pt path(s)
+    batch_size=128,  # batch size
+    imgsz=224,  # inference size (pixels)
+    device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    workers=8,  # max dataloader workers (per RANK in DDP mode)
+    verbose=False,  # verbose output
+    project=ROOT / 'runs/val-cls',  # save to project/name
+    name='exp',  # save to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    half=False,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    model=None,
+    dataloader=None,
+    criterion=None,
+    pbar=None,
+):
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != 'cpu'  # half precision only supported on CUDA
+        model.half() if half else model.float()
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        save_dir.mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+        # Dataloader
+        data = Path(data)
+        test_dir = data / 'test' if (data / 'test').exists() else data / 'val'  # data/test or data/val
+        dataloader = create_classification_dataloader(path=test_dir,
+                                                      imgsz=imgsz,
+                                                      batch_size=batch_size,
+                                                      augment=False,
+                                                      rank=-1,
+                                                      workers=workers)
+
+    model.eval()
+    pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
+    n = len(dataloader)  # number of batches
+    action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
+    desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}'
+    bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
+    with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
+        for images, labels in bar:
+            with dt[0]:
+                images, labels = images.to(device, non_blocking=True), labels.to(device)
+
+            with dt[1]:
+                y = model(images)
+
+            with dt[2]:
+                pred.append(y.argsort(1, descending=True)[:, :5])
+                targets.append(labels)
+                if criterion:
+                    loss += criterion(y, labels)
+
+    loss /= n
+    pred, targets = torch.cat(pred), torch.cat(targets)
+    correct = (targets[:, None] == pred).float()
+    acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
+    top1, top5 = acc.mean(0).tolist()
+
+    if pbar:
+        pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}'
+    if verbose:  # all classes
+        LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
+        LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
+        for i, c in model.names.items():
+            acc_i = acc[targets == i]
+            top1i, top5i = acc_i.mean(0).tolist()
+            LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}')
+
+        # Print results
+        t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt)  # speeds per image
+        shape = (1, 3, imgsz, imgsz)
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+
+    return top1, top5, loss
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
+    parser.add_argument('--batch-size', type=int, default=128, help='batch size')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
+    parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(exclude=('tensorboard', 'thop'))
+    run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/data/Argoverse.yaml b/yolov5_model/data/Argoverse.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..558151dc849e5549a53b19b48a0ce14fa0a59350
--- /dev/null
+++ b/yolov5_model/data/Argoverse.yaml
@@ -0,0 +1,74 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
+# Example usage: python train.py --data Argoverse.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── Argoverse  ← downloads here (31.3 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/Argoverse  # dataset root dir
+train: Argoverse-1.1/images/train/  # train images (relative to 'path') 39384 images
+val: Argoverse-1.1/images/val/  # val images (relative to 'path') 15062 images
+test: Argoverse-1.1/images/test/  # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: bus
+  5: truck
+  6: traffic_light
+  7: stop_sign
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import json
+
+  from tqdm import tqdm
+  from utils.general import download, Path
+
+
+  def argoverse2yolo(set):
+      labels = {}
+      a = json.load(open(set, "rb"))
+      for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
+          img_id = annot['image_id']
+          img_name = a['images'][img_id]['name']
+          img_label_name = f'{img_name[:-3]}txt'
+
+          cls = annot['category_id']  # instance class id
+          x_center, y_center, width, height = annot['bbox']
+          x_center = (x_center + width / 2) / 1920.0  # offset and scale
+          y_center = (y_center + height / 2) / 1200.0  # offset and scale
+          width /= 1920.0  # scale
+          height /= 1200.0  # scale
+
+          img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
+          if not img_dir.exists():
+              img_dir.mkdir(parents=True, exist_ok=True)
+
+          k = str(img_dir / img_label_name)
+          if k not in labels:
+              labels[k] = []
+          labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
+
+      for k in labels:
+          with open(k, "w") as f:
+              f.writelines(labels[k])
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
+  download(urls, dir=dir, delete=False)
+
+  # Convert
+  annotations_dir = 'Argoverse-HD/annotations/'
+  (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images')  # rename 'tracking' to 'images'
+  for d in "train.json", "val.json":
+      argoverse2yolo(dir / annotations_dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/yolov5_model/data/GlobalWheat2020.yaml b/yolov5_model/data/GlobalWheat2020.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..01812d031bc52cefbe5e3a823cef9783cddae213
--- /dev/null
+++ b/yolov5_model/data/GlobalWheat2020.yaml
@@ -0,0 +1,54 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
+# Example usage: python train.py --data GlobalWheat2020.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── GlobalWheat2020  ← downloads here (7.0 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/GlobalWheat2020  # dataset root dir
+train: # train images (relative to 'path') 3422 images
+  - images/arvalis_1
+  - images/arvalis_2
+  - images/arvalis_3
+  - images/ethz_1
+  - images/rres_1
+  - images/inrae_1
+  - images/usask_1
+val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
+  - images/ethz_1
+test: # test images (optional) 1276 images
+  - images/utokyo_1
+  - images/utokyo_2
+  - images/nau_1
+  - images/uq_1
+
+# Classes
+names:
+  0: wheat_head
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from utils.general import download, Path
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
+  download(urls, dir=dir)
+
+  # Make Directories
+  for p in 'annotations', 'images', 'labels':
+      (dir / p).mkdir(parents=True, exist_ok=True)
+
+  # Move
+  for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
+           'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
+      (dir / p).rename(dir / 'images' / p)  # move to /images
+      f = (dir / p).with_suffix('.json')  # json file
+      if f.exists():
+          f.rename((dir / 'annotations' / p).with_suffix('.json'))  # move to /annotations
diff --git a/yolov5_model/data/ImageNet.yaml b/yolov5_model/data/ImageNet.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..14f12950605f50797828584405536890987c8633
--- /dev/null
+++ b/yolov5_model/data/ImageNet.yaml
@@ -0,0 +1,1022 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
+# Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
+# Example usage: python classify/train.py --data imagenet
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet  ← downloads here (144 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/imagenet  # dataset root dir
+train: train  # train images (relative to 'path') 1281167 images
+val: val  # val images (relative to 'path') 50000 images
+test:  # test images (optional)
+
+# Classes
+names:
+  0: tench
+  1: goldfish
+  2: great white shark
+  3: tiger shark
+  4: hammerhead shark
+  5: electric ray
+  6: stingray
+  7: cock
+  8: hen
+  9: ostrich
+  10: brambling
+  11: goldfinch
+  12: house finch
+  13: junco
+  14: indigo bunting
+  15: American robin
+  16: bulbul
+  17: jay
+  18: magpie
+  19: chickadee
+  20: American dipper
+  21: kite
+  22: bald eagle
+  23: vulture
+  24: great grey owl
+  25: fire salamander
+  26: smooth newt
+  27: newt
+  28: spotted salamander
+  29: axolotl
+  30: American bullfrog
+  31: tree frog
+  32: tailed frog
+  33: loggerhead sea turtle
+  34: leatherback sea turtle
+  35: mud turtle
+  36: terrapin
+  37: box turtle
+  38: banded gecko
+  39: green iguana
+  40: Carolina anole
+  41: desert grassland whiptail lizard
+  42: agama
+  43: frilled-necked lizard
+  44: alligator lizard
+  45: Gila monster
+  46: European green lizard
+  47: chameleon
+  48: Komodo dragon
+  49: Nile crocodile
+  50: American alligator
+  51: triceratops
+  52: worm snake
+  53: ring-necked snake
+  54: eastern hog-nosed snake
+  55: smooth green snake
+  56: kingsnake
+  57: garter snake
+  58: water snake
+  59: vine snake
+  60: night snake
+  61: boa constrictor
+  62: African rock python
+  63: Indian cobra
+  64: green mamba
+  65: sea snake
+  66: Saharan horned viper
+  67: eastern diamondback rattlesnake
+  68: sidewinder
+  69: trilobite
+  70: harvestman
+  71: scorpion
+  72: yellow garden spider
+  73: barn spider
+  74: European garden spider
+  75: southern black widow
+  76: tarantula
+  77: wolf spider
+  78: tick
+  79: centipede
+  80: black grouse
+  81: ptarmigan
+  82: ruffed grouse
+  83: prairie grouse
+  84: peacock
+  85: quail
+  86: partridge
+  87: grey parrot
+  88: macaw
+  89: sulphur-crested cockatoo
+  90: lorikeet
+  91: coucal
+  92: bee eater
+  93: hornbill
+  94: hummingbird
+  95: jacamar
+  96: toucan
+  97: duck
+  98: red-breasted merganser
+  99: goose
+  100: black swan
+  101: tusker
+  102: echidna
+  103: platypus
+  104: wallaby
+  105: koala
+  106: wombat
+  107: jellyfish
+  108: sea anemone
+  109: brain coral
+  110: flatworm
+  111: nematode
+  112: conch
+  113: snail
+  114: slug
+  115: sea slug
+  116: chiton
+  117: chambered nautilus
+  118: Dungeness crab
+  119: rock crab
+  120: fiddler crab
+  121: red king crab
+  122: American lobster
+  123: spiny lobster
+  124: crayfish
+  125: hermit crab
+  126: isopod
+  127: white stork
+  128: black stork
+  129: spoonbill
+  130: flamingo
+  131: little blue heron
+  132: great egret
+  133: bittern
+  134: crane (bird)
+  135: limpkin
+  136: common gallinule
+  137: American coot
+  138: bustard
+  139: ruddy turnstone
+  140: dunlin
+  141: common redshank
+  142: dowitcher
+  143: oystercatcher
+  144: pelican
+  145: king penguin
+  146: albatross
+  147: grey whale
+  148: killer whale
+  149: dugong
+  150: sea lion
+  151: Chihuahua
+  152: Japanese Chin
+  153: Maltese
+  154: Pekingese
+  155: Shih Tzu
+  156: King Charles Spaniel
+  157: Papillon
+  158: toy terrier
+  159: Rhodesian Ridgeback
+  160: Afghan Hound
+  161: Basset Hound
+  162: Beagle
+  163: Bloodhound
+  164: Bluetick Coonhound
+  165: Black and Tan Coonhound
+  166: Treeing Walker Coonhound
+  167: English foxhound
+  168: Redbone Coonhound
+  169: borzoi
+  170: Irish Wolfhound
+  171: Italian Greyhound
+  172: Whippet
+  173: Ibizan Hound
+  174: Norwegian Elkhound
+  175: Otterhound
+  176: Saluki
+  177: Scottish Deerhound
+  178: Weimaraner
+  179: Staffordshire Bull Terrier
+  180: American Staffordshire Terrier
+  181: Bedlington Terrier
+  182: Border Terrier
+  183: Kerry Blue Terrier
+  184: Irish Terrier
+  185: Norfolk Terrier
+  186: Norwich Terrier
+  187: Yorkshire Terrier
+  188: Wire Fox Terrier
+  189: Lakeland Terrier
+  190: Sealyham Terrier
+  191: Airedale Terrier
+  192: Cairn Terrier
+  193: Australian Terrier
+  194: Dandie Dinmont Terrier
+  195: Boston Terrier
+  196: Miniature Schnauzer
+  197: Giant Schnauzer
+  198: Standard Schnauzer
+  199: Scottish Terrier
+  200: Tibetan Terrier
+  201: Australian Silky Terrier
+  202: Soft-coated Wheaten Terrier
+  203: West Highland White Terrier
+  204: Lhasa Apso
+  205: Flat-Coated Retriever
+  206: Curly-coated Retriever
+  207: Golden Retriever
+  208: Labrador Retriever
+  209: Chesapeake Bay Retriever
+  210: German Shorthaired Pointer
+  211: Vizsla
+  212: English Setter
+  213: Irish Setter
+  214: Gordon Setter
+  215: Brittany
+  216: Clumber Spaniel
+  217: English Springer Spaniel
+  218: Welsh Springer Spaniel
+  219: Cocker Spaniels
+  220: Sussex Spaniel
+  221: Irish Water Spaniel
+  222: Kuvasz
+  223: Schipperke
+  224: Groenendael
+  225: Malinois
+  226: Briard
+  227: Australian Kelpie
+  228: Komondor
+  229: Old English Sheepdog
+  230: Shetland Sheepdog
+  231: collie
+  232: Border Collie
+  233: Bouvier des Flandres
+  234: Rottweiler
+  235: German Shepherd Dog
+  236: Dobermann
+  237: Miniature Pinscher
+  238: Greater Swiss Mountain Dog
+  239: Bernese Mountain Dog
+  240: Appenzeller Sennenhund
+  241: Entlebucher Sennenhund
+  242: Boxer
+  243: Bullmastiff
+  244: Tibetan Mastiff
+  245: French Bulldog
+  246: Great Dane
+  247: St. Bernard
+  248: husky
+  249: Alaskan Malamute
+  250: Siberian Husky
+  251: Dalmatian
+  252: Affenpinscher
+  253: Basenji
+  254: pug
+  255: Leonberger
+  256: Newfoundland
+  257: Pyrenean Mountain Dog
+  258: Samoyed
+  259: Pomeranian
+  260: Chow Chow
+  261: Keeshond
+  262: Griffon Bruxellois
+  263: Pembroke Welsh Corgi
+  264: Cardigan Welsh Corgi
+  265: Toy Poodle
+  266: Miniature Poodle
+  267: Standard Poodle
+  268: Mexican hairless dog
+  269: grey wolf
+  270: Alaskan tundra wolf
+  271: red wolf
+  272: coyote
+  273: dingo
+  274: dhole
+  275: African wild dog
+  276: hyena
+  277: red fox
+  278: kit fox
+  279: Arctic fox
+  280: grey fox
+  281: tabby cat
+  282: tiger cat
+  283: Persian cat
+  284: Siamese cat
+  285: Egyptian Mau
+  286: cougar
+  287: lynx
+  288: leopard
+  289: snow leopard
+  290: jaguar
+  291: lion
+  292: tiger
+  293: cheetah
+  294: brown bear
+  295: American black bear
+  296: polar bear
+  297: sloth bear
+  298: mongoose
+  299: meerkat
+  300: tiger beetle
+  301: ladybug
+  302: ground beetle
+  303: longhorn beetle
+  304: leaf beetle
+  305: dung beetle
+  306: rhinoceros beetle
+  307: weevil
+  308: fly
+  309: bee
+  310: ant
+  311: grasshopper
+  312: cricket
+  313: stick insect
+  314: cockroach
+  315: mantis
+  316: cicada
+  317: leafhopper
+  318: lacewing
+  319: dragonfly
+  320: damselfly
+  321: red admiral
+  322: ringlet
+  323: monarch butterfly
+  324: small white
+  325: sulphur butterfly
+  326: gossamer-winged butterfly
+  327: starfish
+  328: sea urchin
+  329: sea cucumber
+  330: cottontail rabbit
+  331: hare
+  332: Angora rabbit
+  333: hamster
+  334: porcupine
+  335: fox squirrel
+  336: marmot
+  337: beaver
+  338: guinea pig
+  339: common sorrel
+  340: zebra
+  341: pig
+  342: wild boar
+  343: warthog
+  344: hippopotamus
+  345: ox
+  346: water buffalo
+  347: bison
+  348: ram
+  349: bighorn sheep
+  350: Alpine ibex
+  351: hartebeest
+  352: impala
+  353: gazelle
+  354: dromedary
+  355: llama
+  356: weasel
+  357: mink
+  358: European polecat
+  359: black-footed ferret
+  360: otter
+  361: skunk
+  362: badger
+  363: armadillo
+  364: three-toed sloth
+  365: orangutan
+  366: gorilla
+  367: chimpanzee
+  368: gibbon
+  369: siamang
+  370: guenon
+  371: patas monkey
+  372: baboon
+  373: macaque
+  374: langur
+  375: black-and-white colobus
+  376: proboscis monkey
+  377: marmoset
+  378: white-headed capuchin
+  379: howler monkey
+  380: titi
+  381: Geoffroy's spider monkey
+  382: common squirrel monkey
+  383: ring-tailed lemur
+  384: indri
+  385: Asian elephant
+  386: African bush elephant
+  387: red panda
+  388: giant panda
+  389: snoek
+  390: eel
+  391: coho salmon
+  392: rock beauty
+  393: clownfish
+  394: sturgeon
+  395: garfish
+  396: lionfish
+  397: pufferfish
+  398: abacus
+  399: abaya
+  400: academic gown
+  401: accordion
+  402: acoustic guitar
+  403: aircraft carrier
+  404: airliner
+  405: airship
+  406: altar
+  407: ambulance
+  408: amphibious vehicle
+  409: analog clock
+  410: apiary
+  411: apron
+  412: waste container
+  413: assault rifle
+  414: backpack
+  415: bakery
+  416: balance beam
+  417: balloon
+  418: ballpoint pen
+  419: Band-Aid
+  420: banjo
+  421: baluster
+  422: barbell
+  423: barber chair
+  424: barbershop
+  425: barn
+  426: barometer
+  427: barrel
+  428: wheelbarrow
+  429: baseball
+  430: basketball
+  431: bassinet
+  432: bassoon
+  433: swimming cap
+  434: bath towel
+  435: bathtub
+  436: station wagon
+  437: lighthouse
+  438: beaker
+  439: military cap
+  440: beer bottle
+  441: beer glass
+  442: bell-cot
+  443: bib
+  444: tandem bicycle
+  445: bikini
+  446: ring binder
+  447: binoculars
+  448: birdhouse
+  449: boathouse
+  450: bobsleigh
+  451: bolo tie
+  452: poke bonnet
+  453: bookcase
+  454: bookstore
+  455: bottle cap
+  456: bow
+  457: bow tie
+  458: brass
+  459: bra
+  460: breakwater
+  461: breastplate
+  462: broom
+  463: bucket
+  464: buckle
+  465: bulletproof vest
+  466: high-speed train
+  467: butcher shop
+  468: taxicab
+  469: cauldron
+  470: candle
+  471: cannon
+  472: canoe
+  473: can opener
+  474: cardigan
+  475: car mirror
+  476: carousel
+  477: tool kit
+  478: carton
+  479: car wheel
+  480: automated teller machine
+  481: cassette
+  482: cassette player
+  483: castle
+  484: catamaran
+  485: CD player
+  486: cello
+  487: mobile phone
+  488: chain
+  489: chain-link fence
+  490: chain mail
+  491: chainsaw
+  492: chest
+  493: chiffonier
+  494: chime
+  495: china cabinet
+  496: Christmas stocking
+  497: church
+  498: movie theater
+  499: cleaver
+  500: cliff dwelling
+  501: cloak
+  502: clogs
+  503: cocktail shaker
+  504: coffee mug
+  505: coffeemaker
+  506: coil
+  507: combination lock
+  508: computer keyboard
+  509: confectionery store
+  510: container ship
+  511: convertible
+  512: corkscrew
+  513: cornet
+  514: cowboy boot
+  515: cowboy hat
+  516: cradle
+  517: crane (machine)
+  518: crash helmet
+  519: crate
+  520: infant bed
+  521: Crock Pot
+  522: croquet ball
+  523: crutch
+  524: cuirass
+  525: dam
+  526: desk
+  527: desktop computer
+  528: rotary dial telephone
+  529: diaper
+  530: digital clock
+  531: digital watch
+  532: dining table
+  533: dishcloth
+  534: dishwasher
+  535: disc brake
+  536: dock
+  537: dog sled
+  538: dome
+  539: doormat
+  540: drilling rig
+  541: drum
+  542: drumstick
+  543: dumbbell
+  544: Dutch oven
+  545: electric fan
+  546: electric guitar
+  547: electric locomotive
+  548: entertainment center
+  549: envelope
+  550: espresso machine
+  551: face powder
+  552: feather boa
+  553: filing cabinet
+  554: fireboat
+  555: fire engine
+  556: fire screen sheet
+  557: flagpole
+  558: flute
+  559: folding chair
+  560: football helmet
+  561: forklift
+  562: fountain
+  563: fountain pen
+  564: four-poster bed
+  565: freight car
+  566: French horn
+  567: frying pan
+  568: fur coat
+  569: garbage truck
+  570: gas mask
+  571: gas pump
+  572: goblet
+  573: go-kart
+  574: golf ball
+  575: golf cart
+  576: gondola
+  577: gong
+  578: gown
+  579: grand piano
+  580: greenhouse
+  581: grille
+  582: grocery store
+  583: guillotine
+  584: barrette
+  585: hair spray
+  586: half-track
+  587: hammer
+  588: hamper
+  589: hair dryer
+  590: hand-held computer
+  591: handkerchief
+  592: hard disk drive
+  593: harmonica
+  594: harp
+  595: harvester
+  596: hatchet
+  597: holster
+  598: home theater
+  599: honeycomb
+  600: hook
+  601: hoop skirt
+  602: horizontal bar
+  603: horse-drawn vehicle
+  604: hourglass
+  605: iPod
+  606: clothes iron
+  607: jack-o'-lantern
+  608: jeans
+  609: jeep
+  610: T-shirt
+  611: jigsaw puzzle
+  612: pulled rickshaw
+  613: joystick
+  614: kimono
+  615: knee pad
+  616: knot
+  617: lab coat
+  618: ladle
+  619: lampshade
+  620: laptop computer
+  621: lawn mower
+  622: lens cap
+  623: paper knife
+  624: library
+  625: lifeboat
+  626: lighter
+  627: limousine
+  628: ocean liner
+  629: lipstick
+  630: slip-on shoe
+  631: lotion
+  632: speaker
+  633: loupe
+  634: sawmill
+  635: magnetic compass
+  636: mail bag
+  637: mailbox
+  638: tights
+  639: tank suit
+  640: manhole cover
+  641: maraca
+  642: marimba
+  643: mask
+  644: match
+  645: maypole
+  646: maze
+  647: measuring cup
+  648: medicine chest
+  649: megalith
+  650: microphone
+  651: microwave oven
+  652: military uniform
+  653: milk can
+  654: minibus
+  655: miniskirt
+  656: minivan
+  657: missile
+  658: mitten
+  659: mixing bowl
+  660: mobile home
+  661: Model T
+  662: modem
+  663: monastery
+  664: monitor
+  665: moped
+  666: mortar
+  667: square academic cap
+  668: mosque
+  669: mosquito net
+  670: scooter
+  671: mountain bike
+  672: tent
+  673: computer mouse
+  674: mousetrap
+  675: moving van
+  676: muzzle
+  677: nail
+  678: neck brace
+  679: necklace
+  680: nipple
+  681: notebook computer
+  682: obelisk
+  683: oboe
+  684: ocarina
+  685: odometer
+  686: oil filter
+  687: organ
+  688: oscilloscope
+  689: overskirt
+  690: bullock cart
+  691: oxygen mask
+  692: packet
+  693: paddle
+  694: paddle wheel
+  695: padlock
+  696: paintbrush
+  697: pajamas
+  698: palace
+  699: pan flute
+  700: paper towel
+  701: parachute
+  702: parallel bars
+  703: park bench
+  704: parking meter
+  705: passenger car
+  706: patio
+  707: payphone
+  708: pedestal
+  709: pencil case
+  710: pencil sharpener
+  711: perfume
+  712: Petri dish
+  713: photocopier
+  714: plectrum
+  715: Pickelhaube
+  716: picket fence
+  717: pickup truck
+  718: pier
+  719: piggy bank
+  720: pill bottle
+  721: pillow
+  722: ping-pong ball
+  723: pinwheel
+  724: pirate ship
+  725: pitcher
+  726: hand plane
+  727: planetarium
+  728: plastic bag
+  729: plate rack
+  730: plow
+  731: plunger
+  732: Polaroid camera
+  733: pole
+  734: police van
+  735: poncho
+  736: billiard table
+  737: soda bottle
+  738: pot
+  739: potter's wheel
+  740: power drill
+  741: prayer rug
+  742: printer
+  743: prison
+  744: projectile
+  745: projector
+  746: hockey puck
+  747: punching bag
+  748: purse
+  749: quill
+  750: quilt
+  751: race car
+  752: racket
+  753: radiator
+  754: radio
+  755: radio telescope
+  756: rain barrel
+  757: recreational vehicle
+  758: reel
+  759: reflex camera
+  760: refrigerator
+  761: remote control
+  762: restaurant
+  763: revolver
+  764: rifle
+  765: rocking chair
+  766: rotisserie
+  767: eraser
+  768: rugby ball
+  769: ruler
+  770: running shoe
+  771: safe
+  772: safety pin
+  773: salt shaker
+  774: sandal
+  775: sarong
+  776: saxophone
+  777: scabbard
+  778: weighing scale
+  779: school bus
+  780: schooner
+  781: scoreboard
+  782: CRT screen
+  783: screw
+  784: screwdriver
+  785: seat belt
+  786: sewing machine
+  787: shield
+  788: shoe store
+  789: shoji
+  790: shopping basket
+  791: shopping cart
+  792: shovel
+  793: shower cap
+  794: shower curtain
+  795: ski
+  796: ski mask
+  797: sleeping bag
+  798: slide rule
+  799: sliding door
+  800: slot machine
+  801: snorkel
+  802: snowmobile
+  803: snowplow
+  804: soap dispenser
+  805: soccer ball
+  806: sock
+  807: solar thermal collector
+  808: sombrero
+  809: soup bowl
+  810: space bar
+  811: space heater
+  812: space shuttle
+  813: spatula
+  814: motorboat
+  815: spider web
+  816: spindle
+  817: sports car
+  818: spotlight
+  819: stage
+  820: steam locomotive
+  821: through arch bridge
+  822: steel drum
+  823: stethoscope
+  824: scarf
+  825: stone wall
+  826: stopwatch
+  827: stove
+  828: strainer
+  829: tram
+  830: stretcher
+  831: couch
+  832: stupa
+  833: submarine
+  834: suit
+  835: sundial
+  836: sunglass
+  837: sunglasses
+  838: sunscreen
+  839: suspension bridge
+  840: mop
+  841: sweatshirt
+  842: swimsuit
+  843: swing
+  844: switch
+  845: syringe
+  846: table lamp
+  847: tank
+  848: tape player
+  849: teapot
+  850: teddy bear
+  851: television
+  852: tennis ball
+  853: thatched roof
+  854: front curtain
+  855: thimble
+  856: threshing machine
+  857: throne
+  858: tile roof
+  859: toaster
+  860: tobacco shop
+  861: toilet seat
+  862: torch
+  863: totem pole
+  864: tow truck
+  865: toy store
+  866: tractor
+  867: semi-trailer truck
+  868: tray
+  869: trench coat
+  870: tricycle
+  871: trimaran
+  872: tripod
+  873: triumphal arch
+  874: trolleybus
+  875: trombone
+  876: tub
+  877: turnstile
+  878: typewriter keyboard
+  879: umbrella
+  880: unicycle
+  881: upright piano
+  882: vacuum cleaner
+  883: vase
+  884: vault
+  885: velvet
+  886: vending machine
+  887: vestment
+  888: viaduct
+  889: violin
+  890: volleyball
+  891: waffle iron
+  892: wall clock
+  893: wallet
+  894: wardrobe
+  895: military aircraft
+  896: sink
+  897: washing machine
+  898: water bottle
+  899: water jug
+  900: water tower
+  901: whiskey jug
+  902: whistle
+  903: wig
+  904: window screen
+  905: window shade
+  906: Windsor tie
+  907: wine bottle
+  908: wing
+  909: wok
+  910: wooden spoon
+  911: wool
+  912: split-rail fence
+  913: shipwreck
+  914: yawl
+  915: yurt
+  916: website
+  917: comic book
+  918: crossword
+  919: traffic sign
+  920: traffic light
+  921: dust jacket
+  922: menu
+  923: plate
+  924: guacamole
+  925: consomme
+  926: hot pot
+  927: trifle
+  928: ice cream
+  929: ice pop
+  930: baguette
+  931: bagel
+  932: pretzel
+  933: cheeseburger
+  934: hot dog
+  935: mashed potato
+  936: cabbage
+  937: broccoli
+  938: cauliflower
+  939: zucchini
+  940: spaghetti squash
+  941: acorn squash
+  942: butternut squash
+  943: cucumber
+  944: artichoke
+  945: bell pepper
+  946: cardoon
+  947: mushroom
+  948: Granny Smith
+  949: strawberry
+  950: orange
+  951: lemon
+  952: fig
+  953: pineapple
+  954: banana
+  955: jackfruit
+  956: custard apple
+  957: pomegranate
+  958: hay
+  959: carbonara
+  960: chocolate syrup
+  961: dough
+  962: meatloaf
+  963: pizza
+  964: pot pie
+  965: burrito
+  966: red wine
+  967: espresso
+  968: cup
+  969: eggnog
+  970: alp
+  971: bubble
+  972: cliff
+  973: coral reef
+  974: geyser
+  975: lakeshore
+  976: promontory
+  977: shoal
+  978: seashore
+  979: valley
+  980: volcano
+  981: baseball player
+  982: bridegroom
+  983: scuba diver
+  984: rapeseed
+  985: daisy
+  986: yellow lady's slipper
+  987: corn
+  988: acorn
+  989: rose hip
+  990: horse chestnut seed
+  991: coral fungus
+  992: agaric
+  993: gyromitra
+  994: stinkhorn mushroom
+  995: earth star
+  996: hen-of-the-woods
+  997: bolete
+  998: ear
+  999: toilet paper
+
+
+# Download script/URL (optional)
+download: data/scripts/get_imagenet.sh
diff --git a/yolov5_model/data/Objects365.yaml b/yolov5_model/data/Objects365.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..05b26a1f47965a5df409c0f0b7c821a9748993c4
--- /dev/null
+++ b/yolov5_model/data/Objects365.yaml
@@ -0,0 +1,438 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Objects365 dataset https://www.objects365.org/ by Megvii
+# Example usage: python train.py --data Objects365.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── Objects365  ← downloads here (712 GB = 367G data + 345G zips)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/Objects365  # dataset root dir
+train: images/train  # train images (relative to 'path') 1742289 images
+val: images/val # val images (relative to 'path') 80000 images
+test:  # test images (optional)
+
+# Classes
+names:
+  0: Person
+  1: Sneakers
+  2: Chair
+  3: Other Shoes
+  4: Hat
+  5: Car
+  6: Lamp
+  7: Glasses
+  8: Bottle
+  9: Desk
+  10: Cup
+  11: Street Lights
+  12: Cabinet/shelf
+  13: Handbag/Satchel
+  14: Bracelet
+  15: Plate
+  16: Picture/Frame
+  17: Helmet
+  18: Book
+  19: Gloves
+  20: Storage box
+  21: Boat
+  22: Leather Shoes
+  23: Flower
+  24: Bench
+  25: Potted Plant
+  26: Bowl/Basin
+  27: Flag
+  28: Pillow
+  29: Boots
+  30: Vase
+  31: Microphone
+  32: Necklace
+  33: Ring
+  34: SUV
+  35: Wine Glass
+  36: Belt
+  37: Monitor/TV
+  38: Backpack
+  39: Umbrella
+  40: Traffic Light
+  41: Speaker
+  42: Watch
+  43: Tie
+  44: Trash bin Can
+  45: Slippers
+  46: Bicycle
+  47: Stool
+  48: Barrel/bucket
+  49: Van
+  50: Couch
+  51: Sandals
+  52: Basket
+  53: Drum
+  54: Pen/Pencil
+  55: Bus
+  56: Wild Bird
+  57: High Heels
+  58: Motorcycle
+  59: Guitar
+  60: Carpet
+  61: Cell Phone
+  62: Bread
+  63: Camera
+  64: Canned
+  65: Truck
+  66: Traffic cone
+  67: Cymbal
+  68: Lifesaver
+  69: Towel
+  70: Stuffed Toy
+  71: Candle
+  72: Sailboat
+  73: Laptop
+  74: Awning
+  75: Bed
+  76: Faucet
+  77: Tent
+  78: Horse
+  79: Mirror
+  80: Power outlet
+  81: Sink
+  82: Apple
+  83: Air Conditioner
+  84: Knife
+  85: Hockey Stick
+  86: Paddle
+  87: Pickup Truck
+  88: Fork
+  89: Traffic Sign
+  90: Balloon
+  91: Tripod
+  92: Dog
+  93: Spoon
+  94: Clock
+  95: Pot
+  96: Cow
+  97: Cake
+  98: Dinning Table
+  99: Sheep
+  100: Hanger
+  101: Blackboard/Whiteboard
+  102: Napkin
+  103: Other Fish
+  104: Orange/Tangerine
+  105: Toiletry
+  106: Keyboard
+  107: Tomato
+  108: Lantern
+  109: Machinery Vehicle
+  110: Fan
+  111: Green Vegetables
+  112: Banana
+  113: Baseball Glove
+  114: Airplane
+  115: Mouse
+  116: Train
+  117: Pumpkin
+  118: Soccer
+  119: Skiboard
+  120: Luggage
+  121: Nightstand
+  122: Tea pot
+  123: Telephone
+  124: Trolley
+  125: Head Phone
+  126: Sports Car
+  127: Stop Sign
+  128: Dessert
+  129: Scooter
+  130: Stroller
+  131: Crane
+  132: Remote
+  133: Refrigerator
+  134: Oven
+  135: Lemon
+  136: Duck
+  137: Baseball Bat
+  138: Surveillance Camera
+  139: Cat
+  140: Jug
+  141: Broccoli
+  142: Piano
+  143: Pizza
+  144: Elephant
+  145: Skateboard
+  146: Surfboard
+  147: Gun
+  148: Skating and Skiing shoes
+  149: Gas stove
+  150: Donut
+  151: Bow Tie
+  152: Carrot
+  153: Toilet
+  154: Kite
+  155: Strawberry
+  156: Other Balls
+  157: Shovel
+  158: Pepper
+  159: Computer Box
+  160: Toilet Paper
+  161: Cleaning Products
+  162: Chopsticks
+  163: Microwave
+  164: Pigeon
+  165: Baseball
+  166: Cutting/chopping Board
+  167: Coffee Table
+  168: Side Table
+  169: Scissors
+  170: Marker
+  171: Pie
+  172: Ladder
+  173: Snowboard
+  174: Cookies
+  175: Radiator
+  176: Fire Hydrant
+  177: Basketball
+  178: Zebra
+  179: Grape
+  180: Giraffe
+  181: Potato
+  182: Sausage
+  183: Tricycle
+  184: Violin
+  185: Egg
+  186: Fire Extinguisher
+  187: Candy
+  188: Fire Truck
+  189: Billiards
+  190: Converter
+  191: Bathtub
+  192: Wheelchair
+  193: Golf Club
+  194: Briefcase
+  195: Cucumber
+  196: Cigar/Cigarette
+  197: Paint Brush
+  198: Pear
+  199: Heavy Truck
+  200: Hamburger
+  201: Extractor
+  202: Extension Cord
+  203: Tong
+  204: Tennis Racket
+  205: Folder
+  206: American Football
+  207: earphone
+  208: Mask
+  209: Kettle
+  210: Tennis
+  211: Ship
+  212: Swing
+  213: Coffee Machine
+  214: Slide
+  215: Carriage
+  216: Onion
+  217: Green beans
+  218: Projector
+  219: Frisbee
+  220: Washing Machine/Drying Machine
+  221: Chicken
+  222: Printer
+  223: Watermelon
+  224: Saxophone
+  225: Tissue
+  226: Toothbrush
+  227: Ice cream
+  228: Hot-air balloon
+  229: Cello
+  230: French Fries
+  231: Scale
+  232: Trophy
+  233: Cabbage
+  234: Hot dog
+  235: Blender
+  236: Peach
+  237: Rice
+  238: Wallet/Purse
+  239: Volleyball
+  240: Deer
+  241: Goose
+  242: Tape
+  243: Tablet
+  244: Cosmetics
+  245: Trumpet
+  246: Pineapple
+  247: Golf Ball
+  248: Ambulance
+  249: Parking meter
+  250: Mango
+  251: Key
+  252: Hurdle
+  253: Fishing Rod
+  254: Medal
+  255: Flute
+  256: Brush
+  257: Penguin
+  258: Megaphone
+  259: Corn
+  260: Lettuce
+  261: Garlic
+  262: Swan
+  263: Helicopter
+  264: Green Onion
+  265: Sandwich
+  266: Nuts
+  267: Speed Limit Sign
+  268: Induction Cooker
+  269: Broom
+  270: Trombone
+  271: Plum
+  272: Rickshaw
+  273: Goldfish
+  274: Kiwi fruit
+  275: Router/modem
+  276: Poker Card
+  277: Toaster
+  278: Shrimp
+  279: Sushi
+  280: Cheese
+  281: Notepaper
+  282: Cherry
+  283: Pliers
+  284: CD
+  285: Pasta
+  286: Hammer
+  287: Cue
+  288: Avocado
+  289: Hamimelon
+  290: Flask
+  291: Mushroom
+  292: Screwdriver
+  293: Soap
+  294: Recorder
+  295: Bear
+  296: Eggplant
+  297: Board Eraser
+  298: Coconut
+  299: Tape Measure/Ruler
+  300: Pig
+  301: Showerhead
+  302: Globe
+  303: Chips
+  304: Steak
+  305: Crosswalk Sign
+  306: Stapler
+  307: Camel
+  308: Formula 1
+  309: Pomegranate
+  310: Dishwasher
+  311: Crab
+  312: Hoverboard
+  313: Meat ball
+  314: Rice Cooker
+  315: Tuba
+  316: Calculator
+  317: Papaya
+  318: Antelope
+  319: Parrot
+  320: Seal
+  321: Butterfly
+  322: Dumbbell
+  323: Donkey
+  324: Lion
+  325: Urinal
+  326: Dolphin
+  327: Electric Drill
+  328: Hair Dryer
+  329: Egg tart
+  330: Jellyfish
+  331: Treadmill
+  332: Lighter
+  333: Grapefruit
+  334: Game board
+  335: Mop
+  336: Radish
+  337: Baozi
+  338: Target
+  339: French
+  340: Spring Rolls
+  341: Monkey
+  342: Rabbit
+  343: Pencil Case
+  344: Yak
+  345: Red Cabbage
+  346: Binoculars
+  347: Asparagus
+  348: Barbell
+  349: Scallop
+  350: Noddles
+  351: Comb
+  352: Dumpling
+  353: Oyster
+  354: Table Tennis paddle
+  355: Cosmetics Brush/Eyeliner Pencil
+  356: Chainsaw
+  357: Eraser
+  358: Lobster
+  359: Durian
+  360: Okra
+  361: Lipstick
+  362: Cosmetics Mirror
+  363: Curling
+  364: Table Tennis
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from tqdm import tqdm
+
+  from utils.general import Path, check_requirements, download, np, xyxy2xywhn
+
+  check_requirements(('pycocotools>=2.0',))
+  from pycocotools.coco import COCO
+
+  # Make Directories
+  dir = Path(yaml['path'])  # dataset root dir
+  for p in 'images', 'labels':
+      (dir / p).mkdir(parents=True, exist_ok=True)
+      for q in 'train', 'val':
+          (dir / p / q).mkdir(parents=True, exist_ok=True)
+
+  # Train, Val Splits
+  for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
+      print(f"Processing {split} in {patches} patches ...")
+      images, labels = dir / 'images' / split, dir / 'labels' / split
+
+      # Download
+      url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
+      if split == 'train':
+          download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False)  # annotations json
+          download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
+      elif split == 'val':
+          download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False)  # annotations json
+          download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
+          download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
+
+      # Move
+      for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
+          f.rename(images / f.name)  # move to /images/{split}
+
+      # Labels
+      coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
+      names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
+      for cid, cat in enumerate(names):
+          catIds = coco.getCatIds(catNms=[cat])
+          imgIds = coco.getImgIds(catIds=catIds)
+          for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
+              width, height = im["width"], im["height"]
+              path = Path(im["file_name"])  # image filename
+              try:
+                  with open(labels / path.with_suffix('.txt').name, 'a') as file:
+                      annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
+                      for a in coco.loadAnns(annIds):
+                          x, y, w, h = a['bbox']  # bounding box in xywh (xy top-left corner)
+                          xyxy = np.array([x, y, x + w, y + h])[None]  # pixels(1,4)
+                          x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0]  # normalized and clipped
+                          file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
+              except Exception as e:
+                  print(e)
diff --git a/yolov5_model/data/SKU-110K.yaml b/yolov5_model/data/SKU-110K.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..edae7171c6604dea6b8fde20f5244510c626f276
--- /dev/null
+++ b/yolov5_model/data/SKU-110K.yaml
@@ -0,0 +1,53 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
+# Example usage: python train.py --data SKU-110K.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── SKU-110K  ← downloads here (13.6 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/SKU-110K  # dataset root dir
+train: train.txt  # train images (relative to 'path')  8219 images
+val: val.txt  # val images (relative to 'path')  588 images
+test: test.txt  # test images (optional)  2936 images
+
+# Classes
+names:
+  0: object
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import shutil
+  from tqdm import tqdm
+  from utils.general import np, pd, Path, download, xyxy2xywh
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  parent = Path(dir.parent)  # download dir
+  urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
+  download(urls, dir=parent, delete=False)
+
+  # Rename directories
+  if dir.exists():
+      shutil.rmtree(dir)
+  (parent / 'SKU110K_fixed').rename(dir)  # rename dir
+  (dir / 'labels').mkdir(parents=True, exist_ok=True)  # create labels dir
+
+  # Convert labels
+  names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height'  # column names
+  for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
+      x = pd.read_csv(dir / 'annotations' / d, names=names).values  # annotations
+      images, unique_images = x[:, 0], np.unique(x[:, 0])
+      with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
+          f.writelines(f'./images/{s}\n' for s in unique_images)
+      for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
+          cls = 0  # single-class dataset
+          with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
+              for r in x[images == im]:
+                  w, h = r[6], r[7]  # image width, height
+                  xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0]  # instance
+                  f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n")  # write label
diff --git a/yolov5_model/data/VOC.yaml b/yolov5_model/data/VOC.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..27d38109c53acb40f3b51a924e6f3f39d62f9b94
--- /dev/null
+++ b/yolov5_model/data/VOC.yaml
@@ -0,0 +1,100 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
+# Example usage: python train.py --data VOC.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── VOC  ← downloads here (2.8 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/VOC
+train: # train images (relative to 'path')  16551 images
+  - images/train2012
+  - images/train2007
+  - images/val2012
+  - images/val2007
+val: # val images (relative to 'path')  4952 images
+  - images/test2007
+test: # test images (optional)
+  - images/test2007
+
+# Classes
+names:
+  0: aeroplane
+  1: bicycle
+  2: bird
+  3: boat
+  4: bottle
+  5: bus
+  6: car
+  7: cat
+  8: chair
+  9: cow
+  10: diningtable
+  11: dog
+  12: horse
+  13: motorbike
+  14: person
+  15: pottedplant
+  16: sheep
+  17: sofa
+  18: train
+  19: tvmonitor
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import xml.etree.ElementTree as ET
+
+  from tqdm import tqdm
+  from utils.general import download, Path
+
+
+  def convert_label(path, lb_path, year, image_id):
+      def convert_box(size, box):
+          dw, dh = 1. / size[0], 1. / size[1]
+          x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
+          return x * dw, y * dh, w * dw, h * dh
+
+      in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
+      out_file = open(lb_path, 'w')
+      tree = ET.parse(in_file)
+      root = tree.getroot()
+      size = root.find('size')
+      w = int(size.find('width').text)
+      h = int(size.find('height').text)
+
+      names = list(yaml['names'].values())  # names list
+      for obj in root.iter('object'):
+          cls = obj.find('name').text
+          if cls in names and int(obj.find('difficult').text) != 1:
+              xmlbox = obj.find('bndbox')
+              bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
+              cls_id = names.index(cls)  # class id
+              out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
+  urls = [f'{url}VOCtrainval_06-Nov-2007.zip',  # 446MB, 5012 images
+          f'{url}VOCtest_06-Nov-2007.zip',  # 438MB, 4953 images
+          f'{url}VOCtrainval_11-May-2012.zip']  # 1.95GB, 17126 images
+  download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
+
+  # Convert
+  path = dir / 'images/VOCdevkit'
+  for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
+      imgs_path = dir / 'images' / f'{image_set}{year}'
+      lbs_path = dir / 'labels' / f'{image_set}{year}'
+      imgs_path.mkdir(exist_ok=True, parents=True)
+      lbs_path.mkdir(exist_ok=True, parents=True)
+
+      with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
+          image_ids = f.read().strip().split()
+      for id in tqdm(image_ids, desc=f'{image_set}{year}'):
+          f = path / f'VOC{year}/JPEGImages/{id}.jpg'  # old img path
+          lb_path = (lbs_path / f.name).with_suffix('.txt')  # new label path
+          f.rename(imgs_path / f.name)  # move image
+          convert_label(path, lb_path, year, id)  # convert labels to YOLO format
diff --git a/yolov5_model/data/VisDrone.yaml b/yolov5_model/data/VisDrone.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a8bcf8e628ecd75035c41b6b5e18c10f0116a284
--- /dev/null
+++ b/yolov5_model/data/VisDrone.yaml
@@ -0,0 +1,70 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
+# Example usage: python train.py --data VisDrone.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── VisDrone  ← downloads here (2.3 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/VisDrone  # dataset root dir
+train: VisDrone2019-DET-train/images  # train images (relative to 'path')  6471 images
+val: VisDrone2019-DET-val/images  # val images (relative to 'path')  548 images
+test: VisDrone2019-DET-test-dev/images  # test images (optional)  1610 images
+
+# Classes
+names:
+  0: pedestrian
+  1: people
+  2: bicycle
+  3: car
+  4: van
+  5: truck
+  6: tricycle
+  7: awning-tricycle
+  8: bus
+  9: motor
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from utils.general import download, os, Path
+
+  def visdrone2yolo(dir):
+      from PIL import Image
+      from tqdm import tqdm
+
+      def convert_box(size, box):
+          # Convert VisDrone box to YOLO xywh box
+          dw = 1. / size[0]
+          dh = 1. / size[1]
+          return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
+
+      (dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directory
+      pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
+      for f in pbar:
+          img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
+          lines = []
+          with open(f, 'r') as file:  # read annotation.txt
+              for row in [x.split(',') for x in file.read().strip().splitlines()]:
+                  if row[4] == '0':  # VisDrone 'ignored regions' class 0
+                      continue
+                  cls = int(row[5]) - 1
+                  box = convert_box(img_size, tuple(map(int, row[:4])))
+                  lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
+                  with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
+                      fl.writelines(lines)  # write label.txt
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
+  download(urls, dir=dir, curl=True, threads=4)
+
+  # Convert
+  for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
+      visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/yolov5_model/data/beetles.yaml b/yolov5_model/data/beetles.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..94f5b7d350c069185550cbf46ae24a1a77ab5bfc
--- /dev/null
+++ b/yolov5_model/data/beetles.yaml
@@ -0,0 +1,6 @@
+names:
+- beetles
+nc: 0
+test: ../../crop/data/test/images
+train: ../../crop/data/train/images
+val: ../../crop/data/val/images
\ No newline at end of file
diff --git a/yolov5_model/data/coco.yaml b/yolov5_model/data/coco.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d64dfc7fed76bab35d0cd9b745eb985e947433f2
--- /dev/null
+++ b/yolov5_model/data/coco.yaml
@@ -0,0 +1,116 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# COCO 2017 dataset http://cocodataset.org by Microsoft
+# Example usage: python train.py --data coco.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco  ← downloads here (20.1 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco  # dataset root dir
+train: train2017.txt  # train images (relative to 'path') 118287 images
+val: val2017.txt  # val images (relative to 'path') 5000 images
+test: test-dev2017.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: airplane
+  5: bus
+  6: train
+  7: truck
+  8: boat
+  9: traffic light
+  10: fire hydrant
+  11: stop sign
+  12: parking meter
+  13: bench
+  14: bird
+  15: cat
+  16: dog
+  17: horse
+  18: sheep
+  19: cow
+  20: elephant
+  21: bear
+  22: zebra
+  23: giraffe
+  24: backpack
+  25: umbrella
+  26: handbag
+  27: tie
+  28: suitcase
+  29: frisbee
+  30: skis
+  31: snowboard
+  32: sports ball
+  33: kite
+  34: baseball bat
+  35: baseball glove
+  36: skateboard
+  37: surfboard
+  38: tennis racket
+  39: bottle
+  40: wine glass
+  41: cup
+  42: fork
+  43: knife
+  44: spoon
+  45: bowl
+  46: banana
+  47: apple
+  48: sandwich
+  49: orange
+  50: broccoli
+  51: carrot
+  52: hot dog
+  53: pizza
+  54: donut
+  55: cake
+  56: chair
+  57: couch
+  58: potted plant
+  59: bed
+  60: dining table
+  61: toilet
+  62: tv
+  63: laptop
+  64: mouse
+  65: remote
+  66: keyboard
+  67: cell phone
+  68: microwave
+  69: oven
+  70: toaster
+  71: sink
+  72: refrigerator
+  73: book
+  74: clock
+  75: vase
+  76: scissors
+  77: teddy bear
+  78: hair drier
+  79: toothbrush
+
+
+# Download script/URL (optional)
+download: |
+  from utils.general import download, Path
+
+
+  # Download labels
+  segments = False  # segment or box labels
+  dir = Path(yaml['path'])  # dataset root dir
+  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
+  urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')]  # labels
+  download(urls, dir=dir.parent)
+
+  # Download data
+  urls = ['http://images.cocodataset.org/zips/train2017.zip',  # 19G, 118k images
+          'http://images.cocodataset.org/zips/val2017.zip',  # 1G, 5k images
+          'http://images.cocodataset.org/zips/test2017.zip']  # 7G, 41k images (optional)
+  download(urls, dir=dir / 'images', threads=3)
diff --git a/yolov5_model/data/coco128-seg.yaml b/yolov5_model/data/coco128-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5e81910cc45613ed052073c1da606bb44e4945cc
--- /dev/null
+++ b/yolov5_model/data/coco128-seg.yaml
@@ -0,0 +1,101 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
+# Example usage: python train.py --data coco128.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128-seg  ← downloads here (7 MB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco128-seg  # dataset root dir
+train: images/train2017  # train images (relative to 'path') 128 images
+val: images/train2017  # val images (relative to 'path') 128 images
+test:  # test images (optional)
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: airplane
+  5: bus
+  6: train
+  7: truck
+  8: boat
+  9: traffic light
+  10: fire hydrant
+  11: stop sign
+  12: parking meter
+  13: bench
+  14: bird
+  15: cat
+  16: dog
+  17: horse
+  18: sheep
+  19: cow
+  20: elephant
+  21: bear
+  22: zebra
+  23: giraffe
+  24: backpack
+  25: umbrella
+  26: handbag
+  27: tie
+  28: suitcase
+  29: frisbee
+  30: skis
+  31: snowboard
+  32: sports ball
+  33: kite
+  34: baseball bat
+  35: baseball glove
+  36: skateboard
+  37: surfboard
+  38: tennis racket
+  39: bottle
+  40: wine glass
+  41: cup
+  42: fork
+  43: knife
+  44: spoon
+  45: bowl
+  46: banana
+  47: apple
+  48: sandwich
+  49: orange
+  50: broccoli
+  51: carrot
+  52: hot dog
+  53: pizza
+  54: donut
+  55: cake
+  56: chair
+  57: couch
+  58: potted plant
+  59: bed
+  60: dining table
+  61: toilet
+  62: tv
+  63: laptop
+  64: mouse
+  65: remote
+  66: keyboard
+  67: cell phone
+  68: microwave
+  69: oven
+  70: toaster
+  71: sink
+  72: refrigerator
+  73: book
+  74: clock
+  75: vase
+  76: scissors
+  77: teddy bear
+  78: hair drier
+  79: toothbrush
+
+
+# Download script/URL (optional)
+download: https://ultralytics.com/assets/coco128-seg.zip
diff --git a/yolov5_model/data/coco128.yaml b/yolov5_model/data/coco128.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..12556736a57193aa7be79e1a6ea4288cca480e81
--- /dev/null
+++ b/yolov5_model/data/coco128.yaml
@@ -0,0 +1,101 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
+# Example usage: python train.py --data coco128.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128  ← downloads here (7 MB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco128  # dataset root dir
+train: images/train2017  # train images (relative to 'path') 128 images
+val: images/train2017  # val images (relative to 'path') 128 images
+test:  # test images (optional)
+
+# Classes
+names:
+  0: person
+  1: bicycle
+  2: car
+  3: motorcycle
+  4: airplane
+  5: bus
+  6: train
+  7: truck
+  8: boat
+  9: traffic light
+  10: fire hydrant
+  11: stop sign
+  12: parking meter
+  13: bench
+  14: bird
+  15: cat
+  16: dog
+  17: horse
+  18: sheep
+  19: cow
+  20: elephant
+  21: bear
+  22: zebra
+  23: giraffe
+  24: backpack
+  25: umbrella
+  26: handbag
+  27: tie
+  28: suitcase
+  29: frisbee
+  30: skis
+  31: snowboard
+  32: sports ball
+  33: kite
+  34: baseball bat
+  35: baseball glove
+  36: skateboard
+  37: surfboard
+  38: tennis racket
+  39: bottle
+  40: wine glass
+  41: cup
+  42: fork
+  43: knife
+  44: spoon
+  45: bowl
+  46: banana
+  47: apple
+  48: sandwich
+  49: orange
+  50: broccoli
+  51: carrot
+  52: hot dog
+  53: pizza
+  54: donut
+  55: cake
+  56: chair
+  57: couch
+  58: potted plant
+  59: bed
+  60: dining table
+  61: toilet
+  62: tv
+  63: laptop
+  64: mouse
+  65: remote
+  66: keyboard
+  67: cell phone
+  68: microwave
+  69: oven
+  70: toaster
+  71: sink
+  72: refrigerator
+  73: book
+  74: clock
+  75: vase
+  76: scissors
+  77: teddy bear
+  78: hair drier
+  79: toothbrush
+
+
+# Download script/URL (optional)
+download: https://ultralytics.com/assets/coco128.zip
diff --git a/yolov5_model/data/hyps/hyp.Objects365.yaml b/yolov5_model/data/hyps/hyp.Objects365.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..74971740f7c73bf661950f339792b790a26b2b1c
--- /dev/null
+++ b/yolov5_model/data/hyps/hyp.Objects365.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for Objects365 training
+# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
+# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.00258
+lrf: 0.17
+momentum: 0.779
+weight_decay: 0.00058
+warmup_epochs: 1.33
+warmup_momentum: 0.86
+warmup_bias_lr: 0.0711
+box: 0.0539
+cls: 0.299
+cls_pw: 0.825
+obj: 0.632
+obj_pw: 1.0
+iou_t: 0.2
+anchor_t: 3.44
+anchors: 3.2
+fl_gamma: 0.0
+hsv_h: 0.0188
+hsv_s: 0.704
+hsv_v: 0.36
+degrees: 0.0
+translate: 0.0902
+scale: 0.491
+shear: 0.0
+perspective: 0.0
+flipud: 0.0
+fliplr: 0.5
+mosaic: 1.0
+mixup: 0.0
+copy_paste: 0.0
diff --git a/yolov5_model/data/hyps/hyp.VOC.yaml b/yolov5_model/data/hyps/hyp.VOC.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0aa4e7d9f8f5162653e3999b04b4636b103c355f
--- /dev/null
+++ b/yolov5_model/data/hyps/hyp.VOC.yaml
@@ -0,0 +1,40 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for VOC training
+# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
+# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
+
+# YOLOv5 Hyperparameter Evolution Results
+# Best generation: 467
+# Last generation: 996
+#    metrics/precision,       metrics/recall,      metrics/mAP_0.5, metrics/mAP_0.5:0.95,         val/box_loss,         val/obj_loss,         val/cls_loss
+#              0.87729,              0.85125,              0.91286,              0.72664,            0.0076739,            0.0042529,            0.0013865
+
+lr0: 0.00334
+lrf: 0.15135
+momentum: 0.74832
+weight_decay: 0.00025
+warmup_epochs: 3.3835
+warmup_momentum: 0.59462
+warmup_bias_lr: 0.18657
+box: 0.02
+cls: 0.21638
+cls_pw: 0.5
+obj: 0.51728
+obj_pw: 0.67198
+iou_t: 0.2
+anchor_t: 3.3744
+fl_gamma: 0.0
+hsv_h: 0.01041
+hsv_s: 0.54703
+hsv_v: 0.27739
+degrees: 0.0
+translate: 0.04591
+scale: 0.75544
+shear: 0.0
+perspective: 0.0
+flipud: 0.0
+fliplr: 0.5
+mosaic: 0.85834
+mixup: 0.04266
+copy_paste: 0.0
+anchors: 3.412
diff --git a/yolov5_model/data/hyps/hyp.no-augmentation.yaml b/yolov5_model/data/hyps/hyp.no-augmentation.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8fbd5b262afa023f0fc252b4da64005a52ceb174
--- /dev/null
+++ b/yolov5_model/data/hyps/hyp.no-augmentation.yaml
@@ -0,0 +1,35 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters when using Albumentations frameworks
+# python train.py --hyp hyp.no-augmentation.yaml
+# See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.3  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 0.7  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+# this parameters are all zero since we want to use albumentation framework
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0  # image HSV-Hue augmentation (fraction)
+hsv_s: 00  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0  # image translation (+/- fraction)
+scale: 0  # image scale (+/- gain)
+shear: 0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.0  # image flip left-right (probability)
+mosaic: 0.0  # image mosaic (probability)
+mixup: 0.0  # image mixup (probability)
+copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/yolov5_model/data/hyps/hyp.scratch-high.yaml b/yolov5_model/data/hyps/hyp.scratch-high.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..123cc8407413e9c130e21a3b5dd8ed33a3632db5
--- /dev/null
+++ b/yolov5_model/data/hyps/hyp.scratch-high.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for high-augmentation COCO training from scratch
+# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.3  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 0.7  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0.1  # image translation (+/- fraction)
+scale: 0.9  # image scale (+/- gain)
+shear: 0.0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.5  # image flip left-right (probability)
+mosaic: 1.0  # image mosaic (probability)
+mixup: 0.1  # image mixup (probability)
+copy_paste: 0.1  # segment copy-paste (probability)
diff --git a/yolov5_model/data/hyps/hyp.scratch-low.yaml b/yolov5_model/data/hyps/hyp.scratch-low.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b9ef1d55a3b6ec8873ac87d6f4aa0ca081868bd6
--- /dev/null
+++ b/yolov5_model/data/hyps/hyp.scratch-low.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for low-augmentation COCO training from scratch
+# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.01  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.5  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 1.0  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0.1  # image translation (+/- fraction)
+scale: 0.5  # image scale (+/- gain)
+shear: 0.0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.5  # image flip left-right (probability)
+mosaic: 1.0  # image mosaic (probability)
+mixup: 0.0  # image mixup (probability)
+copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/yolov5_model/data/hyps/hyp.scratch-med.yaml b/yolov5_model/data/hyps/hyp.scratch-med.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d6867d7557bac73db7f8787db60cff4c4c64b440
--- /dev/null
+++ b/yolov5_model/data/hyps/hyp.scratch-med.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for medium-augmentation COCO training from scratch
+# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.3  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 0.7  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0.1  # image translation (+/- fraction)
+scale: 0.9  # image scale (+/- gain)
+shear: 0.0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.5  # image flip left-right (probability)
+mosaic: 1.0  # image mosaic (probability)
+mixup: 0.1  # image mixup (probability)
+copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/yolov5_model/data/images/bus.jpg b/yolov5_model/data/images/bus.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b43e311165c785f000eb7493ff8fb662d06a3f83
Binary files /dev/null and b/yolov5_model/data/images/bus.jpg differ
diff --git a/yolov5_model/data/images/zidane.jpg b/yolov5_model/data/images/zidane.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..92d72ea124760ce5dbf9425e3aa8f371e7481328
Binary files /dev/null and b/yolov5_model/data/images/zidane.jpg differ
diff --git a/yolov5_model/data/scripts/download_weights.sh b/yolov5_model/data/scripts/download_weights.sh
new file mode 100755
index 0000000000000000000000000000000000000000..31e0a15569f29dc85412a79ab28b073c2fe3ec44
--- /dev/null
+++ b/yolov5_model/data/scripts/download_weights.sh
@@ -0,0 +1,22 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Download latest models from https://github.com/ultralytics/yolov5/releases
+# Example usage: bash data/scripts/download_weights.sh
+# parent
+# └── yolov5
+#     ├── yolov5s.pt  ← downloads here
+#     ├── yolov5m.pt
+#     └── ...
+
+python - <<EOF
+from utils.downloads import attempt_download
+
+p5 = list('nsmlx')  # P5 models
+p6 = [f'{x}6' for x in p5]  # P6 models
+cls = [f'{x}-cls' for x in p5]  # classification models
+seg = [f'{x}-seg' for x in p5]  # classification models
+
+for x in p5 + p6 + cls + seg:
+    attempt_download(f'weights/yolov5{x}.pt')
+
+EOF
diff --git a/yolov5_model/data/scripts/get_coco.sh b/yolov5_model/data/scripts/get_coco.sh
new file mode 100755
index 0000000000000000000000000000000000000000..0d388b0a12a84c504a2b12e85e3edcac5d78530c
--- /dev/null
+++ b/yolov5_model/data/scripts/get_coco.sh
@@ -0,0 +1,56 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Download COCO 2017 dataset http://cocodataset.org
+# Example usage: bash data/scripts/get_coco.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco  ← downloads here
+
+# Arguments (optional) Usage: bash data/scripts/get_coco.sh --train --val --test --segments
+if [ "$#" -gt 0 ]; then
+  for opt in "$@"; do
+    case "${opt}" in
+    --train) train=true ;;
+    --val) val=true ;;
+    --test) test=true ;;
+    --segments) segments=true ;;
+    esac
+  done
+else
+  train=true
+  val=true
+  test=false
+  segments=false
+fi
+
+# Download/unzip labels
+d='../datasets' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+if [ "$segments" == "true" ]; then
+  f='coco2017labels-segments.zip' # 168 MB
+else
+  f='coco2017labels.zip' # 46 MB
+fi
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+
+# Download/unzip images
+d='../datasets/coco/images' # unzip directory
+url=http://images.cocodataset.org/zips/
+if [ "$train" == "true" ]; then
+  f='train2017.zip' # 19G, 118k images
+  echo 'Downloading' $url$f '...'
+  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+fi
+if [ "$val" == "true" ]; then
+  f='val2017.zip' # 1G, 5k images
+  echo 'Downloading' $url$f '...'
+  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+fi
+if [ "$test" == "true" ]; then
+  f='test2017.zip' # 7G, 41k images (optional)
+  echo 'Downloading' $url$f '...'
+  curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+fi
+wait # finish background tasks
diff --git a/yolov5_model/data/scripts/get_coco128.sh b/yolov5_model/data/scripts/get_coco128.sh
new file mode 100755
index 0000000000000000000000000000000000000000..e7ddce89b11552b9fa7d0d85c56fc4e3df2481cd
--- /dev/null
+++ b/yolov5_model/data/scripts/get_coco128.sh
@@ -0,0 +1,17 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
+# Example usage: bash data/scripts/get_coco128.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128  ← downloads here
+
+# Download/unzip images and labels
+d='../datasets' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+f='coco128.zip' # or 'coco128-segments.zip', 68 MB
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
+
+wait # finish background tasks
diff --git a/yolov5_model/data/scripts/get_imagenet.sh b/yolov5_model/data/scripts/get_imagenet.sh
new file mode 100755
index 0000000000000000000000000000000000000000..6026d502e8f3cce457d7f48cefe19cf55d60c0fc
--- /dev/null
+++ b/yolov5_model/data/scripts/get_imagenet.sh
@@ -0,0 +1,51 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Download ILSVRC2012 ImageNet dataset https://image-net.org
+# Example usage: bash data/scripts/get_imagenet.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── imagenet  ← downloads here
+
+# Arguments (optional) Usage: bash data/scripts/get_imagenet.sh --train --val
+if [ "$#" -gt 0 ]; then
+  for opt in "$@"; do
+    case "${opt}" in
+    --train) train=true ;;
+    --val) val=true ;;
+    esac
+  done
+else
+  train=true
+  val=true
+fi
+
+# Make dir
+d='../datasets/imagenet' # unzip directory
+mkdir -p $d && cd $d
+
+# Download/unzip train
+if [ "$train" == "true" ]; then
+  wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar # download 138G, 1281167 images
+  mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
+  tar -xf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
+  find . -name "*.tar" | while read NAME; do
+    mkdir -p "${NAME%.tar}"
+    tar -xf "${NAME}" -C "${NAME%.tar}"
+    rm -f "${NAME}"
+  done
+  cd ..
+fi
+
+# Download/unzip val
+if [ "$val" == "true" ]; then
+  wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar # download 6.3G, 50000 images
+  mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xf ILSVRC2012_img_val.tar
+  wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash # move into subdirs
+fi
+
+# Delete corrupted image (optional: PNG under JPEG name that may cause dataloaders to fail)
+# rm train/n04266014/n04266014_10835.JPEG
+
+# TFRecords (optional)
+# wget https://raw.githubusercontent.com/tensorflow/models/master/research/slim/datasets/imagenet_lsvrc_2015_synsets.txt
diff --git a/yolov5_model/data/xView.yaml b/yolov5_model/data/xView.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..770ab7870449718447d63b1152279373d79d369f
--- /dev/null
+++ b/yolov5_model/data/xView.yaml
@@ -0,0 +1,153 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
+# --------  DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command!  --------
+# Example usage: python train.py --data xView.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── xView  ← downloads here (20.7 GB)
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/xView  # dataset root dir
+train: images/autosplit_train.txt  # train images (relative to 'path') 90% of 847 train images
+val: images/autosplit_val.txt  # train images (relative to 'path') 10% of 847 train images
+
+# Classes
+names:
+  0: Fixed-wing Aircraft
+  1: Small Aircraft
+  2: Cargo Plane
+  3: Helicopter
+  4: Passenger Vehicle
+  5: Small Car
+  6: Bus
+  7: Pickup Truck
+  8: Utility Truck
+  9: Truck
+  10: Cargo Truck
+  11: Truck w/Box
+  12: Truck Tractor
+  13: Trailer
+  14: Truck w/Flatbed
+  15: Truck w/Liquid
+  16: Crane Truck
+  17: Railway Vehicle
+  18: Passenger Car
+  19: Cargo Car
+  20: Flat Car
+  21: Tank car
+  22: Locomotive
+  23: Maritime Vessel
+  24: Motorboat
+  25: Sailboat
+  26: Tugboat
+  27: Barge
+  28: Fishing Vessel
+  29: Ferry
+  30: Yacht
+  31: Container Ship
+  32: Oil Tanker
+  33: Engineering Vehicle
+  34: Tower crane
+  35: Container Crane
+  36: Reach Stacker
+  37: Straddle Carrier
+  38: Mobile Crane
+  39: Dump Truck
+  40: Haul Truck
+  41: Scraper/Tractor
+  42: Front loader/Bulldozer
+  43: Excavator
+  44: Cement Mixer
+  45: Ground Grader
+  46: Hut/Tent
+  47: Shed
+  48: Building
+  49: Aircraft Hangar
+  50: Damaged Building
+  51: Facility
+  52: Construction Site
+  53: Vehicle Lot
+  54: Helipad
+  55: Storage Tank
+  56: Shipping container lot
+  57: Shipping Container
+  58: Pylon
+  59: Tower
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import json
+  import os
+  from pathlib import Path
+
+  import numpy as np
+  from PIL import Image
+  from tqdm import tqdm
+
+  from utils.dataloaders import autosplit
+  from utils.general import download, xyxy2xywhn
+
+
+  def convert_labels(fname=Path('xView/xView_train.geojson')):
+      # Convert xView geoJSON labels to YOLO format
+      path = fname.parent
+      with open(fname) as f:
+          print(f'Loading {fname}...')
+          data = json.load(f)
+
+      # Make dirs
+      labels = Path(path / 'labels' / 'train')
+      os.system(f'rm -rf {labels}')
+      labels.mkdir(parents=True, exist_ok=True)
+
+      # xView classes 11-94 to 0-59
+      xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
+                           12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
+                           29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
+                           47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
+
+      shapes = {}
+      for feature in tqdm(data['features'], desc=f'Converting {fname}'):
+          p = feature['properties']
+          if p['bounds_imcoords']:
+              id = p['image_id']
+              file = path / 'train_images' / id
+              if file.exists():  # 1395.tif missing
+                  try:
+                      box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
+                      assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
+                      cls = p['type_id']
+                      cls = xview_class2index[int(cls)]  # xView class to 0-60
+                      assert 59 >= cls >= 0, f'incorrect class index {cls}'
+
+                      # Write YOLO label
+                      if id not in shapes:
+                          shapes[id] = Image.open(file).size
+                      box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
+                      with open((labels / id).with_suffix('.txt'), 'a') as f:
+                          f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n")  # write label.txt
+                  except Exception as e:
+                      print(f'WARNING: skipping one label for {file}: {e}')
+
+
+  # Download manually from https://challenge.xviewdataset.org
+  dir = Path(yaml['path'])  # dataset root dir
+  # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip',  # train labels
+  #         'https://d307kc0mrhucc3.cloudfront.net/train_images.zip',  # 15G, 847 train images
+  #         'https://d307kc0mrhucc3.cloudfront.net/val_images.zip']  # 5G, 282 val images (no labels)
+  # download(urls, dir=dir, delete=False)
+
+  # Convert labels
+  convert_labels(dir / 'xView_train.geojson')
+
+  # Move images
+  images = Path(dir / 'images')
+  images.mkdir(parents=True, exist_ok=True)
+  Path(dir / 'train_images').rename(dir / 'images' / 'train')
+  Path(dir / 'val_images').rename(dir / 'images' / 'val')
+
+  # Split
+  autosplit(dir / 'images' / 'train')
diff --git a/yolov5_model/detect.py b/yolov5_model/detect.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f32d7a50d6b5ddd22472c701b0b30129d205f04
--- /dev/null
+++ b/yolov5_model/detect.py
@@ -0,0 +1,261 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
+
+Usage - sources:
+    $ python detect.py --weights yolov5s.pt --source 0                               # webcam
+                                                     img.jpg                         # image
+                                                     vid.mp4                         # video
+                                                     screen                          # screenshot
+                                                     path/                           # directory
+                                                     list.txt                        # list of images
+                                                     list.streams                    # list of streams
+                                                     'path/*.jpg'                    # glob
+                                                     'https://youtu.be/Zgi9g1ksQHc'  # YouTube
+                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python detect.py --weights yolov5s.pt                 # PyTorch
+                                 yolov5s.torchscript        # TorchScript
+                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                 yolov5s_openvino_model     # OpenVINO
+                                 yolov5s.engine             # TensorRT
+                                 yolov5s.mlmodel            # CoreML (macOS-only)
+                                 yolov5s_saved_model        # TensorFlow SavedModel
+                                 yolov5s.pb                 # TensorFlow GraphDef
+                                 yolov5s.tflite             # TensorFlow Lite
+                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                                 yolov5s_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+                           increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
+from utils.plots import Annotator, colors, save_one_box
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+        weights=ROOT / 'yolov5s.pt',  # model path or triton URL
+        source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
+        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+        imgsz=(640, 640),  # inference size (height, width)
+        conf_thres=0.25,  # confidence threshold
+        iou_thres=0.45,  # NMS IOU threshold
+        max_det=1000,  # maximum detections per image
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        view_img=False,  # show results
+        save_txt=False,  # save results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_crop=False,  # save cropped prediction boxes
+        nosave=False,  # do not save images/videos
+        classes=None,  # filter by class: --class 0, or --class 0 2 3
+        agnostic_nms=False,  # class-agnostic NMS
+        augment=False,  # augmented inference
+        visualize=False,  # visualize features
+        update=False,  # update all models
+        project=ROOT / 'runs/detect',  # save results to project/name
+        name='exp',  # save results to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        line_thickness=3,  # bounding box thickness (pixels)
+        hide_labels=False,  # hide labels
+        hide_conf=False,  # hide confidences
+        half=False,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        vid_stride=1,  # video frame-rate stride
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith('.txt')  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+    webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
+    screenshot = source.lower().startswith('screen')
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.from_numpy(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+
+        # Inference
+        with dt[1]:
+            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+            pred = model(im, augment=augment, visualize=visualize)
+
+        # NMS
+        with dt[2]:
+            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
+
+        # Second-stage classifier (optional)
+        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+        # Process predictions
+        for i, det in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f'{i}: '
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
+            s += '%gx%g ' % im.shape[2:]  # print string
+            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
+            imc = im0.copy() if save_crop else im0  # for save_crop
+            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+            if len(det):
+                # Rescale boxes from img_size to im0 size
+                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
+
+                # Print results
+                for c in det[:, 5].unique():
+                    n = (det[:, 5] == c).sum()  # detections per class
+                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
+
+                # Write results
+                for *xyxy, conf, cls in reversed(det):
+                    if save_txt:  # Write to file
+                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+                        with open(f'{txt_path}.txt', 'a') as f:
+                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+                    if save_img or save_crop or view_img:  # Add bbox to image
+                        c = int(cls)  # integer class
+                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+                        annotator.box_label(xyxy, label, color=colors(c, True))
+                    if save_crop:
+                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == 'Linux' and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                cv2.waitKey(1)  # 1 millisecond
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == 'image':
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+    # Print results
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
+    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--view-img', action='store_true', help='show results')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--visualize', action='store_true', help='visualize features')
+    parser.add_argument('--update', action='store_true', help='update all models')
+    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save results to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(exclude=('tensorboard', 'thop'))
+    run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/export.py b/yolov5_model/export.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8287704866a2551d4063a5963f905e9f58fbb3d
--- /dev/null
+++ b/yolov5_model/export.py
@@ -0,0 +1,672 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
+
+Format                      | `export.py --include`         | Model
+---                         | ---                           | ---
+PyTorch                     | -                             | yolov5s.pt
+TorchScript                 | `torchscript`                 | yolov5s.torchscript
+ONNX                        | `onnx`                        | yolov5s.onnx
+OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
+TensorRT                    | `engine`                      | yolov5s.engine
+CoreML                      | `coreml`                      | yolov5s.mlmodel
+TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
+TensorFlow GraphDef         | `pb`                          | yolov5s.pb
+TensorFlow Lite             | `tflite`                      | yolov5s.tflite
+TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
+TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
+PaddlePaddle                | `paddle`                      | yolov5s_paddle_model/
+
+Requirements:
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
+
+Usage:
+    $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
+
+Inference:
+    $ python detect.py --weights yolov5s.pt                 # PyTorch
+                                 yolov5s.torchscript        # TorchScript
+                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                 yolov5s_openvino_model     # OpenVINO
+                                 yolov5s.engine             # TensorRT
+                                 yolov5s.mlmodel            # CoreML (macOS-only)
+                                 yolov5s_saved_model        # TensorFlow SavedModel
+                                 yolov5s.pb                 # TensorFlow GraphDef
+                                 yolov5s.tflite             # TensorFlow Lite
+                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                                 yolov5s_paddle_model       # PaddlePaddle
+
+TensorFlow.js:
+    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
+    $ npm install
+    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
+    $ npm start
+"""
+
+import argparse
+import contextlib
+import json
+import os
+import platform
+import re
+import subprocess
+import sys
+import time
+import warnings
+from pathlib import Path
+
+import pandas as pd
+import torch
+from torch.utils.mobile_optimizer import optimize_for_mobile
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+if platform.system() != 'Windows':
+    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.experimental import attempt_load
+from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
+from utils.dataloaders import LoadImages
+from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
+                           check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
+from utils.torch_utils import select_device, smart_inference_mode
+
+MACOS = platform.system() == 'Darwin'  # macOS environment
+
+
+def export_formats():
+    # YOLOv5 export formats
+    x = [
+        ['PyTorch', '-', '.pt', True, True],
+        ['TorchScript', 'torchscript', '.torchscript', True, True],
+        ['ONNX', 'onnx', '.onnx', True, True],
+        ['OpenVINO', 'openvino', '_openvino_model', True, False],
+        ['TensorRT', 'engine', '.engine', False, True],
+        ['CoreML', 'coreml', '.mlmodel', True, False],
+        ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
+        ['TensorFlow GraphDef', 'pb', '.pb', True, True],
+        ['TensorFlow Lite', 'tflite', '.tflite', True, False],
+        ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
+        ['TensorFlow.js', 'tfjs', '_web_model', False, False],
+        ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
+    return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
+
+
+def try_export(inner_func):
+    # YOLOv5 export decorator, i..e @try_export
+    inner_args = get_default_args(inner_func)
+
+    def outer_func(*args, **kwargs):
+        prefix = inner_args['prefix']
+        try:
+            with Profile() as dt:
+                f, model = inner_func(*args, **kwargs)
+            LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
+            return f, model
+        except Exception as e:
+            LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
+            return None, None
+
+    return outer_func
+
+
+@try_export
+def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
+    # YOLOv5 TorchScript model export
+    LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
+    f = file.with_suffix('.torchscript')
+
+    ts = torch.jit.trace(model, im, strict=False)
+    d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names}
+    extra_files = {'config.txt': json.dumps(d)}  # torch._C.ExtraFilesMap()
+    if optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
+        optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
+    else:
+        ts.save(str(f), _extra_files=extra_files)
+    return f, None
+
+
+@try_export
+def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
+    # YOLOv5 ONNX export
+    check_requirements('onnx>=1.12.0')
+    import onnx
+
+    LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
+    f = file.with_suffix('.onnx')
+
+    output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
+    if dynamic:
+        dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}}  # shape(1,3,640,640)
+        if isinstance(model, SegmentationModel):
+            dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
+            dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'}  # shape(1,32,160,160)
+        elif isinstance(model, DetectionModel):
+            dynamic['output0'] = {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
+
+    torch.onnx.export(
+        model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
+        im.cpu() if dynamic else im,
+        f,
+        verbose=False,
+        opset_version=opset,
+        do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
+        input_names=['images'],
+        output_names=output_names,
+        dynamic_axes=dynamic or None)
+
+    # Checks
+    model_onnx = onnx.load(f)  # load onnx model
+    onnx.checker.check_model(model_onnx)  # check onnx model
+
+    # Metadata
+    d = {'stride': int(max(model.stride)), 'names': model.names}
+    for k, v in d.items():
+        meta = model_onnx.metadata_props.add()
+        meta.key, meta.value = k, str(v)
+    onnx.save(model_onnx, f)
+
+    # Simplify
+    if simplify:
+        try:
+            cuda = torch.cuda.is_available()
+            check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
+            import onnxsim
+
+            LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
+            model_onnx, check = onnxsim.simplify(model_onnx)
+            assert check, 'assert check failed'
+            onnx.save(model_onnx, f)
+        except Exception as e:
+            LOGGER.info(f'{prefix} simplifier failure: {e}')
+    return f, model_onnx
+
+
+@try_export
+def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
+    # YOLOv5 OpenVINO export
+    check_requirements('openvino-dev')  # requires openvino-dev: https://pypi.org/project/openvino-dev/
+    import openvino.inference_engine as ie
+
+    LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
+    f = str(file).replace('.pt', f'_openvino_model{os.sep}')
+
+    args = [
+        'mo',
+        '--input_model',
+        str(file.with_suffix('.onnx')),
+        '--output_dir',
+        f,
+        '--data_type',
+        ('FP16' if half else 'FP32'),]
+    subprocess.run(args, check=True, env=os.environ)  # export
+    yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata)  # add metadata.yaml
+    return f, None
+
+
+@try_export
+def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
+    # YOLOv5 Paddle export
+    check_requirements(('paddlepaddle', 'x2paddle'))
+    import x2paddle
+    from x2paddle.convert import pytorch2paddle
+
+    LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
+    f = str(file).replace('.pt', f'_paddle_model{os.sep}')
+
+    pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im])  # export
+    yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata)  # add metadata.yaml
+    return f, None
+
+
+@try_export
+def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
+    # YOLOv5 CoreML export
+    check_requirements('coremltools')
+    import coremltools as ct
+
+    LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
+    f = file.with_suffix('.mlmodel')
+
+    ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
+    ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
+    bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
+    if bits < 32:
+        if MACOS:  # quantization only supported on macOS
+            with warnings.catch_warnings():
+                warnings.filterwarnings('ignore', category=DeprecationWarning)  # suppress numpy==1.20 float warning
+                ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
+        else:
+            print(f'{prefix} quantization only supported on macOS, skipping...')
+    ct_model.save(f)
+    return f, ct_model
+
+
+@try_export
+def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
+    # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
+    assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
+    try:
+        import tensorrt as trt
+    except Exception:
+        if platform.system() == 'Linux':
+            check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
+        import tensorrt as trt
+
+    if trt.__version__[0] == '7':  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
+        grid = model.model[-1].anchor_grid
+        model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
+        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
+        model.model[-1].anchor_grid = grid
+    else:  # TensorRT >= 8
+        check_version(trt.__version__, '8.0.0', hard=True)  # require tensorrt>=8.0.0
+        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
+    onnx = file.with_suffix('.onnx')
+
+    LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
+    assert onnx.exists(), f'failed to export ONNX file: {onnx}'
+    f = file.with_suffix('.engine')  # TensorRT engine file
+    logger = trt.Logger(trt.Logger.INFO)
+    if verbose:
+        logger.min_severity = trt.Logger.Severity.VERBOSE
+
+    builder = trt.Builder(logger)
+    config = builder.create_builder_config()
+    config.max_workspace_size = workspace * 1 << 30
+    # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)  # fix TRT 8.4 deprecation notice
+
+    flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
+    network = builder.create_network(flag)
+    parser = trt.OnnxParser(network, logger)
+    if not parser.parse_from_file(str(onnx)):
+        raise RuntimeError(f'failed to load ONNX file: {onnx}')
+
+    inputs = [network.get_input(i) for i in range(network.num_inputs)]
+    outputs = [network.get_output(i) for i in range(network.num_outputs)]
+    for inp in inputs:
+        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
+    for out in outputs:
+        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
+
+    if dynamic:
+        if im.shape[0] <= 1:
+            LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
+        profile = builder.create_optimization_profile()
+        for inp in inputs:
+            profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
+        config.add_optimization_profile(profile)
+
+    LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
+    if builder.platform_has_fast_fp16 and half:
+        config.set_flag(trt.BuilderFlag.FP16)
+    with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
+        t.write(engine.serialize())
+    return f, None
+
+
+@try_export
+def export_saved_model(model,
+                       im,
+                       file,
+                       dynamic,
+                       tf_nms=False,
+                       agnostic_nms=False,
+                       topk_per_class=100,
+                       topk_all=100,
+                       iou_thres=0.45,
+                       conf_thres=0.25,
+                       keras=False,
+                       prefix=colorstr('TensorFlow SavedModel:')):
+    # YOLOv5 TensorFlow SavedModel export
+    try:
+        import tensorflow as tf
+    except Exception:
+        check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
+        import tensorflow as tf
+    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+    from models.tf import TFModel
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+    f = str(file).replace('.pt', '_saved_model')
+    batch_size, ch, *imgsz = list(im.shape)  # BCHW
+
+    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+    im = tf.zeros((batch_size, *imgsz, ch))  # BHWC order for TensorFlow
+    _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+    inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
+    outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+    keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
+    keras_model.trainable = False
+    keras_model.summary()
+    if keras:
+        keras_model.save(f, save_format='tf')
+    else:
+        spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
+        m = tf.function(lambda x: keras_model(x))  # full model
+        m = m.get_concrete_function(spec)
+        frozen_func = convert_variables_to_constants_v2(m)
+        tfm = tf.Module()
+        tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
+        tfm.__call__(im)
+        tf.saved_model.save(tfm,
+                            f,
+                            options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
+                                tf.__version__, '2.6') else tf.saved_model.SaveOptions())
+    return f, keras_model
+
+
+@try_export
+def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
+    # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
+    import tensorflow as tf
+    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+    f = file.with_suffix('.pb')
+
+    m = tf.function(lambda x: keras_model(x))  # full model
+    m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
+    frozen_func = convert_variables_to_constants_v2(m)
+    frozen_func.graph.as_graph_def()
+    tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
+    return f, None
+
+
+@try_export
+def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
+    # YOLOv5 TensorFlow Lite export
+    import tensorflow as tf
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+    batch_size, ch, *imgsz = list(im.shape)  # BCHW
+    f = str(file).replace('.pt', '-fp16.tflite')
+
+    converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
+    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
+    converter.target_spec.supported_types = [tf.float16]
+    converter.optimizations = [tf.lite.Optimize.DEFAULT]
+    if int8:
+        from models.tf import representative_dataset_gen
+        dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
+        converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
+        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
+        converter.target_spec.supported_types = []
+        converter.inference_input_type = tf.uint8  # or tf.int8
+        converter.inference_output_type = tf.uint8  # or tf.int8
+        converter.experimental_new_quantizer = True
+        f = str(file).replace('.pt', '-int8.tflite')
+    if nms or agnostic_nms:
+        converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
+
+    tflite_model = converter.convert()
+    open(f, 'wb').write(tflite_model)
+    return f, None
+
+
+@try_export
+def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
+    # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
+    cmd = 'edgetpu_compiler --version'
+    help_url = 'https://coral.ai/docs/edgetpu/compiler/'
+    assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
+    if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
+        LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
+        sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0  # sudo installed on system
+        for c in (
+                'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
+                'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
+                'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
+            subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
+    ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
+
+    LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
+    f = str(file).replace('.pt', '-int8_edgetpu.tflite')  # Edge TPU model
+    f_tfl = str(file).replace('.pt', '-int8.tflite')  # TFLite model
+
+    subprocess.run([
+        'edgetpu_compiler',
+        '-s',
+        '-d',
+        '-k',
+        '10',
+        '--out_dir',
+        str(file.parent),
+        f_tfl,], check=True)
+    return f, None
+
+
+@try_export
+def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')):
+    # YOLOv5 TensorFlow.js export
+    check_requirements('tensorflowjs')
+    import tensorflowjs as tfjs
+
+    LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
+    f = str(file).replace('.pt', '_web_model')  # js dir
+    f_pb = file.with_suffix('.pb')  # *.pb path
+    f_json = f'{f}/model.json'  # *.json path
+
+    args = [
+        'tensorflowjs_converter',
+        '--input_format=tf_frozen_model',
+        '--quantize_uint8' if int8 else '',
+        '--output_node_names=Identity,Identity_1,Identity_2,Identity_3',
+        str(f_pb),
+        str(f),]
+    subprocess.run([arg for arg in args if arg], check=True)
+
+    json = Path(f_json).read_text()
+    with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
+        subst = re.sub(
+            r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}, '
+            r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
+            r'"Identity_1": {"name": "Identity_1"}, '
+            r'"Identity_2": {"name": "Identity_2"}, '
+            r'"Identity_3": {"name": "Identity_3"}}}', json)
+        j.write(subst)
+    return f, None
+
+
+def add_tflite_metadata(file, metadata, num_outputs):
+    # Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
+    with contextlib.suppress(ImportError):
+        # check_requirements('tflite_support')
+        from tflite_support import flatbuffers
+        from tflite_support import metadata as _metadata
+        from tflite_support import metadata_schema_py_generated as _metadata_fb
+
+        tmp_file = Path('/tmp/meta.txt')
+        with open(tmp_file, 'w') as meta_f:
+            meta_f.write(str(metadata))
+
+        model_meta = _metadata_fb.ModelMetadataT()
+        label_file = _metadata_fb.AssociatedFileT()
+        label_file.name = tmp_file.name
+        model_meta.associatedFiles = [label_file]
+
+        subgraph = _metadata_fb.SubGraphMetadataT()
+        subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
+        subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
+        model_meta.subgraphMetadata = [subgraph]
+
+        b = flatbuffers.Builder(0)
+        b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
+        metadata_buf = b.Output()
+
+        populator = _metadata.MetadataPopulator.with_model_file(file)
+        populator.load_metadata_buffer(metadata_buf)
+        populator.load_associated_files([str(tmp_file)])
+        populator.populate()
+        tmp_file.unlink()
+
+
+@smart_inference_mode()
+def run(
+        data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
+        weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=(640, 640),  # image (height, width)
+        batch_size=1,  # batch size
+        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        include=('torchscript', 'onnx'),  # include formats
+        half=False,  # FP16 half-precision export
+        inplace=False,  # set YOLOv5 Detect() inplace=True
+        keras=False,  # use Keras
+        optimize=False,  # TorchScript: optimize for mobile
+        int8=False,  # CoreML/TF INT8 quantization
+        dynamic=False,  # ONNX/TF/TensorRT: dynamic axes
+        simplify=False,  # ONNX: simplify model
+        opset=12,  # ONNX: opset version
+        verbose=False,  # TensorRT: verbose log
+        workspace=4,  # TensorRT: workspace size (GB)
+        nms=False,  # TF: add NMS to model
+        agnostic_nms=False,  # TF: add agnostic NMS to model
+        topk_per_class=100,  # TF.js NMS: topk per class to keep
+        topk_all=100,  # TF.js NMS: topk for all classes to keep
+        iou_thres=0.45,  # TF.js NMS: IoU threshold
+        conf_thres=0.25,  # TF.js NMS: confidence threshold
+):
+    t = time.time()
+    include = [x.lower() for x in include]  # to lowercase
+    fmts = tuple(export_formats()['Argument'][1:])  # --include arguments
+    flags = [x in include for x in fmts]
+    assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
+    jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags  # export booleans
+    file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)  # PyTorch weights
+
+    # Load PyTorch model
+    device = select_device(device)
+    if half:
+        assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
+        assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
+    model = attempt_load(weights, device=device, inplace=True, fuse=True)  # load FP32 model
+
+    # Checks
+    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
+    if optimize:
+        assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
+
+    # Input
+    gs = int(max(model.stride))  # grid size (max stride)
+    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
+    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection
+
+    # Update model
+    model.eval()
+    for k, m in model.named_modules():
+        if isinstance(m, Detect):
+            m.inplace = inplace
+            m.dynamic = dynamic
+            m.export = True
+
+    for _ in range(2):
+        y = model(im)  # dry runs
+    if half and not coreml:
+        im, model = im.half(), model.half()  # to FP16
+    shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
+    metadata = {'stride': int(max(model.stride)), 'names': model.names}  # model metadata
+    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
+
+    # Exports
+    f = [''] * len(fmts)  # exported filenames
+    warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning)  # suppress TracerWarning
+    if jit:  # TorchScript
+        f[0], _ = export_torchscript(model, im, file, optimize)
+    if engine:  # TensorRT required before ONNX
+        f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
+    if onnx or xml:  # OpenVINO requires ONNX
+        f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
+    if xml:  # OpenVINO
+        f[3], _ = export_openvino(file, metadata, half)
+    if coreml:  # CoreML
+        f[4], _ = export_coreml(model, im, file, int8, half)
+    if any((saved_model, pb, tflite, edgetpu, tfjs)):  # TensorFlow formats
+        assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
+        assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
+        f[5], s_model = export_saved_model(model.cpu(),
+                                           im,
+                                           file,
+                                           dynamic,
+                                           tf_nms=nms or agnostic_nms or tfjs,
+                                           agnostic_nms=agnostic_nms or tfjs,
+                                           topk_per_class=topk_per_class,
+                                           topk_all=topk_all,
+                                           iou_thres=iou_thres,
+                                           conf_thres=conf_thres,
+                                           keras=keras)
+        if pb or tfjs:  # pb prerequisite to tfjs
+            f[6], _ = export_pb(s_model, file)
+        if tflite or edgetpu:
+            f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
+            if edgetpu:
+                f[8], _ = export_edgetpu(file)
+            add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
+        if tfjs:
+            f[9], _ = export_tfjs(file, int8)
+    if paddle:  # PaddlePaddle
+        f[10], _ = export_paddle(model, im, file, metadata)
+
+    # Finish
+    f = [str(x) for x in f if x]  # filter out '' and None
+    if any(f):
+        cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel))  # type
+        det &= not seg  # segmentation models inherit from SegmentationModel(DetectionModel)
+        dir = Path('segment' if seg else 'classify' if cls else '')
+        h = '--half' if half else ''  # --half FP16 inference arg
+        s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \
+            '# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else ''
+        LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
+                    f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
+                    f"\nDetect:          python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
+                    f"\nValidate:        python {dir / 'val.py'} --weights {f[-1]} {h}"
+                    f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')  {s}"
+                    f'\nVisualize:       https://netron.app')
+    return f  # return list of exported files/dirs
+
+
+def parse_opt(known=False):
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
+    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+    parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
+    parser.add_argument('--keras', action='store_true', help='TF: use Keras')
+    parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
+    parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
+    parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
+    parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
+    parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
+    parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
+    parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
+    parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
+    parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
+    parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
+    parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
+    parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
+    parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
+    parser.add_argument(
+        '--include',
+        nargs='+',
+        default=['torchscript'],
+        help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
+    opt = parser.parse_known_args()[0] if known else parser.parse_args()
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
+        run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/hubconf.py b/yolov5_model/hubconf.py
new file mode 100644
index 0000000000000000000000000000000000000000..41af8e39d14deba8679400d02c192696bcf37544
--- /dev/null
+++ b/yolov5_model/hubconf.py
@@ -0,0 +1,169 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
+
+Usage:
+    import torch
+    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # official model
+    model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')  # from branch
+    model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')  # custom/local model
+    model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')  # local repo
+"""
+
+import torch
+
+
+def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    """Creates or loads a YOLOv5 model
+
+    Arguments:
+        name (str): model name 'yolov5s' or path 'path/to/best.pt'
+        pretrained (bool): load pretrained weights into the model
+        channels (int): number of input channels
+        classes (int): number of model classes
+        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
+        verbose (bool): print all information to screen
+        device (str, torch.device, None): device to use for model parameters
+
+    Returns:
+        YOLOv5 model
+    """
+    from pathlib import Path
+
+    from models.common import AutoShape, DetectMultiBackend
+    from models.experimental import attempt_load
+    from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
+    from utils.downloads import attempt_download
+    from utils.general import LOGGER, check_requirements, intersect_dicts, logging
+    from utils.torch_utils import select_device
+
+    if not verbose:
+        LOGGER.setLevel(logging.WARNING)
+    check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
+    name = Path(name)
+    path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name  # checkpoint path
+    try:
+        device = select_device(device)
+        if pretrained and channels == 3 and classes == 80:
+            try:
+                model = DetectMultiBackend(path, device=device, fuse=autoshape)  # detection model
+                if autoshape:
+                    if model.pt and isinstance(model.model, ClassificationModel):
+                        LOGGER.warning('WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. '
+                                       'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
+                    elif model.pt and isinstance(model.model, SegmentationModel):
+                        LOGGER.warning('WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. '
+                                       'You will not be able to run inference with this model.')
+                    else:
+                        model = AutoShape(model)  # for file/URI/PIL/cv2/np inputs and NMS
+            except Exception:
+                model = attempt_load(path, device=device, fuse=False)  # arbitrary model
+        else:
+            cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0]  # model.yaml path
+            model = DetectionModel(cfg, channels, classes)  # create model
+            if pretrained:
+                ckpt = torch.load(attempt_download(path), map_location=device)  # load
+                csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
+                csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors'])  # intersect
+                model.load_state_dict(csd, strict=False)  # load
+                if len(ckpt['model'].names) == classes:
+                    model.names = ckpt['model'].names  # set class names attribute
+        if not verbose:
+            LOGGER.setLevel(logging.INFO)  # reset to default
+        return model.to(device)
+
+    except Exception as e:
+        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
+        s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
+        raise Exception(s) from e
+
+
+def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
+    # YOLOv5 custom or local model
+    return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
+
+
+def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-nano model https://github.com/ultralytics/yolov5
+    return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-small model https://github.com/ultralytics/yolov5
+    return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-medium model https://github.com/ultralytics/yolov5
+    return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-large model https://github.com/ultralytics/yolov5
+    return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
+    return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
+    # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
+
+
+if __name__ == '__main__':
+    import argparse
+    from pathlib import Path
+
+    import numpy as np
+    from PIL import Image
+
+    from utils.general import cv2, print_args
+
+    # Argparser
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--model', type=str, default='yolov5s', help='model name')
+    opt = parser.parse_args()
+    print_args(vars(opt))
+
+    # Model
+    model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
+    # model = custom(path='path/to/model.pt')  # custom
+
+    # Images
+    imgs = [
+        'data/images/zidane.jpg',  # filename
+        Path('data/images/zidane.jpg'),  # Path
+        'https://ultralytics.com/images/zidane.jpg',  # URI
+        cv2.imread('data/images/bus.jpg')[:, :, ::-1],  # OpenCV
+        Image.open('data/images/bus.jpg'),  # PIL
+        np.zeros((320, 640, 3))]  # numpy
+
+    # Inference
+    results = model(imgs, size=320)  # batched inference
+
+    # Results
+    results.print()
+    results.save()
diff --git a/yolov5_model/models/__init__.py b/yolov5_model/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5_model/models/__pycache__/__init__.cpython-39.pyc b/yolov5_model/models/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9d45488f87d2283a41773e3f1dee76936f17b6c6
Binary files /dev/null and b/yolov5_model/models/__pycache__/__init__.cpython-39.pyc differ
diff --git a/yolov5_model/models/__pycache__/common.cpython-39.pyc b/yolov5_model/models/__pycache__/common.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..27a29f3e500eef487d8d1543ba894ec265fd7455
Binary files /dev/null and b/yolov5_model/models/__pycache__/common.cpython-39.pyc differ
diff --git a/yolov5_model/models/__pycache__/experimental.cpython-39.pyc b/yolov5_model/models/__pycache__/experimental.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ad67350c72afca5c353ce10112caf05344c14bd8
Binary files /dev/null and b/yolov5_model/models/__pycache__/experimental.cpython-39.pyc differ
diff --git a/yolov5_model/models/__pycache__/yolo.cpython-39.pyc b/yolov5_model/models/__pycache__/yolo.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d7ac027f4c0b7a0f40d465116a645ed424b83f93
Binary files /dev/null and b/yolov5_model/models/__pycache__/yolo.cpython-39.pyc differ
diff --git a/yolov5_model/models/common.py b/yolov5_model/models/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..f416ddf25eb88b292d05cd460423711839d9ed13
--- /dev/null
+++ b/yolov5_model/models/common.py
@@ -0,0 +1,867 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Common modules
+"""
+
+import ast
+import contextlib
+import json
+import math
+import platform
+import warnings
+import zipfile
+from collections import OrderedDict, namedtuple
+from copy import copy
+from pathlib import Path
+from urllib.parse import urlparse
+
+import cv2
+import numpy as np
+import pandas as pd
+import requests
+import torch
+import torch.nn as nn
+from IPython.display import display
+from PIL import Image
+from torch.cuda import amp
+
+from utils import TryExcept
+from utils.dataloaders import exif_transpose, letterbox
+from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
+                           increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy,
+                           xyxy2xywh, yaml_load)
+from utils.plots import Annotator, colors, save_one_box
+from utils.torch_utils import copy_attr, smart_inference_mode
+
+
+def autopad(k, p=None, d=1):  # kernel, padding, dilation
+    # Pad to 'same' shape outputs
+    if d > 1:
+        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
+    if p is None:
+        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
+    return p
+
+
+class Conv(nn.Module):
+    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
+    default_act = nn.SiLU()  # default activation
+
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
+        super().__init__()
+        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
+        self.bn = nn.BatchNorm2d(c2)
+        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
+
+    def forward(self, x):
+        return self.act(self.bn(self.conv(x)))
+
+    def forward_fuse(self, x):
+        return self.act(self.conv(x))
+
+
+class DWConv(Conv):
+    # Depth-wise convolution
+    def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation
+        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
+
+
+class DWConvTranspose2d(nn.ConvTranspose2d):
+    # Depth-wise transpose convolution
+    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):  # ch_in, ch_out, kernel, stride, padding, padding_out
+        super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
+
+
+class TransformerLayer(nn.Module):
+    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
+    def __init__(self, c, num_heads):
+        super().__init__()
+        self.q = nn.Linear(c, c, bias=False)
+        self.k = nn.Linear(c, c, bias=False)
+        self.v = nn.Linear(c, c, bias=False)
+        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
+        self.fc1 = nn.Linear(c, c, bias=False)
+        self.fc2 = nn.Linear(c, c, bias=False)
+
+    def forward(self, x):
+        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
+        x = self.fc2(self.fc1(x)) + x
+        return x
+
+
+class TransformerBlock(nn.Module):
+    # Vision Transformer https://arxiv.org/abs/2010.11929
+    def __init__(self, c1, c2, num_heads, num_layers):
+        super().__init__()
+        self.conv = None
+        if c1 != c2:
+            self.conv = Conv(c1, c2)
+        self.linear = nn.Linear(c2, c2)  # learnable position embedding
+        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
+        self.c2 = c2
+
+    def forward(self, x):
+        if self.conv is not None:
+            x = self.conv(x)
+        b, _, w, h = x.shape
+        p = x.flatten(2).permute(2, 0, 1)
+        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
+
+
+class Bottleneck(nn.Module):
+    # Standard bottleneck
+    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_, c2, 3, 1, g=g)
+        self.add = shortcut and c1 == c2
+
+    def forward(self, x):
+        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class BottleneckCSP(nn.Module):
+    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
+        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
+        self.cv4 = Conv(2 * c_, c2, 1, 1)
+        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
+        self.act = nn.SiLU()
+        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+    def forward(self, x):
+        y1 = self.cv3(self.m(self.cv1(x)))
+        y2 = self.cv2(x)
+        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
+
+
+class CrossConv(nn.Module):
+    # Cross Convolution Downsample
+    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
+        # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, (1, k), (1, s))
+        self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
+        self.add = shortcut and c1 == c2
+
+    def forward(self, x):
+        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class C3(nn.Module):
+    # CSP Bottleneck with 3 convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c1, c_, 1, 1)
+        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
+        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+    def forward(self, x):
+        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
+
+
+class C3x(C3):
+    # C3 module with cross-convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
+
+
+class C3TR(C3):
+    # C3 module with TransformerBlock()
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = TransformerBlock(c_, c_, 4, n)
+
+
+class C3SPP(C3):
+    # C3 module with SPP()
+    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = SPP(c_, c_, k)
+
+
+class C3Ghost(C3):
+    # C3 module with GhostBottleneck()
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)  # hidden channels
+        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
+
+
+class SPP(nn.Module):
+    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
+    def __init__(self, c1, c2, k=(5, 9, 13)):
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
+        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+
+    def forward(self, x):
+        x = self.cv1(x)
+        with warnings.catch_warnings():
+            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
+            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
+
+
+class SPPF(nn.Module):
+    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
+    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_ * 4, c2, 1, 1)
+        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
+
+    def forward(self, x):
+        x = self.cv1(x)
+        with warnings.catch_warnings():
+            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
+            y1 = self.m(x)
+            y2 = self.m(y1)
+            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
+
+
+class Focus(nn.Module):
+    # Focus wh information into c-space
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
+        super().__init__()
+        self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
+        # self.contract = Contract(gain=2)
+
+    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
+        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
+        # return self.conv(self.contract(x))
+
+
+class GhostConv(nn.Module):
+    # Ghost Convolution https://github.com/huawei-noah/ghostnet
+    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
+        super().__init__()
+        c_ = c2 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
+        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
+
+    def forward(self, x):
+        y = self.cv1(x)
+        return torch.cat((y, self.cv2(y)), 1)
+
+
+class GhostBottleneck(nn.Module):
+    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
+    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
+        super().__init__()
+        c_ = c2 // 2
+        self.conv = nn.Sequential(
+            GhostConv(c1, c_, 1, 1),  # pw
+            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
+            GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
+        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
+                                                                            act=False)) if s == 2 else nn.Identity()
+
+    def forward(self, x):
+        return self.conv(x) + self.shortcut(x)
+
+
+class Contract(nn.Module):
+    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
+    def __init__(self, gain=2):
+        super().__init__()
+        self.gain = gain
+
+    def forward(self, x):
+        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
+        s = self.gain
+        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
+        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
+        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)
+
+
+class Expand(nn.Module):
+    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
+    def __init__(self, gain=2):
+        super().__init__()
+        self.gain = gain
+
+    def forward(self, x):
+        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
+        s = self.gain
+        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
+        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
+        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)
+
+
+class Concat(nn.Module):
+    # Concatenate a list of tensors along dimension
+    def __init__(self, dimension=1):
+        super().__init__()
+        self.d = dimension
+
+    def forward(self, x):
+        return torch.cat(x, self.d)
+
+
+class DetectMultiBackend(nn.Module):
+    # YOLOv5 MultiBackend class for python inference on various backends
+    def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
+        # Usage:
+        #   PyTorch:              weights = *.pt
+        #   TorchScript:                    *.torchscript
+        #   ONNX Runtime:                   *.onnx
+        #   ONNX OpenCV DNN:                *.onnx --dnn
+        #   OpenVINO:                       *_openvino_model
+        #   CoreML:                         *.mlmodel
+        #   TensorRT:                       *.engine
+        #   TensorFlow SavedModel:          *_saved_model
+        #   TensorFlow GraphDef:            *.pb
+        #   TensorFlow Lite:                *.tflite
+        #   TensorFlow Edge TPU:            *_edgetpu.tflite
+        #   PaddlePaddle:                   *_paddle_model
+        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import
+
+        super().__init__()
+        w = str(weights[0] if isinstance(weights, list) else weights)
+        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
+        fp16 &= pt or jit or onnx or engine  # FP16
+        nhwc = coreml or saved_model or pb or tflite or edgetpu  # BHWC formats (vs torch BCWH)
+        stride = 32  # default stride
+        cuda = torch.cuda.is_available() and device.type != 'cpu'  # use CUDA
+        if not (pt or triton):
+            w = attempt_download(w)  # download if not local
+
+        if pt:  # PyTorch
+            model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
+            stride = max(int(model.stride.max()), 32)  # model stride
+            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
+            model.half() if fp16 else model.float()
+            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
+        elif jit:  # TorchScript
+            LOGGER.info(f'Loading {w} for TorchScript inference...')
+            extra_files = {'config.txt': ''}  # model metadata
+            model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
+            model.half() if fp16 else model.float()
+            if extra_files['config.txt']:  # load metadata dict
+                d = json.loads(extra_files['config.txt'],
+                               object_hook=lambda d: {int(k) if k.isdigit() else k: v
+                                                      for k, v in d.items()})
+                stride, names = int(d['stride']), d['names']
+        elif dnn:  # ONNX OpenCV DNN
+            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
+            check_requirements('opencv-python>=4.5.4')
+            net = cv2.dnn.readNetFromONNX(w)
+        elif onnx:  # ONNX Runtime
+            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
+            check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
+            import onnxruntime
+            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
+            session = onnxruntime.InferenceSession(w, providers=providers)
+            output_names = [x.name for x in session.get_outputs()]
+            meta = session.get_modelmeta().custom_metadata_map  # metadata
+            if 'stride' in meta:
+                stride, names = int(meta['stride']), eval(meta['names'])
+        elif xml:  # OpenVINO
+            LOGGER.info(f'Loading {w} for OpenVINO inference...')
+            check_requirements('openvino')  # requires openvino-dev: https://pypi.org/project/openvino-dev/
+            from openvino.runtime import Core, Layout, get_batch
+            ie = Core()
+            if not Path(w).is_file():  # if not *.xml
+                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
+            network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
+            if network.get_parameters()[0].get_layout().empty:
+                network.get_parameters()[0].set_layout(Layout('NCHW'))
+            batch_dim = get_batch(network)
+            if batch_dim.is_static:
+                batch_size = batch_dim.get_length()
+            executable_network = ie.compile_model(network, device_name='CPU')  # device_name="MYRIAD" for Intel NCS2
+            stride, names = self._load_metadata(Path(w).with_suffix('.yaml'))  # load metadata
+        elif engine:  # TensorRT
+            LOGGER.info(f'Loading {w} for TensorRT inference...')
+            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
+            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
+            if device.type == 'cpu':
+                device = torch.device('cuda:0')
+            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
+            logger = trt.Logger(trt.Logger.INFO)
+            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
+                model = runtime.deserialize_cuda_engine(f.read())
+            context = model.create_execution_context()
+            bindings = OrderedDict()
+            output_names = []
+            fp16 = False  # default updated below
+            dynamic = False
+            for i in range(model.num_bindings):
+                name = model.get_binding_name(i)
+                dtype = trt.nptype(model.get_binding_dtype(i))
+                if model.binding_is_input(i):
+                    if -1 in tuple(model.get_binding_shape(i)):  # dynamic
+                        dynamic = True
+                        context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
+                    if dtype == np.float16:
+                        fp16 = True
+                else:  # output
+                    output_names.append(name)
+                shape = tuple(context.get_binding_shape(i))
+                im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
+                bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
+            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
+            batch_size = bindings['images'].shape[0]  # if dynamic, this is instead max batch size
+        elif coreml:  # CoreML
+            LOGGER.info(f'Loading {w} for CoreML inference...')
+            import coremltools as ct
+            model = ct.models.MLModel(w)
+        elif saved_model:  # TF SavedModel
+            LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
+            import tensorflow as tf
+            keras = False  # assume TF1 saved_model
+            model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
+        elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
+            LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
+            import tensorflow as tf
+
+            def wrap_frozen_graph(gd, inputs, outputs):
+                x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=''), [])  # wrapped
+                ge = x.graph.as_graph_element
+                return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
+
+            def gd_outputs(gd):
+                name_list, input_list = [], []
+                for node in gd.node:  # tensorflow.core.framework.node_def_pb2.NodeDef
+                    name_list.append(node.name)
+                    input_list.extend(node.input)
+                return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
+
+            gd = tf.Graph().as_graph_def()  # TF GraphDef
+            with open(w, 'rb') as f:
+                gd.ParseFromString(f.read())
+            frozen_func = wrap_frozen_graph(gd, inputs='x:0', outputs=gd_outputs(gd))
+        elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
+            try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
+                from tflite_runtime.interpreter import Interpreter, load_delegate
+            except ImportError:
+                import tensorflow as tf
+                Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
+            if edgetpu:  # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
+                LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
+                delegate = {
+                    'Linux': 'libedgetpu.so.1',
+                    'Darwin': 'libedgetpu.1.dylib',
+                    'Windows': 'edgetpu.dll'}[platform.system()]
+                interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
+            else:  # TFLite
+                LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
+                interpreter = Interpreter(model_path=w)  # load TFLite model
+            interpreter.allocate_tensors()  # allocate
+            input_details = interpreter.get_input_details()  # inputs
+            output_details = interpreter.get_output_details()  # outputs
+            # load metadata
+            with contextlib.suppress(zipfile.BadZipFile):
+                with zipfile.ZipFile(w, 'r') as model:
+                    meta_file = model.namelist()[0]
+                    meta = ast.literal_eval(model.read(meta_file).decode('utf-8'))
+                    stride, names = int(meta['stride']), meta['names']
+        elif tfjs:  # TF.js
+            raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
+        elif paddle:  # PaddlePaddle
+            LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
+            check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
+            import paddle.inference as pdi
+            if not Path(w).is_file():  # if not *.pdmodel
+                w = next(Path(w).rglob('*.pdmodel'))  # get *.pdmodel file from *_paddle_model dir
+            weights = Path(w).with_suffix('.pdiparams')
+            config = pdi.Config(str(w), str(weights))
+            if cuda:
+                config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
+            predictor = pdi.create_predictor(config)
+            input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
+            output_names = predictor.get_output_names()
+        elif triton:  # NVIDIA Triton Inference Server
+            LOGGER.info(f'Using {w} as Triton Inference Server...')
+            check_requirements('tritonclient[all]')
+            from utils.triton import TritonRemoteModel
+            model = TritonRemoteModel(url=w)
+            nhwc = model.runtime.startswith('tensorflow')
+        else:
+            raise NotImplementedError(f'ERROR: {w} is not a supported format')
+
+        # class names
+        if 'names' not in locals():
+            names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
+        if names[0] == 'n01440764' and len(names) == 1000:  # ImageNet
+            names = yaml_load(ROOT / 'data/ImageNet.yaml')['names']  # human-readable names
+
+        self.__dict__.update(locals())  # assign all variables to self
+
+    def forward(self, im, augment=False, visualize=False):
+        # YOLOv5 MultiBackend inference
+        b, ch, h, w = im.shape  # batch, channel, height, width
+        if self.fp16 and im.dtype != torch.float16:
+            im = im.half()  # to FP16
+        if self.nhwc:
+            im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)
+
+        if self.pt:  # PyTorch
+            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
+        elif self.jit:  # TorchScript
+            y = self.model(im)
+        elif self.dnn:  # ONNX OpenCV DNN
+            im = im.cpu().numpy()  # torch to numpy
+            self.net.setInput(im)
+            y = self.net.forward()
+        elif self.onnx:  # ONNX Runtime
+            im = im.cpu().numpy()  # torch to numpy
+            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
+        elif self.xml:  # OpenVINO
+            im = im.cpu().numpy()  # FP32
+            y = list(self.executable_network([im]).values())
+        elif self.engine:  # TensorRT
+            if self.dynamic and im.shape != self.bindings['images'].shape:
+                i = self.model.get_binding_index('images')
+                self.context.set_binding_shape(i, im.shape)  # reshape if dynamic
+                self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
+                for name in self.output_names:
+                    i = self.model.get_binding_index(name)
+                    self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
+            s = self.bindings['images'].shape
+            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
+            self.binding_addrs['images'] = int(im.data_ptr())
+            self.context.execute_v2(list(self.binding_addrs.values()))
+            y = [self.bindings[x].data for x in sorted(self.output_names)]
+        elif self.coreml:  # CoreML
+            im = im.cpu().numpy()
+            im = Image.fromarray((im[0] * 255).astype('uint8'))
+            # im = im.resize((192, 320), Image.ANTIALIAS)
+            y = self.model.predict({'image': im})  # coordinates are xywh normalized
+            if 'confidence' in y:
+                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
+                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
+                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
+            else:
+                y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)
+        elif self.paddle:  # PaddlePaddle
+            im = im.cpu().numpy().astype(np.float32)
+            self.input_handle.copy_from_cpu(im)
+            self.predictor.run()
+            y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
+        elif self.triton:  # NVIDIA Triton Inference Server
+            y = self.model(im)
+        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
+            im = im.cpu().numpy()
+            if self.saved_model:  # SavedModel
+                y = self.model(im, training=False) if self.keras else self.model(im)
+            elif self.pb:  # GraphDef
+                y = self.frozen_func(x=self.tf.constant(im))
+            else:  # Lite or Edge TPU
+                input = self.input_details[0]
+                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
+                if int8:
+                    scale, zero_point = input['quantization']
+                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
+                self.interpreter.set_tensor(input['index'], im)
+                self.interpreter.invoke()
+                y = []
+                for output in self.output_details:
+                    x = self.interpreter.get_tensor(output['index'])
+                    if int8:
+                        scale, zero_point = output['quantization']
+                        x = (x.astype(np.float32) - zero_point) * scale  # re-scale
+                    y.append(x)
+            y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
+            y[0][..., :4] *= [w, h, w, h]  # xywh normalized to pixels
+
+        if isinstance(y, (list, tuple)):
+            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
+        else:
+            return self.from_numpy(y)
+
+    def from_numpy(self, x):
+        return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
+
+    def warmup(self, imgsz=(1, 3, 640, 640)):
+        # Warmup model by running inference once
+        warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
+        if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
+            im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input
+            for _ in range(2 if self.jit else 1):  #
+                self.forward(im)  # warmup
+
+    @staticmethod
+    def _model_type(p='path/to/model.pt'):
+        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
+        # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
+        from export import export_formats
+        from utils.downloads import is_url
+        sf = list(export_formats().Suffix)  # export suffixes
+        if not is_url(p, check=False):
+            check_suffix(p, sf)  # checks
+        url = urlparse(p)  # if url may be Triton inference server
+        types = [s in Path(p).name for s in sf]
+        types[8] &= not types[9]  # tflite &= not edgetpu
+        triton = not any(types) and all([any(s in url.scheme for s in ['http', 'grpc']), url.netloc])
+        return types + [triton]
+
+    @staticmethod
+    def _load_metadata(f=Path('path/to/meta.yaml')):
+        # Load metadata from meta.yaml if it exists
+        if f.exists():
+            d = yaml_load(f)
+            return d['stride'], d['names']  # assign stride, names
+        return None, None
+
+
+class AutoShape(nn.Module):
+    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
+    conf = 0.25  # NMS confidence threshold
+    iou = 0.45  # NMS IoU threshold
+    agnostic = False  # NMS class-agnostic
+    multi_label = False  # NMS multiple labels per box
+    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
+    max_det = 1000  # maximum number of detections per image
+    amp = False  # Automatic Mixed Precision (AMP) inference
+
+    def __init__(self, model, verbose=True):
+        super().__init__()
+        if verbose:
+            LOGGER.info('Adding AutoShape... ')
+        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
+        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
+        self.pt = not self.dmb or model.pt  # PyTorch model
+        self.model = model.eval()
+        if self.pt:
+            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
+            m.inplace = False  # Detect.inplace=False for safe multithread inference
+            m.export = True  # do not output loss values
+
+    def _apply(self, fn):
+        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
+        self = super()._apply(fn)
+        if self.pt:
+            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
+            m.stride = fn(m.stride)
+            m.grid = list(map(fn, m.grid))
+            if isinstance(m.anchor_grid, list):
+                m.anchor_grid = list(map(fn, m.anchor_grid))
+        return self
+
+    @smart_inference_mode()
+    def forward(self, ims, size=640, augment=False, profile=False):
+        # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
+        #   file:        ims = 'data/images/zidane.jpg'  # str or PosixPath
+        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
+        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
+        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
+        #   numpy:           = np.zeros((640,1280,3))  # HWC
+        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
+        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images
+
+        dt = (Profile(), Profile(), Profile())
+        with dt[0]:
+            if isinstance(size, int):  # expand
+                size = (size, size)
+            p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device)  # param
+            autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
+            if isinstance(ims, torch.Tensor):  # torch
+                with amp.autocast(autocast):
+                    return self.model(ims.to(p.device).type_as(p), augment=augment)  # inference
+
+            # Pre-process
+            n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims])  # number, list of images
+            shape0, shape1, files = [], [], []  # image and inference shapes, filenames
+            for i, im in enumerate(ims):
+                f = f'image{i}'  # filename
+                if isinstance(im, (str, Path)):  # filename or uri
+                    im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
+                    im = np.asarray(exif_transpose(im))
+                elif isinstance(im, Image.Image):  # PIL Image
+                    im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
+                files.append(Path(f).with_suffix('.jpg').name)
+                if im.shape[0] < 5:  # image in CHW
+                    im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
+                im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)  # enforce 3ch input
+                s = im.shape[:2]  # HWC
+                shape0.append(s)  # image shape
+                g = max(size) / max(s)  # gain
+                shape1.append([int(y * g) for y in s])
+                ims[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
+            shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)]  # inf shape
+            x = [letterbox(im, shape1, auto=False)[0] for im in ims]  # pad
+            x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW
+            x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32
+
+        with amp.autocast(autocast):
+            # Inference
+            with dt[1]:
+                y = self.model(x, augment=augment)  # forward
+
+            # Post-process
+            with dt[2]:
+                y = non_max_suppression(y if self.dmb else y[0],
+                                        self.conf,
+                                        self.iou,
+                                        self.classes,
+                                        self.agnostic,
+                                        self.multi_label,
+                                        max_det=self.max_det)  # NMS
+                for i in range(n):
+                    scale_boxes(shape1, y[i][:, :4], shape0[i])
+
+            return Detections(ims, y, files, dt, self.names, x.shape)
+
+
+class Detections:
+    # YOLOv5 detections class for inference results
+    def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
+        super().__init__()
+        d = pred[0].device  # device
+        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims]  # normalizations
+        self.ims = ims  # list of images as numpy arrays
+        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
+        self.names = names  # class names
+        self.files = files  # image filenames
+        self.times = times  # profiling times
+        self.xyxy = pred  # xyxy pixels
+        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
+        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
+        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
+        self.n = len(self.pred)  # number of images (batch size)
+        self.t = tuple(x.t / self.n * 1E3 for x in times)  # timestamps (ms)
+        self.s = tuple(shape)  # inference BCHW shape
+
+    def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
+        s, crops = '', []
+        for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
+            s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
+            if pred.shape[0]:
+                for c in pred[:, -1].unique():
+                    n = (pred[:, -1] == c).sum()  # detections per class
+                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
+                s = s.rstrip(', ')
+                if show or save or render or crop:
+                    annotator = Annotator(im, example=str(self.names))
+                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
+                        label = f'{self.names[int(cls)]} {conf:.2f}'
+                        if crop:
+                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
+                            crops.append({
+                                'box': box,
+                                'conf': conf,
+                                'cls': cls,
+                                'label': label,
+                                'im': save_one_box(box, im, file=file, save=save)})
+                        else:  # all others
+                            annotator.box_label(box, label if labels else '', color=colors(cls))
+                    im = annotator.im
+            else:
+                s += '(no detections)'
+
+            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
+            if show:
+                display(im) if is_notebook() else im.show(self.files[i])
+            if save:
+                f = self.files[i]
+                im.save(save_dir / f)  # save
+                if i == self.n - 1:
+                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
+            if render:
+                self.ims[i] = np.asarray(im)
+        if pprint:
+            s = s.lstrip('\n')
+            return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
+        if crop:
+            if save:
+                LOGGER.info(f'Saved results to {save_dir}\n')
+            return crops
+
+    @TryExcept('Showing images is not supported in this environment')
+    def show(self, labels=True):
+        self._run(show=True, labels=labels)  # show results
+
+    def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
+        save_dir = increment_path(save_dir, exist_ok, mkdir=True)  # increment save_dir
+        self._run(save=True, labels=labels, save_dir=save_dir)  # save results
+
+    def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
+        save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
+        return self._run(crop=True, save=save, save_dir=save_dir)  # crop results
+
+    def render(self, labels=True):
+        self._run(render=True, labels=labels)  # render results
+        return self.ims
+
+    def pandas(self):
+        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
+        new = copy(self)  # return copy
+        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
+        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
+        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
+            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
+            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
+        return new
+
+    def tolist(self):
+        # return a list of Detections objects, i.e. 'for result in results.tolist():'
+        r = range(self.n)  # iterable
+        x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
+        # for d in x:
+        #    for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
+        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
+        return x
+
+    def print(self):
+        LOGGER.info(self.__str__())
+
+    def __len__(self):  # override len(results)
+        return self.n
+
+    def __str__(self):  # override print(results)
+        return self._run(pprint=True)  # print results
+
+    def __repr__(self):
+        return f'YOLOv5 {self.__class__} instance\n' + self.__str__()
+
+
+class Proto(nn.Module):
+    # YOLOv5 mask Proto module for segmentation models
+    def __init__(self, c1, c_=256, c2=32):  # ch_in, number of protos, number of masks
+        super().__init__()
+        self.cv1 = Conv(c1, c_, k=3)
+        self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
+        self.cv2 = Conv(c_, c_, k=3)
+        self.cv3 = Conv(c_, c2)
+
+    def forward(self, x):
+        return self.cv3(self.cv2(self.upsample(self.cv1(x))))
+
+
+class Classify(nn.Module):
+    # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
+    def __init__(self,
+                 c1,
+                 c2,
+                 k=1,
+                 s=1,
+                 p=None,
+                 g=1,
+                 dropout_p=0.0):  # ch_in, ch_out, kernel, stride, padding, groups, dropout probability
+        super().__init__()
+        c_ = 1280  # efficientnet_b0 size
+        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
+        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
+        self.drop = nn.Dropout(p=dropout_p, inplace=True)
+        self.linear = nn.Linear(c_, c2)  # to x(b,c2)
+
+    def forward(self, x):
+        if isinstance(x, list):
+            x = torch.cat(x, 1)
+        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
diff --git a/yolov5_model/models/experimental.py b/yolov5_model/models/experimental.py
new file mode 100644
index 0000000000000000000000000000000000000000..02d35b9ebd11d3407d64ae436142aca6100c9084
--- /dev/null
+++ b/yolov5_model/models/experimental.py
@@ -0,0 +1,111 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Experimental modules
+"""
+import math
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+from utils.downloads import attempt_download
+
+
+class Sum(nn.Module):
+    # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+    def __init__(self, n, weight=False):  # n: number of inputs
+        super().__init__()
+        self.weight = weight  # apply weights boolean
+        self.iter = range(n - 1)  # iter object
+        if weight:
+            self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True)  # layer weights
+
+    def forward(self, x):
+        y = x[0]  # no weight
+        if self.weight:
+            w = torch.sigmoid(self.w) * 2
+            for i in self.iter:
+                y = y + x[i + 1] * w[i]
+        else:
+            for i in self.iter:
+                y = y + x[i + 1]
+        return y
+
+
+class MixConv2d(nn.Module):
+    # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
+    def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):  # ch_in, ch_out, kernel, stride, ch_strategy
+        super().__init__()
+        n = len(k)  # number of convolutions
+        if equal_ch:  # equal c_ per group
+            i = torch.linspace(0, n - 1E-6, c2).floor()  # c2 indices
+            c_ = [(i == g).sum() for g in range(n)]  # intermediate channels
+        else:  # equal weight.numel() per group
+            b = [c2] + [0] * n
+            a = np.eye(n + 1, n, k=-1)
+            a -= np.roll(a, 1, axis=1)
+            a *= np.array(k) ** 2
+            a[0] = 1
+            c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()  # solve for equal weight indices, ax = b
+
+        self.m = nn.ModuleList([
+            nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
+        self.bn = nn.BatchNorm2d(c2)
+        self.act = nn.SiLU()
+
+    def forward(self, x):
+        return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
+
+
+class Ensemble(nn.ModuleList):
+    # Ensemble of models
+    def __init__(self):
+        super().__init__()
+
+    def forward(self, x, augment=False, profile=False, visualize=False):
+        y = [module(x, augment, profile, visualize)[0] for module in self]
+        # y = torch.stack(y).max(0)[0]  # max ensemble
+        # y = torch.stack(y).mean(0)  # mean ensemble
+        y = torch.cat(y, 1)  # nms ensemble
+        return y, None  # inference, train output
+
+
+def attempt_load(weights, device=None, inplace=True, fuse=True):
+    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
+    from models.yolo import Detect, Model
+
+    model = Ensemble()
+    for w in weights if isinstance(weights, list) else [weights]:
+        ckpt = torch.load(attempt_download(w), map_location='cpu')  # load
+        ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model
+
+        # Model compatibility updates
+        if not hasattr(ckpt, 'stride'):
+            ckpt.stride = torch.tensor([32.])
+        if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
+            ckpt.names = dict(enumerate(ckpt.names))  # convert to dict
+
+        model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval())  # model in eval mode
+
+    # Module compatibility updates
+    for m in model.modules():
+        t = type(m)
+        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
+            m.inplace = inplace  # torch 1.7.0 compatibility
+            if t is Detect and not isinstance(m.anchor_grid, list):
+                delattr(m, 'anchor_grid')
+                setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
+        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
+            m.recompute_scale_factor = None  # torch 1.11.0 compatibility
+
+    # Return model
+    if len(model) == 1:
+        return model[-1]
+
+    # Return detection ensemble
+    print(f'Ensemble created with {weights}\n')
+    for k in 'names', 'nc', 'yaml':
+        setattr(model, k, getattr(model[0], k))
+    model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride  # max stride
+    assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
+    return model
diff --git a/yolov5_model/models/hub/anchors.yaml b/yolov5_model/models/hub/anchors.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e4d7beb06e07f295eaf58b1ebb2430a67997d2d4
--- /dev/null
+++ b/yolov5_model/models/hub/anchors.yaml
@@ -0,0 +1,59 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Default anchors for COCO data
+
+
+# P5 -------------------------------------------------------------------------------------------------------------------
+# P5-640:
+anchors_p5_640:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+
+# P6 -------------------------------------------------------------------------------------------------------------------
+# P6-640:  thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11,  21,19,  17,41,  43,32,  39,70,  86,64,  65,131,  134,130,  120,265,  282,180,  247,354,  512,387
+anchors_p6_640:
+  - [9,11,  21,19,  17,41]  # P3/8
+  - [43,32,  39,70,  86,64]  # P4/16
+  - [65,131,  134,130,  120,265]  # P5/32
+  - [282,180,  247,354,  512,387]  # P6/64
+
+# P6-1280:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27,  44,40,  38,94,  96,68,  86,152,  180,137,  140,301,  303,264,  238,542,  436,615,  739,380,  925,792
+anchors_p6_1280:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# P6-1920:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41,  67,59,  57,141,  144,103,  129,227,  270,205,  209,452,  455,396,  358,812,  653,922,  1109,570,  1387,1187
+anchors_p6_1920:
+  - [28,41,  67,59,  57,141]  # P3/8
+  - [144,103,  129,227,  270,205]  # P4/16
+  - [209,452,  455,396,  358,812]  # P5/32
+  - [653,922,  1109,570,  1387,1187]  # P6/64
+
+
+# P7 -------------------------------------------------------------------------------------------------------------------
+# P7-640:  thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11,  13,30,  29,20,  30,46,  61,38,  39,92,  78,80,  146,66,  79,163,  149,150,  321,143,  157,303,  257,402,  359,290,  524,372
+anchors_p7_640:
+  - [11,11,  13,30,  29,20]  # P3/8
+  - [30,46,  61,38,  39,92]  # P4/16
+  - [78,80,  146,66,  79,163]  # P5/32
+  - [149,150,  321,143,  157,303]  # P6/64
+  - [257,402,  359,290,  524,372]  # P7/128
+
+# P7-1280:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22,  54,36,  32,77,  70,83,  138,71,  75,173,  165,159,  148,334,  375,151,  334,317,  251,626,  499,474,  750,326,  534,814,  1079,818
+anchors_p7_1280:
+  - [19,22,  54,36,  32,77]  # P3/8
+  - [70,83,  138,71,  75,173]  # P4/16
+  - [165,159,  148,334,  375,151]  # P5/32
+  - [334,317,  251,626,  499,474]  # P6/64
+  - [750,326,  534,814,  1079,818]  # P7/128
+
+# P7-1920:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34,  81,55,  47,115,  105,124,  207,107,  113,259,  247,238,  222,500,  563,227,  501,476,  376,939,  749,711,  1126,489,  801,1222,  1618,1227
+anchors_p7_1920:
+  - [29,34,  81,55,  47,115]  # P3/8
+  - [105,124,  207,107,  113,259]  # P4/16
+  - [247,238,  222,500,  563,227]  # P5/32
+  - [501,476,  376,939,  749,711]  # P6/64
+  - [1126,489,  801,1222,  1618,1227]  # P7/128
diff --git a/yolov5_model/models/hub/yolov3-spp.yaml b/yolov5_model/models/hub/yolov3-spp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c66982158ce82d4e4ed7241c469b6f0166f0db49
--- /dev/null
+++ b/yolov5_model/models/hub/yolov3-spp.yaml
@@ -0,0 +1,51 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# darknet53 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [32, 3, 1]],  # 0
+   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
+   [-1, 1, Bottleneck, [64]],
+   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
+   [-1, 2, Bottleneck, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 5-P3/8
+   [-1, 8, Bottleneck, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 7-P4/16
+   [-1, 8, Bottleneck, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P5/32
+   [-1, 4, Bottleneck, [1024]],  # 10
+  ]
+
+# YOLOv3-SPP head
+head:
+  [[-1, 1, Bottleneck, [1024, False]],
+   [-1, 1, SPP, [512, [5, 9, 13]]],
+   [-1, 1, Conv, [1024, 3, 1]],
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, Conv, [1024, 3, 1]],  # 15 (P5/32-large)
+
+   [-2, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, Conv, [512, 3, 1]],  # 22 (P4/16-medium)
+
+   [-2, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P3
+   [-1, 1, Bottleneck, [256, False]],
+   [-1, 2, Bottleneck, [256, False]],  # 27 (P3/8-small)
+
+   [[27, 22, 15], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov3-tiny.yaml b/yolov5_model/models/hub/yolov3-tiny.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b28b443152485e39dcf690d18c403780c898bfab
--- /dev/null
+++ b/yolov5_model/models/hub/yolov3-tiny.yaml
@@ -0,0 +1,41 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,14, 23,27, 37,58]  # P4/16
+  - [81,82, 135,169, 344,319]  # P5/32
+
+# YOLOv3-tiny backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [16, 3, 1]],  # 0
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2
+   [-1, 1, Conv, [32, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4
+   [-1, 1, Conv, [64, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8
+   [-1, 1, Conv, [128, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16
+   [-1, 1, Conv, [256, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32
+   [-1, 1, Conv, [512, 3, 1]],
+   [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]],  # 11
+   [-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12
+  ]
+
+# YOLOv3-tiny head
+head:
+  [[-1, 1, Conv, [1024, 3, 1]],
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)
+
+   [-2, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)
+
+   [[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov3.yaml b/yolov5_model/models/hub/yolov3.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d1ef91290a8d261ccaf3a9663802e78b6b4e7542
--- /dev/null
+++ b/yolov5_model/models/hub/yolov3.yaml
@@ -0,0 +1,51 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# darknet53 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [32, 3, 1]],  # 0
+   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
+   [-1, 1, Bottleneck, [64]],
+   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
+   [-1, 2, Bottleneck, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 5-P3/8
+   [-1, 8, Bottleneck, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 7-P4/16
+   [-1, 8, Bottleneck, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P5/32
+   [-1, 4, Bottleneck, [1024]],  # 10
+  ]
+
+# YOLOv3 head
+head:
+  [[-1, 1, Bottleneck, [1024, False]],
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, Conv, [1024, 3, 1]],
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, Conv, [1024, 3, 1]],  # 15 (P5/32-large)
+
+   [-2, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, Conv, [512, 3, 1]],  # 22 (P4/16-medium)
+
+   [-2, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P3
+   [-1, 1, Bottleneck, [256, False]],
+   [-1, 2, Bottleneck, [256, False]],  # 27 (P3/8-small)
+
+   [[27, 22, 15], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5-bifpn.yaml b/yolov5_model/models/hub/yolov5-bifpn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..504815f5cfa03329618c4a1801f16ce68ec666e0
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5-bifpn.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 BiFPN head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14, 6], 1, Concat, [1]],  # cat P4 <--- BiFPN change
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5-fpn.yaml b/yolov5_model/models/hub/yolov5-fpn.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a23e9c6fbf9f7f00c9e7f2a24bc8513a9d5717ea
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5-fpn.yaml
@@ -0,0 +1,42 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 FPN head
+head:
+  [[-1, 3, C3, [1024, False]],  # 10 (P5/32-large)
+
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 3, C3, [512, False]],  # 14 (P4/16-medium)
+
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)
+
+   [[18, 14, 10], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5-p2.yaml b/yolov5_model/models/hub/yolov5-p2.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..554117dda59aca4a016b2ff42851d39cdc34f714
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5-p2.yaml
@@ -0,0 +1,54 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 2], 1, Concat, [1]],  # cat backbone P2
+   [-1, 1, C3, [128, False]],  # 21 (P2/4-xsmall)
+
+   [-1, 1, Conv, [128, 3, 2]],
+   [[-1, 18], 1, Concat, [1]],  # cat head P3
+   [-1, 3, C3, [256, False]],  # 24 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 27 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 30 (P5/32-large)
+
+   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(P2, P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5-p34.yaml b/yolov5_model/models/hub/yolov5-p34.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dbf0f850083ebf546ae7fc367be029297c174da1
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5-p34.yaml
@@ -0,0 +1,41 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ],  # 0-P1/2
+    [ -1, 1, Conv, [ 128, 3, 2 ] ],  # 1-P2/4
+    [ -1, 3, C3, [ 128 ] ],
+    [ -1, 1, Conv, [ 256, 3, 2 ] ],  # 3-P3/8
+    [ -1, 6, C3, [ 256 ] ],
+    [ -1, 1, Conv, [ 512, 3, 2 ] ],  # 5-P4/16
+    [ -1, 9, C3, [ 512 ] ],
+    [ -1, 1, Conv, [ 1024, 3, 2 ] ],  # 7-P5/32
+    [ -1, 3, C3, [ 1024 ] ],
+    [ -1, 1, SPPF, [ 1024, 5 ] ],  # 9
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4) outputs
+head:
+  [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+    [ [ -1, 6 ], 1, Concat, [ 1 ] ],  # cat backbone P4
+    [ -1, 3, C3, [ 512, False ] ],  # 13
+
+    [ -1, 1, Conv, [ 256, 1, 1 ] ],
+    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+    [ [ -1, 4 ], 1, Concat, [ 1 ] ],  # cat backbone P3
+    [ -1, 3, C3, [ 256, False ] ],  # 17 (P3/8-small)
+
+    [ -1, 1, Conv, [ 256, 3, 2 ] ],
+    [ [ -1, 14 ], 1, Concat, [ 1 ] ],  # cat head P4
+    [ -1, 3, C3, [ 512, False ] ],  # 20 (P4/16-medium)
+
+    [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ],  # Detect(P3, P4)
+  ]
diff --git a/yolov5_model/models/hub/yolov5-p6.yaml b/yolov5_model/models/hub/yolov5-p6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a17202f22044c0546bd9373ea58bd21c06b1d334
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5-p6.yaml
@@ -0,0 +1,56 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5_model/models/hub/yolov5-p7.yaml b/yolov5_model/models/hub/yolov5-p7.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..edd7d13a34a6c40e94d900ecce8ca64ae11bf5a1
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5-p7.yaml
@@ -0,0 +1,67 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, Conv, [1280, 3, 2]],  # 11-P7/128
+   [-1, 3, C3, [1280]],
+   [-1, 1, SPPF, [1280, 5]],  # 13
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
+head:
+  [[-1, 1, Conv, [1024, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 10], 1, Concat, [1]],  # cat backbone P6
+   [-1, 3, C3, [1024, False]],  # 17
+
+   [-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 21
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 25
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 29 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 26], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 32 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 22], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 35 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 18], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 38 (P6/64-xlarge)
+
+   [-1, 1, Conv, [1024, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P7
+   [-1, 3, C3, [1280, False]],  # 41 (P7/128-xxlarge)
+
+   [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6, P7)
+  ]
diff --git a/yolov5_model/models/hub/yolov5-panet.yaml b/yolov5_model/models/hub/yolov5-panet.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ccfbf900691c5738b4705d2ce7944171b6152c98
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5-panet.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 PANet head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5l6.yaml b/yolov5_model/models/hub/yolov5l6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..632c2cb699e3cf261da462ec7dd20c0ffb7aaad3
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5l6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5_model/models/hub/yolov5m6.yaml b/yolov5_model/models/hub/yolov5m6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ecc53fd68ba6421b4fe63d6693b6563ecaa0e981
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5m6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.67  # model depth multiple
+width_multiple: 0.75  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5_model/models/hub/yolov5n6.yaml b/yolov5_model/models/hub/yolov5n6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0c0c71d32551789d57e5f44fd936636ecb4e3414
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5n6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.25  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5_model/models/hub/yolov5s-LeakyReLU.yaml b/yolov5_model/models/hub/yolov5s-LeakyReLU.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3a179bf3311c6f46add3f6fc1b9fcde9ba7ffed7
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5s-LeakyReLU.yaml
@@ -0,0 +1,49 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+activation: nn.LeakyReLU(0.1)  # <----- Conv() activation used throughout entire YOLOv5 model
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5s-ghost.yaml b/yolov5_model/models/hub/yolov5s-ghost.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ff9519c3f1aa354f512ddab8b23e861d0f3de6c6
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5s-ghost.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, GhostConv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3Ghost, [128]],
+   [-1, 1, GhostConv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3Ghost, [256]],
+   [-1, 1, GhostConv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3Ghost, [512]],
+   [-1, 1, GhostConv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3Ghost, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, GhostConv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3Ghost, [512, False]],  # 13
+
+   [-1, 1, GhostConv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3Ghost, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, GhostConv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3Ghost, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, GhostConv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3Ghost, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5s-transformer.yaml b/yolov5_model/models/hub/yolov5s-transformer.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..100d7c447527f1116e0edb3e1c096904fe3302f1
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5s-transformer.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3TR, [1024]],  # 9 <--- C3TR() Transformer module
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/hub/yolov5s6.yaml b/yolov5_model/models/hub/yolov5s6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a28fb559482b25a41531517a68f08253f08edb0f
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5s6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5_model/models/hub/yolov5x6.yaml b/yolov5_model/models/hub/yolov5x6.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ba795c4aad319b94db0fb4fd6961e9ef0cac207a
--- /dev/null
+++ b/yolov5_model/models/hub/yolov5x6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.33  # model depth multiple
+width_multiple: 1.25  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/yolov5_model/models/segment/yolov5l-seg.yaml b/yolov5_model/models/segment/yolov5l-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4782de11dd2d3940b9a6e977c89ad0da4e5fe05f
--- /dev/null
+++ b/yolov5_model/models/segment/yolov5l-seg.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/segment/yolov5m-seg.yaml b/yolov5_model/models/segment/yolov5m-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..07ec25ba264db4542aa9baa3e22e077260d6f6e8
--- /dev/null
+++ b/yolov5_model/models/segment/yolov5m-seg.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.67  # model depth multiple
+width_multiple: 0.75  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/segment/yolov5n-seg.yaml b/yolov5_model/models/segment/yolov5n-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c28225ab4a506d2f34b0074ee7f19d6770708934
--- /dev/null
+++ b/yolov5_model/models/segment/yolov5n-seg.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.25  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/segment/yolov5s-seg.yaml b/yolov5_model/models/segment/yolov5s-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a827814e1399865e5cdd48435131315cce23f2e1
--- /dev/null
+++ b/yolov5_model/models/segment/yolov5s-seg.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.5  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/segment/yolov5x-seg.yaml b/yolov5_model/models/segment/yolov5x-seg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5d0c4524a99c62bc3eef237338439ea6e1d0b0cf
--- /dev/null
+++ b/yolov5_model/models/segment/yolov5x-seg.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.33  # model depth multiple
+width_multiple: 1.25  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/tf.py b/yolov5_model/models/tf.py
new file mode 100644
index 0000000000000000000000000000000000000000..8290cf2e57f5a520aab67ae50f003e8dcc7ca7e6
--- /dev/null
+++ b/yolov5_model/models/tf.py
@@ -0,0 +1,608 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+TensorFlow, Keras and TFLite versions of YOLOv5
+Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
+
+Usage:
+    $ python models/tf.py --weights yolov5s.pt
+
+Export:
+    $ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
+"""
+
+import argparse
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd())  # relative
+
+import numpy as np
+import tensorflow as tf
+import torch
+import torch.nn as nn
+from tensorflow import keras
+
+from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
+                           DWConvTranspose2d, Focus, autopad)
+from models.experimental import MixConv2d, attempt_load
+from models.yolo import Detect, Segment
+from utils.activations import SiLU
+from utils.general import LOGGER, make_divisible, print_args
+
+
+class TFBN(keras.layers.Layer):
+    # TensorFlow BatchNormalization wrapper
+    def __init__(self, w=None):
+        super().__init__()
+        self.bn = keras.layers.BatchNormalization(
+            beta_initializer=keras.initializers.Constant(w.bias.numpy()),
+            gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
+            moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
+            moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
+            epsilon=w.eps)
+
+    def call(self, inputs):
+        return self.bn(inputs)
+
+
+class TFPad(keras.layers.Layer):
+    # Pad inputs in spatial dimensions 1 and 2
+    def __init__(self, pad):
+        super().__init__()
+        if isinstance(pad, int):
+            self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
+        else:  # tuple/list
+            self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
+
+    def call(self, inputs):
+        return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
+
+
+class TFConv(keras.layers.Layer):
+    # Standard convolution
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+        # ch_in, ch_out, weights, kernel, stride, padding, groups
+        super().__init__()
+        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+        # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
+        # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
+        conv = keras.layers.Conv2D(
+            filters=c2,
+            kernel_size=k,
+            strides=s,
+            padding='SAME' if s == 1 else 'VALID',
+            use_bias=not hasattr(w, 'bn'),
+            kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
+            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
+        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
+        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
+        self.act = activations(w.act) if act else tf.identity
+
+    def call(self, inputs):
+        return self.act(self.bn(self.conv(inputs)))
+
+
+class TFDWConv(keras.layers.Layer):
+    # Depthwise convolution
+    def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
+        # ch_in, ch_out, weights, kernel, stride, padding, groups
+        super().__init__()
+        assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
+        conv = keras.layers.DepthwiseConv2D(
+            kernel_size=k,
+            depth_multiplier=c2 // c1,
+            strides=s,
+            padding='SAME' if s == 1 else 'VALID',
+            use_bias=not hasattr(w, 'bn'),
+            depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
+            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
+        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
+        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
+        self.act = activations(w.act) if act else tf.identity
+
+    def call(self, inputs):
+        return self.act(self.bn(self.conv(inputs)))
+
+
+class TFDWConvTranspose2d(keras.layers.Layer):
+    # Depthwise ConvTranspose2d
+    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
+        # ch_in, ch_out, weights, kernel, stride, padding, groups
+        super().__init__()
+        assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
+        assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
+        weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
+        self.c1 = c1
+        self.conv = [
+            keras.layers.Conv2DTranspose(filters=1,
+                                         kernel_size=k,
+                                         strides=s,
+                                         padding='VALID',
+                                         output_padding=p2,
+                                         use_bias=True,
+                                         kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
+                                         bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
+
+    def call(self, inputs):
+        return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
+
+
+class TFFocus(keras.layers.Layer):
+    # Focus wh information into c-space
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+        # ch_in, ch_out, kernel, stride, padding, groups
+        super().__init__()
+        self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
+
+    def call(self, inputs):  # x(b,w,h,c) -> y(b,w/2,h/2,4c)
+        # inputs = inputs / 255  # normalize 0-255 to 0-1
+        inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
+        return self.conv(tf.concat(inputs, 3))
+
+
+class TFBottleneck(keras.layers.Layer):
+    # Standard bottleneck
+    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):  # ch_in, ch_out, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
+        self.add = shortcut and c1 == c2
+
+    def call(self, inputs):
+        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
+
+
+class TFCrossConv(keras.layers.Layer):
+    # Cross Convolution
+    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
+        self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
+        self.add = shortcut and c1 == c2
+
+    def call(self, inputs):
+        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
+
+
+class TFConv2d(keras.layers.Layer):
+    # Substitution for PyTorch nn.Conv2D
+    def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
+        super().__init__()
+        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+        self.conv = keras.layers.Conv2D(filters=c2,
+                                        kernel_size=k,
+                                        strides=s,
+                                        padding='VALID',
+                                        use_bias=bias,
+                                        kernel_initializer=keras.initializers.Constant(
+                                            w.weight.permute(2, 3, 1, 0).numpy()),
+                                        bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
+
+    def call(self, inputs):
+        return self.conv(inputs)
+
+
+class TFBottleneckCSP(keras.layers.Layer):
+    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
+        self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
+        self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
+        self.bn = TFBN(w.bn)
+        self.act = lambda x: keras.activations.swish(x)
+        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+    def call(self, inputs):
+        y1 = self.cv3(self.m(self.cv1(inputs)))
+        y2 = self.cv2(inputs)
+        return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
+
+
+class TFC3(keras.layers.Layer):
+    # CSP Bottleneck with 3 convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
+        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
+        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+    def call(self, inputs):
+        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
+
+
+class TFC3x(keras.layers.Layer):
+    # 3 module with cross-convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
+        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
+        self.m = keras.Sequential([
+            TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
+
+    def call(self, inputs):
+        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
+
+
+class TFSPP(keras.layers.Layer):
+    # Spatial pyramid pooling layer used in YOLOv3-SPP
+    def __init__(self, c1, c2, k=(5, 9, 13), w=None):
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
+        self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
+
+    def call(self, inputs):
+        x = self.cv1(inputs)
+        return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
+
+
+class TFSPPF(keras.layers.Layer):
+    # Spatial pyramid pooling-Fast layer
+    def __init__(self, c1, c2, k=5, w=None):
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
+        self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
+
+    def call(self, inputs):
+        x = self.cv1(inputs)
+        y1 = self.m(x)
+        y2 = self.m(y1)
+        return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
+
+
+class TFDetect(keras.layers.Layer):
+    # TF YOLOv5 Detect layer
+    def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):  # detection layer
+        super().__init__()
+        self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
+        self.nc = nc  # number of classes
+        self.no = nc + 5  # number of outputs per anchor
+        self.nl = len(anchors)  # number of detection layers
+        self.na = len(anchors[0]) // 2  # number of anchors
+        self.grid = [tf.zeros(1)] * self.nl  # init grid
+        self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
+        self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
+        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
+        self.training = False  # set to False after building model
+        self.imgsz = imgsz
+        for i in range(self.nl):
+            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+            self.grid[i] = self._make_grid(nx, ny)
+
+    def call(self, inputs):
+        z = []  # inference output
+        x = []
+        for i in range(self.nl):
+            x.append(self.m[i](inputs[i]))
+            # x(bs,20,20,255) to x(bs,3,20,20,85)
+            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+            x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
+
+            if not self.training:  # inference
+                y = x[i]
+                grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
+                anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
+                xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i]  # xy
+                wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
+                # Normalize xywh to 0-1 to reduce calibration error
+                xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+                wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+                y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
+                z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
+
+        return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
+
+    @staticmethod
+    def _make_grid(nx=20, ny=20):
+        # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+        # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+        xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
+        return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
+
+
+class TFSegment(TFDetect):
+    # YOLOv5 Segment head for segmentation models
+    def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
+        super().__init__(nc, anchors, ch, imgsz, w)
+        self.nm = nm  # number of masks
+        self.npr = npr  # number of protos
+        self.no = 5 + nc + self.nm  # number of outputs per anchor
+        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]  # output conv
+        self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto)  # protos
+        self.detect = TFDetect.call
+
+    def call(self, x):
+        p = self.proto(x[0])
+        # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0]))  # (optional) full-size protos
+        p = tf.transpose(p, [0, 3, 1, 2])  # from shape(1,160,160,32) to shape(1,32,160,160)
+        x = self.detect(self, x)
+        return (x, p) if self.training else (x[0], p)
+
+
+class TFProto(keras.layers.Layer):
+
+    def __init__(self, c1, c_=256, c2=32, w=None):
+        super().__init__()
+        self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
+        self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
+        self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
+        self.cv3 = TFConv(c_, c2, w=w.cv3)
+
+    def call(self, inputs):
+        return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
+
+
+class TFUpsample(keras.layers.Layer):
+    # TF version of torch.nn.Upsample()
+    def __init__(self, size, scale_factor, mode, w=None):  # warning: all arguments needed including 'w'
+        super().__init__()
+        assert scale_factor % 2 == 0, 'scale_factor must be multiple of 2'
+        self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
+        # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
+        # with default arguments: align_corners=False, half_pixel_centers=False
+        # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
+        #                                                            size=(x.shape[1] * 2, x.shape[2] * 2))
+
+    def call(self, inputs):
+        return self.upsample(inputs)
+
+
+class TFConcat(keras.layers.Layer):
+    # TF version of torch.concat()
+    def __init__(self, dimension=1, w=None):
+        super().__init__()
+        assert dimension == 1, 'convert only NCHW to NHWC concat'
+        self.d = 3
+
+    def call(self, inputs):
+        return tf.concat(inputs, self.d)
+
+
+def parse_model(d, ch, model, imgsz):  # model_dict, input_channels(3)
+    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
+    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
+    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
+    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
+
+    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
+    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
+        m_str = m
+        m = eval(m) if isinstance(m, str) else m  # eval strings
+        for j, a in enumerate(args):
+            try:
+                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
+            except NameError:
+                pass
+
+        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
+        if m in [
+                nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
+                BottleneckCSP, C3, C3x]:
+            c1, c2 = ch[f], args[0]
+            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
+
+            args = [c1, c2, *args[1:]]
+            if m in [BottleneckCSP, C3, C3x]:
+                args.insert(2, n)
+                n = 1
+        elif m is nn.BatchNorm2d:
+            args = [ch[f]]
+        elif m is Concat:
+            c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
+        elif m in [Detect, Segment]:
+            args.append([ch[x + 1] for x in f])
+            if isinstance(args[1], int):  # number of anchors
+                args[1] = [list(range(args[1] * 2))] * len(f)
+            if m is Segment:
+                args[3] = make_divisible(args[3] * gw, 8)
+            args.append(imgsz)
+        else:
+            c2 = ch[f]
+
+        tf_m = eval('TF' + m_str.replace('nn.', ''))
+        m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
+            else tf_m(*args, w=model.model[i])  # module
+
+        torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
+        t = str(m)[8:-2].replace('__main__.', '')  # module type
+        np = sum(x.numel() for x in torch_m_.parameters())  # number params
+        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
+        LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10}  {t:<40}{str(args):<30}')  # print
+        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
+        layers.append(m_)
+        ch.append(c2)
+    return keras.Sequential(layers), sorted(save)
+
+
+class TFModel:
+    # TF YOLOv5 model
+    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)):  # model, channels, classes
+        super().__init__()
+        if isinstance(cfg, dict):
+            self.yaml = cfg  # model dict
+        else:  # is *.yaml
+            import yaml  # for torch hub
+            self.yaml_file = Path(cfg).name
+            with open(cfg) as f:
+                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict
+
+        # Define model
+        if nc and nc != self.yaml['nc']:
+            LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
+            self.yaml['nc'] = nc  # override yaml value
+        self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
+
+    def predict(self,
+                inputs,
+                tf_nms=False,
+                agnostic_nms=False,
+                topk_per_class=100,
+                topk_all=100,
+                iou_thres=0.45,
+                conf_thres=0.25):
+        y = []  # outputs
+        x = inputs
+        for m in self.model.layers:
+            if m.f != -1:  # if not from previous layer
+                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
+
+            x = m(x)  # run
+            y.append(x if m.i in self.savelist else None)  # save output
+
+        # Add TensorFlow NMS
+        if tf_nms:
+            boxes = self._xywh2xyxy(x[0][..., :4])
+            probs = x[0][:, :, 4:5]
+            classes = x[0][:, :, 5:]
+            scores = probs * classes
+            if agnostic_nms:
+                nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
+            else:
+                boxes = tf.expand_dims(boxes, 2)
+                nms = tf.image.combined_non_max_suppression(boxes,
+                                                            scores,
+                                                            topk_per_class,
+                                                            topk_all,
+                                                            iou_thres,
+                                                            conf_thres,
+                                                            clip_boxes=False)
+            return (nms,)
+        return x  # output [1,6300,85] = [xywh, conf, class0, class1, ...]
+        # x = x[0]  # [x(1,6300,85), ...] to x(6300,85)
+        # xywh = x[..., :4]  # x(6300,4) boxes
+        # conf = x[..., 4:5]  # x(6300,1) confidences
+        # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1))  # x(6300,1)  classes
+        # return tf.concat([conf, cls, xywh], 1)
+
+    @staticmethod
+    def _xywh2xyxy(xywh):
+        # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+        x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
+        return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
+
+
+class AgnosticNMS(keras.layers.Layer):
+    # TF Agnostic NMS
+    def call(self, input, topk_all, iou_thres, conf_thres):
+        # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
+        return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
+                         input,
+                         fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
+                         name='agnostic_nms')
+
+    @staticmethod
+    def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):  # agnostic NMS
+        boxes, classes, scores = x
+        class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
+        scores_inp = tf.reduce_max(scores, -1)
+        selected_inds = tf.image.non_max_suppression(boxes,
+                                                     scores_inp,
+                                                     max_output_size=topk_all,
+                                                     iou_threshold=iou_thres,
+                                                     score_threshold=conf_thres)
+        selected_boxes = tf.gather(boxes, selected_inds)
+        padded_boxes = tf.pad(selected_boxes,
+                              paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
+                              mode='CONSTANT',
+                              constant_values=0.0)
+        selected_scores = tf.gather(scores_inp, selected_inds)
+        padded_scores = tf.pad(selected_scores,
+                               paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+                               mode='CONSTANT',
+                               constant_values=-1.0)
+        selected_classes = tf.gather(class_inds, selected_inds)
+        padded_classes = tf.pad(selected_classes,
+                                paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+                                mode='CONSTANT',
+                                constant_values=-1.0)
+        valid_detections = tf.shape(selected_inds)[0]
+        return padded_boxes, padded_scores, padded_classes, valid_detections
+
+
+def activations(act=nn.SiLU):
+    # Returns TF activation from input PyTorch activation
+    if isinstance(act, nn.LeakyReLU):
+        return lambda x: keras.activations.relu(x, alpha=0.1)
+    elif isinstance(act, nn.Hardswish):
+        return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
+    elif isinstance(act, (nn.SiLU, SiLU)):
+        return lambda x: keras.activations.swish(x)
+    else:
+        raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
+
+
+def representative_dataset_gen(dataset, ncalib=100):
+    # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
+    for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
+        im = np.transpose(img, [1, 2, 0])
+        im = np.expand_dims(im, axis=0).astype(np.float32)
+        im /= 255
+        yield [im]
+        if n >= ncalib:
+            break
+
+
+def run(
+        weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=(640, 640),  # inference size h,w
+        batch_size=1,  # batch size
+        dynamic=False,  # dynamic batch size
+):
+    # PyTorch model
+    im = torch.zeros((batch_size, 3, *imgsz))  # BCHW image
+    model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
+    _ = model(im)  # inference
+    model.info()
+
+    # TensorFlow model
+    im = tf.zeros((batch_size, *imgsz, 3))  # BHWC image
+    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+    _ = tf_model.predict(im)  # inference
+
+    # Keras model
+    im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
+    keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
+    keras_model.summary()
+
+    LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+    parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/models/yolo.py b/yolov5_model/models/yolo.py
new file mode 100644
index 0000000000000000000000000000000000000000..ed21c067ee9337bf534bfc908574362a61ad3207
--- /dev/null
+++ b/yolov5_model/models/yolo.py
@@ -0,0 +1,391 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+YOLO-specific modules
+
+Usage:
+    $ python models/yolo.py --cfg yolov5s.yaml
+"""
+
+import argparse
+import contextlib
+import os
+import platform
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+if platform.system() != 'Windows':
+    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import *
+from models.experimental import *
+from utils.autoanchor import check_anchor_order
+from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
+from utils.plots import feature_visualization
+from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
+                               time_sync)
+
+try:
+    import thop  # for FLOPs computation
+except ImportError:
+    thop = None
+
+
+class Detect(nn.Module):
+    # YOLOv5 Detect head for detection models
+    stride = None  # strides computed during build
+    dynamic = False  # force grid reconstruction
+    export = False  # export mode
+
+    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
+        super().__init__()
+        self.nc = nc  # number of classes
+        self.no = nc + 5  # number of outputs per anchor
+        self.nl = len(anchors)  # number of detection layers
+        self.na = len(anchors[0]) // 2  # number of anchors
+        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid
+        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid
+        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
+        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
+        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
+
+    def forward(self, x):
+        z = []  # inference output
+        for i in range(self.nl):
+            x[i] = self.m[i](x[i])  # conv
+            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
+            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+            if not self.training:  # inference
+                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
+                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
+
+                if isinstance(self, Segment):  # (boxes + masks)
+                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
+                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
+                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
+                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
+                else:  # Detect (boxes only)
+                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
+                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
+                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
+                    y = torch.cat((xy, wh, conf), 4)
+                z.append(y.view(bs, self.na * nx * ny, self.no))
+
+        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
+
+    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
+        d = self.anchors[i].device
+        t = self.anchors[i].dtype
+        shape = 1, self.na, ny, nx, 2  # grid shape
+        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
+        yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility
+        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
+        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
+        return grid, anchor_grid
+
+
+class Segment(Detect):
+    # YOLOv5 Segment head for segmentation models
+    def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
+        super().__init__(nc, anchors, ch, inplace)
+        self.nm = nm  # number of masks
+        self.npr = npr  # number of protos
+        self.no = 5 + nc + self.nm  # number of outputs per anchor
+        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
+        self.proto = Proto(ch[0], self.npr, self.nm)  # protos
+        self.detect = Detect.forward
+
+    def forward(self, x):
+        p = self.proto(x[0])
+        x = self.detect(self, x)
+        return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
+
+
+class BaseModel(nn.Module):
+    # YOLOv5 base model
+    def forward(self, x, profile=False, visualize=False):
+        return self._forward_once(x, profile, visualize)  # single-scale inference, train
+
+    def _forward_once(self, x, profile=False, visualize=False):
+        y, dt = [], []  # outputs
+        for m in self.model:
+            if m.f != -1:  # if not from previous layer
+                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
+            if profile:
+                self._profile_one_layer(m, x, dt)
+            x = m(x)  # run
+            y.append(x if m.i in self.save else None)  # save output
+            if visualize:
+                feature_visualization(x, m.type, m.i, save_dir=visualize)
+        return x
+
+    def _profile_one_layer(self, m, x, dt):
+        c = m == self.model[-1]  # is final layer, copy input as inplace fix
+        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
+        t = time_sync()
+        for _ in range(10):
+            m(x.copy() if c else x)
+        dt.append((time_sync() - t) * 100)
+        if m == self.model[0]:
+            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
+        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
+        if c:
+            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
+
+    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
+        LOGGER.info('Fusing layers... ')
+        for m in self.model.modules():
+            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
+                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
+                delattr(m, 'bn')  # remove batchnorm
+                m.forward = m.forward_fuse  # update forward
+        self.info()
+        return self
+
+    def info(self, verbose=False, img_size=640):  # print model information
+        model_info(self, verbose, img_size)
+
+    def _apply(self, fn):
+        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
+        self = super()._apply(fn)
+        m = self.model[-1]  # Detect()
+        if isinstance(m, (Detect, Segment)):
+            m.stride = fn(m.stride)
+            m.grid = list(map(fn, m.grid))
+            if isinstance(m.anchor_grid, list):
+                m.anchor_grid = list(map(fn, m.anchor_grid))
+        return self
+
+
+class DetectionModel(BaseModel):
+    # YOLOv5 detection model
+    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
+        super().__init__()
+        if isinstance(cfg, dict):
+            self.yaml = cfg  # model dict
+        else:  # is *.yaml
+            import yaml  # for torch hub
+            self.yaml_file = Path(cfg).name
+            with open(cfg, encoding='ascii', errors='ignore') as f:
+                self.yaml = yaml.safe_load(f)  # model dict
+
+        # Define model
+        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
+        if nc and nc != self.yaml['nc']:
+            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
+            self.yaml['nc'] = nc  # override yaml value
+        if anchors:
+            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
+            self.yaml['anchors'] = round(anchors)  # override yaml value
+        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
+        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
+        self.inplace = self.yaml.get('inplace', True)
+
+        # Build strides, anchors
+        m = self.model[-1]  # Detect()
+        if isinstance(m, (Detect, Segment)):
+            s = 256  # 2x min stride
+            m.inplace = self.inplace
+            forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
+            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
+            check_anchor_order(m)
+            m.anchors /= m.stride.view(-1, 1, 1)
+            self.stride = m.stride
+            self._initialize_biases()  # only run once
+
+        # Init weights, biases
+        initialize_weights(self)
+        self.info()
+        LOGGER.info('')
+
+    def forward(self, x, augment=False, profile=False, visualize=False):
+        if augment:
+            return self._forward_augment(x)  # augmented inference, None
+        return self._forward_once(x, profile, visualize)  # single-scale inference, train
+
+    def _forward_augment(self, x):
+        img_size = x.shape[-2:]  # height, width
+        s = [1, 0.83, 0.67]  # scales
+        f = [None, 3, None]  # flips (2-ud, 3-lr)
+        y = []  # outputs
+        for si, fi in zip(s, f):
+            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
+            yi = self._forward_once(xi)[0]  # forward
+            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
+            yi = self._descale_pred(yi, fi, si, img_size)
+            y.append(yi)
+        y = self._clip_augmented(y)  # clip augmented tails
+        return torch.cat(y, 1), None  # augmented inference, train
+
+    def _descale_pred(self, p, flips, scale, img_size):
+        # de-scale predictions following augmented inference (inverse operation)
+        if self.inplace:
+            p[..., :4] /= scale  # de-scale
+            if flips == 2:
+                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
+            elif flips == 3:
+                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
+        else:
+            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
+            if flips == 2:
+                y = img_size[0] - y  # de-flip ud
+            elif flips == 3:
+                x = img_size[1] - x  # de-flip lr
+            p = torch.cat((x, y, wh, p[..., 4:]), -1)
+        return p
+
+    def _clip_augmented(self, y):
+        # Clip YOLOv5 augmented inference tails
+        nl = self.model[-1].nl  # number of detection layers (P3-P5)
+        g = sum(4 ** x for x in range(nl))  # grid points
+        e = 1  # exclude layer count
+        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
+        y[0] = y[0][:, :-i]  # large
+        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
+        y[-1] = y[-1][:, i:]  # small
+        return y
+
+    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
+        # https://arxiv.org/abs/1708.02002 section 3.3
+        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
+        m = self.model[-1]  # Detect() module
+        for mi, s in zip(m.m, m.stride):  # from
+            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
+            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
+            b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())  # cls
+            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+
+
+Model = DetectionModel  # retain YOLOv5 'Model' class for backwards compatibility
+
+
+class SegmentationModel(DetectionModel):
+    # YOLOv5 segmentation model
+    def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None):
+        super().__init__(cfg, ch, nc, anchors)
+
+
+class ClassificationModel(BaseModel):
+    # YOLOv5 classification model
+    def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):  # yaml, model, number of classes, cutoff index
+        super().__init__()
+        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
+
+    def _from_detection_model(self, model, nc=1000, cutoff=10):
+        # Create a YOLOv5 classification model from a YOLOv5 detection model
+        if isinstance(model, DetectMultiBackend):
+            model = model.model  # unwrap DetectMultiBackend
+        model.model = model.model[:cutoff]  # backbone
+        m = model.model[-1]  # last layer
+        ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels  # ch into module
+        c = Classify(ch, nc)  # Classify()
+        c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'  # index, from, type
+        model.model[-1] = c  # replace
+        self.model = model.model
+        self.stride = model.stride
+        self.save = []
+        self.nc = nc
+
+    def _from_yaml(self, cfg):
+        # Create a YOLOv5 classification model from a *.yaml file
+        self.model = None
+
+
+def parse_model(d, ch):  # model_dict, input_channels(3)
+    # Parse a YOLOv5 model.yaml dictionary
+    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
+    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
+    if act:
+        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
+        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
+    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
+    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
+
+    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
+    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
+        m = eval(m) if isinstance(m, str) else m  # eval strings
+        for j, a in enumerate(args):
+            with contextlib.suppress(NameError):
+                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
+
+        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
+        if m in {
+                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
+                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
+            c1, c2 = ch[f], args[0]
+            if c2 != no:  # if not output
+                c2 = make_divisible(c2 * gw, 8)
+
+            args = [c1, c2, *args[1:]]
+            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
+                args.insert(2, n)  # number of repeats
+                n = 1
+        elif m is nn.BatchNorm2d:
+            args = [ch[f]]
+        elif m is Concat:
+            c2 = sum(ch[x] for x in f)
+        # TODO: channel, gw, gd
+        elif m in {Detect, Segment}:
+            args.append([ch[x] for x in f])
+            if isinstance(args[1], int):  # number of anchors
+                args[1] = [list(range(args[1] * 2))] * len(f)
+            if m is Segment:
+                args[3] = make_divisible(args[3] * gw, 8)
+        elif m is Contract:
+            c2 = ch[f] * args[0] ** 2
+        elif m is Expand:
+            c2 = ch[f] // args[0] ** 2
+        else:
+            c2 = ch[f]
+
+        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
+        t = str(m)[8:-2].replace('__main__.', '')  # module type
+        np = sum(x.numel() for x in m_.parameters())  # number params
+        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
+        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
+        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
+        layers.append(m_)
+        if i == 0:
+            ch = []
+        ch.append(c2)
+    return nn.Sequential(*layers), sorted(save)
+
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
+    parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--profile', action='store_true', help='profile model speed')
+    parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
+    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
+    opt = parser.parse_args()
+    opt.cfg = check_yaml(opt.cfg)  # check YAML
+    print_args(vars(opt))
+    device = select_device(opt.device)
+
+    # Create model
+    im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
+    model = Model(opt.cfg).to(device)
+
+    # Options
+    if opt.line_profile:  # profile layer by layer
+        model(im, profile=True)
+
+    elif opt.profile:  # profile forward-backward
+        results = profile(input=im, ops=[model], n=3)
+
+    elif opt.test:  # test all models
+        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
+            try:
+                _ = Model(cfg)
+            except Exception as e:
+                print(f'Error in {cfg}: {e}')
+
+    else:  # report fused model summary
+        model.fuse()
diff --git a/yolov5_model/models/yolov5l.yaml b/yolov5_model/models/yolov5l.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ce8a5de46a2785f5537c09fe27f3077c057bb4f3
--- /dev/null
+++ b/yolov5_model/models/yolov5l.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/yolov5m.yaml b/yolov5_model/models/yolov5m.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ad13ab370ff6532931284a0193959afba214f6f4
--- /dev/null
+++ b/yolov5_model/models/yolov5m.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.67  # model depth multiple
+width_multiple: 0.75  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/yolov5n.yaml b/yolov5_model/models/yolov5n.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8a28a40d6e20383727da1a9eed180c9e13ee89fd
--- /dev/null
+++ b/yolov5_model/models/yolov5n.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.25  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/yolov5s.yaml b/yolov5_model/models/yolov5s.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f35beabb1e1c76f9ec2cad0cb7adbce76f6b7c4c
--- /dev/null
+++ b/yolov5_model/models/yolov5s.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/models/yolov5x.yaml b/yolov5_model/models/yolov5x.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f617a027d8a20a2b7c2a4b415da0941c02aeb3a3
--- /dev/null
+++ b/yolov5_model/models/yolov5x.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.33  # model depth multiple
+width_multiple: 1.25  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/yolov5_model/requirements.txt b/yolov5_model/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..eee15ddf93c49d0060f363f320cd6792d4557e25
--- /dev/null
+++ b/yolov5_model/requirements.txt
@@ -0,0 +1,51 @@
+# YOLOv5 requirements
+# Usage: pip install -r requirements.txt
+
+# Base ------------------------------------------------------------------------
+gitpython
+ipython  # interactive notebook
+matplotlib>=3.2.2
+numpy>=1.18.5
+opencv-python>=4.1.1
+Pillow>=7.1.2
+psutil  # system resources
+PyYAML>=5.3.1
+requests>=2.23.0
+scipy>=1.4.1
+thop>=0.1.1  # FLOPs computation
+torch>=1.7.0  # see https://pytorch.org/get-started/locally (recommended)
+torchvision>=0.8.1
+tqdm>=4.64.0
+# protobuf<=3.20.1  # https://github.com/ultralytics/yolov5/issues/8012
+
+# Logging ---------------------------------------------------------------------
+tensorboard>=2.4.1
+# clearml>=1.2.0
+# comet
+
+# Plotting --------------------------------------------------------------------
+pandas>=1.1.4
+seaborn>=0.11.0
+
+# Export ----------------------------------------------------------------------
+# coremltools>=6.0  # CoreML export
+# onnx>=1.12.0  # ONNX export
+# onnx-simplifier>=0.4.1  # ONNX simplifier
+# nvidia-pyindex  # TensorRT export
+# nvidia-tensorrt  # TensorRT export
+# scikit-learn<=1.1.2  # CoreML quantization
+# tensorflow>=2.4.1  # TF exports (-cpu, -aarch64, -macos)
+# tensorflowjs>=3.9.0  # TF.js export
+# openvino-dev  # OpenVINO export
+
+# Deploy ----------------------------------------------------------------------
+setuptools>=65.5.1 # Snyk vulnerability fix
+wheel>=0.38.0 # Snyk vulnerability fix
+# tritonclient[all]~=2.24.0
+
+# Extras ----------------------------------------------------------------------
+# mss  # screenshots
+# albumentations>=1.0.3
+# pycocotools>=2.0.6  # COCO mAP
+# roboflow
+# ultralytics  # HUB https://hub.ultralytics.com
diff --git a/yolov5_model/runs/train/exp/events.out.tfevents.1677190992.hal-dgx.138854.0 b/yolov5_model/runs/train/exp/events.out.tfevents.1677190992.hal-dgx.138854.0
new file mode 100644
index 0000000000000000000000000000000000000000..899e8432b48b911487a909a90d0dcc53478514a4
Binary files /dev/null and b/yolov5_model/runs/train/exp/events.out.tfevents.1677190992.hal-dgx.138854.0 differ
diff --git a/yolov5_model/runs/train/exp/hyp.yaml b/yolov5_model/runs/train/exp/hyp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fa80eb95531dba10a6c94a7651f781f8c99566be
--- /dev/null
+++ b/yolov5_model/runs/train/exp/hyp.yaml
@@ -0,0 +1,28 @@
+lr0: 0.01
+lrf: 0.01
+momentum: 0.937
+weight_decay: 0.0005
+warmup_epochs: 3.0
+warmup_momentum: 0.8
+warmup_bias_lr: 0.1
+box: 0.05
+cls: 0.5
+cls_pw: 1.0
+obj: 1.0
+obj_pw: 1.0
+iou_t: 0.2
+anchor_t: 4.0
+fl_gamma: 0.0
+hsv_h: 0.015
+hsv_s: 0.7
+hsv_v: 0.4
+degrees: 0.0
+translate: 0.1
+scale: 0.5
+shear: 0.0
+perspective: 0.0
+flipud: 0.0
+fliplr: 0.5
+mosaic: 1.0
+mixup: 0.0
+copy_paste: 0.0
diff --git a/yolov5_model/runs/train/exp/labels.jpg b/yolov5_model/runs/train/exp/labels.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..db9ff99fa8f6892bdd5ddb69f100d451ad14f44a
Binary files /dev/null and b/yolov5_model/runs/train/exp/labels.jpg differ
diff --git a/yolov5_model/runs/train/exp/labels_correlogram.jpg b/yolov5_model/runs/train/exp/labels_correlogram.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..291fe7c397bd5b3f72f11363669dce04a64fde26
Binary files /dev/null and b/yolov5_model/runs/train/exp/labels_correlogram.jpg differ
diff --git a/yolov5_model/runs/train/exp/opt.yaml b/yolov5_model/runs/train/exp/opt.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b5ab7b0c4253a26eff31d9c1fd1cfce73539f7f1
--- /dev/null
+++ b/yolov5_model/runs/train/exp/opt.yaml
@@ -0,0 +1,68 @@
+weights: yolov5m.pt
+cfg: ''
+data: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/data/beetles.yaml
+hyp:
+  lr0: 0.01
+  lrf: 0.01
+  momentum: 0.937
+  weight_decay: 0.0005
+  warmup_epochs: 3.0
+  warmup_momentum: 0.8
+  warmup_bias_lr: 0.1
+  box: 0.05
+  cls: 0.5
+  cls_pw: 1.0
+  obj: 1.0
+  obj_pw: 1.0
+  iou_t: 0.2
+  anchor_t: 4.0
+  fl_gamma: 0.0
+  hsv_h: 0.015
+  hsv_s: 0.7
+  hsv_v: 0.4
+  degrees: 0.0
+  translate: 0.1
+  scale: 0.5
+  shear: 0.0
+  perspective: 0.0
+  flipud: 0.0
+  fliplr: 0.5
+  mosaic: 1.0
+  mixup: 0.0
+  copy_paste: 0.0
+epochs: 150
+batch_size: 16
+imgsz: 1280
+rect: false
+resume: false
+nosave: false
+noval: false
+noautoanchor: false
+noplots: false
+evolve: null
+bucket: ''
+cache: null
+image_weights: false
+device: ''
+multi_scale: false
+single_cls: false
+optimizer: SGD
+sync_bn: false
+workers: 8
+project: runs/train
+name: exp
+exist_ok: false
+quad: false
+cos_lr: false
+label_smoothing: 0.0
+patience: 100
+freeze:
+- 0
+save_period: -1
+seed: 0
+local_rank: -1
+entity: null
+upload_dataset: false
+bbox_interval: -1
+artifact_alias: latest
+save_dir: runs/train/exp
diff --git a/yolov5_model/runs/train/exp/results.csv b/yolov5_model/runs/train/exp/results.csv
new file mode 100644
index 0000000000000000000000000000000000000000..9f022fca8689860c70c2a1993fe05fc9012cbd2e
--- /dev/null
+++ b/yolov5_model/runs/train/exp/results.csv
@@ -0,0 +1,42 @@
+               epoch,      train/box_loss,      train/obj_loss,      train/cls_loss,   metrics/precision,      metrics/recall,     metrics/mAP_0.5,metrics/mAP_0.5:0.95,        val/box_loss,        val/obj_loss,        val/cls_loss,               x/lr0,               x/lr1,               x/lr2
+                   0,              0.0733,            0.041432,                   0,             0.18945,             0.49658,             0.15564,            0.039317,            0.061729,            0.018883,                   0,            0.070476,           0.0032804,           0.0032804
+                   1,            0.056515,            0.022382,                   0,             0.16387,             0.56164,             0.18408,            0.038948,            0.053571,            0.017718,                   0,            0.040433,           0.0065701,           0.0065701
+                   2,            0.053811,            0.018536,                   0,             0.31292,             0.86409,             0.31094,             0.11475,            0.044021,            0.025066,                   0,            0.010345,           0.0098158,           0.0098158
+                   3,            0.047635,            0.018058,                   0,             0.59107,             0.87671,             0.69358,             0.26774,            0.048443,            0.017803,                   0,            0.009802,            0.009802,            0.009802
+                   4,            0.041931,            0.016924,                   0,             0.49712,             0.96575,             0.61725,             0.29946,            0.038319,            0.016111,                   0,            0.009802,            0.009802,            0.009802
+                   5,            0.038821,            0.015894,                   0,             0.41235,             0.93836,              0.4556,             0.27533,            0.038352,            0.016303,                   0,            0.009736,            0.009736,            0.009736
+                   6,            0.036745,            0.014752,                   0,             0.91351,             0.94521,             0.97261,             0.52968,            0.029266,            0.013999,                   0,             0.00967,             0.00967,             0.00967
+                   7,            0.033644,            0.013404,                   0,             0.97013,              0.9863,             0.99204,             0.61763,            0.028354,            0.011193,                   0,            0.009604,            0.009604,            0.009604
+                   8,            0.028766,            0.011538,                   0,             0.99657,             0.99591,              0.9925,             0.48369,            0.026756,            0.011012,                   0,            0.009538,            0.009538,            0.009538
+                   9,            0.025313,            0.010314,                   0,                   1,             0.99639,               0.995,             0.64397,            0.023553,           0.0098386,                   0,            0.009472,            0.009472,            0.009472
+                  10,            0.025793,           0.0096591,                   0,                   1,             0.99876,               0.995,             0.73985,            0.019547,           0.0088577,                   0,            0.009406,            0.009406,            0.009406
+                  11,            0.023618,           0.0092217,                   0,             0.99945,                   1,               0.995,             0.74036,            0.014359,           0.0090275,                   0,             0.00934,             0.00934,             0.00934
+                  12,            0.022426,           0.0094701,                   0,             0.99586,             0.99658,             0.99493,             0.72761,            0.020309,           0.0088401,                   0,            0.009274,            0.009274,            0.009274
+                  13,            0.021088,           0.0088406,                   0,             0.99675,             0.99658,               0.995,             0.72667,            0.022083,           0.0091166,                   0,            0.009208,            0.009208,            0.009208
+                  14,            0.021154,           0.0086886,                   0,             0.99963,                   1,               0.995,             0.77219,            0.015432,           0.0084076,                   0,            0.009142,            0.009142,            0.009142
+                  15,            0.020117,           0.0084586,                   0,             0.99901,             0.99658,               0.995,             0.81848,            0.013357,           0.0084004,                   0,            0.009076,            0.009076,            0.009076
+                  16,            0.019703,           0.0079945,                   0,             0.99969,                   1,               0.995,             0.74863,            0.014195,           0.0077524,                   0,             0.00901,             0.00901,             0.00901
+                  17,            0.018706,           0.0077876,                   0,              0.9992,                   1,               0.995,             0.75109,             0.01642,           0.0082722,                   0,            0.008944,            0.008944,            0.008944
+                  18,            0.018836,           0.0079572,                   0,             0.99576,             0.99658,             0.99493,             0.82472,            0.010775,           0.0074391,                   0,            0.008878,            0.008878,            0.008878
+                  19,            0.018036,           0.0075816,                   0,             0.99658,             0.99885,               0.995,             0.73154,            0.016426,           0.0079079,                   0,            0.008812,            0.008812,            0.008812
+                  20,            0.017286,           0.0073139,                   0,             0.99949,                   1,               0.995,             0.74231,             0.01204,           0.0075684,                   0,            0.008746,            0.008746,            0.008746
+                  21,            0.017159,           0.0076453,                   0,             0.99319,             0.99946,               0.995,             0.81618,            0.011358,           0.0075402,                   0,             0.00868,             0.00868,             0.00868
+                  22,            0.016458,           0.0072336,                   0,             0.99974,                   1,               0.995,             0.78269,            0.014836,           0.0075188,                   0,            0.008614,            0.008614,            0.008614
+                  23,            0.016553,           0.0069693,                   0,             0.99956,                   1,               0.995,              0.7743,            0.011306,           0.0073023,                   0,            0.008548,            0.008548,            0.008548
+                  24,            0.016632,           0.0075172,                   0,             0.99975,                   1,               0.995,             0.78358,            0.013959,           0.0072751,                   0,            0.008482,            0.008482,            0.008482
+                  25,            0.015644,           0.0067869,                   0,             0.99935,                   1,               0.995,             0.78996,            0.013152,           0.0069904,                   0,            0.008416,            0.008416,            0.008416
+                  26,            0.014839,            0.006813,                   0,             0.99978,                   1,               0.995,             0.85088,            0.010179,           0.0064874,                   0,             0.00835,             0.00835,             0.00835
+                  27,            0.014901,           0.0068279,                   0,             0.99978,                   1,               0.995,             0.71635,            0.019652,           0.0076571,                   0,            0.008284,            0.008284,            0.008284
+                  28,            0.015428,           0.0068129,                   0,             0.99979,                   1,               0.995,              0.7997,            0.013147,           0.0068078,                   0,            0.008218,            0.008218,            0.008218
+                  29,            0.015041,           0.0067971,                   0,             0.99979,                   1,               0.995,             0.81354,            0.013542,           0.0068693,                   0,            0.008152,            0.008152,            0.008152
+                  30,            0.014101,           0.0066416,                   0,              0.9998,                   1,               0.995,             0.82112,           0.0097427,            0.006741,                   0,            0.008086,            0.008086,            0.008086
+                  31,            0.014913,           0.0068951,                   0,             0.99975,                   1,               0.995,             0.81272,           0.0094537,           0.0063872,                   0,             0.00802,             0.00802,             0.00802
+                  32,            0.013574,           0.0063275,                   0,             0.99975,                   1,               0.995,             0.71699,            0.017111,           0.0071425,                   0,            0.007954,            0.007954,            0.007954
+                  33,            0.014465,           0.0065088,                   0,             0.99961,                   1,               0.995,             0.81087,            0.011066,            0.006391,                   0,            0.007888,            0.007888,            0.007888
+                  34,            0.012846,           0.0062139,                   0,              0.9998,                   1,               0.995,             0.81115,            0.013108,           0.0069451,                   0,            0.007822,            0.007822,            0.007822
+                  35,            0.014107,           0.0064619,                   0,             0.99972,                   1,               0.995,             0.83154,            0.012721,            0.006629,                   0,            0.007756,            0.007756,            0.007756
+                  36,            0.013368,           0.0063326,                   0,             0.99994,                   1,               0.995,             0.84295,           0.0099978,           0.0065107,                   0,             0.00769,             0.00769,             0.00769
+                  37,            0.013034,           0.0061163,                   0,              0.9998,                   1,               0.995,             0.81462,           0.0098458,           0.0063062,                   0,            0.007624,            0.007624,            0.007624
+                  38,            0.012077,           0.0061347,                   0,              0.9998,                   1,               0.995,             0.80519,            0.011842,           0.0062518,                   0,            0.007558,            0.007558,            0.007558
+                  39,            0.013191,           0.0062393,                   0,              0.9998,                   1,               0.995,             0.78826,            0.011916,            0.006906,                   0,            0.007492,            0.007492,            0.007492
+                  40,            0.012572,           0.0060829,                   0,             0.99981,                   1,               0.995,             0.78388,            0.011941,           0.0064993,                   0,            0.007426,            0.007426,            0.007426
diff --git a/yolov5_model/runs/train/exp/train_batch0.jpg b/yolov5_model/runs/train/exp/train_batch0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7f2724b5c5e27d419526c2f8045c3833bfbc376e
Binary files /dev/null and b/yolov5_model/runs/train/exp/train_batch0.jpg differ
diff --git a/yolov5_model/runs/train/exp/train_batch1.jpg b/yolov5_model/runs/train/exp/train_batch1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..04bb973f0a89a18bedad9ed3283f6bc82da3044a
Binary files /dev/null and b/yolov5_model/runs/train/exp/train_batch1.jpg differ
diff --git a/yolov5_model/runs/train/exp/train_batch2.jpg b/yolov5_model/runs/train/exp/train_batch2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..418ebf223d5d0f82b7e6d0678307f9335c1e79bc
Binary files /dev/null and b/yolov5_model/runs/train/exp/train_batch2.jpg differ
diff --git a/yolov5_model/runs/train/exp/weights/best.pt b/yolov5_model/runs/train/exp/weights/best.pt
new file mode 100644
index 0000000000000000000000000000000000000000..d1dc238939584b726acd9d77fad619fdca3634b0
Binary files /dev/null and b/yolov5_model/runs/train/exp/weights/best.pt differ
diff --git a/yolov5_model/runs/train/exp/weights/last.pt b/yolov5_model/runs/train/exp/weights/last.pt
new file mode 100644
index 0000000000000000000000000000000000000000..bba1b6f20263dacff94b34ba34e53a2c6f93dd1b
Binary files /dev/null and b/yolov5_model/runs/train/exp/weights/last.pt differ
diff --git a/yolov5_model/runs/val/exp2/F1_curve.png b/yolov5_model/runs/val/exp2/F1_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..3484c043c9a5dd13835ac284583de20f405f855b
Binary files /dev/null and b/yolov5_model/runs/val/exp2/F1_curve.png differ
diff --git a/yolov5_model/runs/val/exp2/PR_curve.png b/yolov5_model/runs/val/exp2/PR_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..009ca285c89d2fa637e77115309c578ecd61180a
Binary files /dev/null and b/yolov5_model/runs/val/exp2/PR_curve.png differ
diff --git a/yolov5_model/runs/val/exp2/P_curve.png b/yolov5_model/runs/val/exp2/P_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..c324df461ba618a2154d9724f9809e09e7a3bb31
Binary files /dev/null and b/yolov5_model/runs/val/exp2/P_curve.png differ
diff --git a/yolov5_model/runs/val/exp2/R_curve.png b/yolov5_model/runs/val/exp2/R_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..174eb84f0da5a022678b75094c8c3ea700aeecdd
Binary files /dev/null and b/yolov5_model/runs/val/exp2/R_curve.png differ
diff --git a/yolov5_model/runs/val/exp2/confusion_matrix.png b/yolov5_model/runs/val/exp2/confusion_matrix.png
new file mode 100644
index 0000000000000000000000000000000000000000..a14c455e895792590f17ff0cf174ce45b9560394
Binary files /dev/null and b/yolov5_model/runs/val/exp2/confusion_matrix.png differ
diff --git a/yolov5_model/runs/val/exp2/val_batch0_labels.jpg b/yolov5_model/runs/val/exp2/val_batch0_labels.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..57fe4ba17b154d5a8ff05b9068f2d2050eb9cfae
Binary files /dev/null and b/yolov5_model/runs/val/exp2/val_batch0_labels.jpg differ
diff --git a/yolov5_model/runs/val/exp2/val_batch0_pred.jpg b/yolov5_model/runs/val/exp2/val_batch0_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..60c3b215588098082b84a172efecce510703aad9
Binary files /dev/null and b/yolov5_model/runs/val/exp2/val_batch0_pred.jpg differ
diff --git a/yolov5_model/runs/val/exp2/val_batch1_labels.jpg b/yolov5_model/runs/val/exp2/val_batch1_labels.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5e7db3b303b40bdfb56bf1c7f8e9b9be2b6e07d5
Binary files /dev/null and b/yolov5_model/runs/val/exp2/val_batch1_labels.jpg differ
diff --git a/yolov5_model/runs/val/exp2/val_batch1_pred.jpg b/yolov5_model/runs/val/exp2/val_batch1_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3920b99d98f2c0247bc55d322815338112fef53a
Binary files /dev/null and b/yolov5_model/runs/val/exp2/val_batch1_pred.jpg differ
diff --git a/yolov5_model/runs/val/exp2/val_batch2_labels.jpg b/yolov5_model/runs/val/exp2/val_batch2_labels.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fd2c601a64ca6b395db272b3701377f64f9e2759
Binary files /dev/null and b/yolov5_model/runs/val/exp2/val_batch2_labels.jpg differ
diff --git a/yolov5_model/runs/val/exp2/val_batch2_pred.jpg b/yolov5_model/runs/val/exp2/val_batch2_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..39770d54b6a17b500fde8c2e53a2b85ff11a8fa3
Binary files /dev/null and b/yolov5_model/runs/val/exp2/val_batch2_pred.jpg differ
diff --git a/yolov5_model/runs/val/exp3/F1_curve.png b/yolov5_model/runs/val/exp3/F1_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..8e395470375b0f08ac7ac022321a5dd6cb398cb7
Binary files /dev/null and b/yolov5_model/runs/val/exp3/F1_curve.png differ
diff --git a/yolov5_model/runs/val/exp3/PR_curve.png b/yolov5_model/runs/val/exp3/PR_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..c60a58feccc937df8461864b4fde5aa95dd0621c
Binary files /dev/null and b/yolov5_model/runs/val/exp3/PR_curve.png differ
diff --git a/yolov5_model/runs/val/exp3/P_curve.png b/yolov5_model/runs/val/exp3/P_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..d0f37ade44020965914ee7d7b81b1ed0bee58f43
Binary files /dev/null and b/yolov5_model/runs/val/exp3/P_curve.png differ
diff --git a/yolov5_model/runs/val/exp3/R_curve.png b/yolov5_model/runs/val/exp3/R_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..55bab58f5c2725fe13baf953c818ede4ff5ee190
Binary files /dev/null and b/yolov5_model/runs/val/exp3/R_curve.png differ
diff --git a/yolov5_model/runs/val/exp3/confusion_matrix.png b/yolov5_model/runs/val/exp3/confusion_matrix.png
new file mode 100644
index 0000000000000000000000000000000000000000..c125e36975383e426be79cb522dd210362242251
Binary files /dev/null and b/yolov5_model/runs/val/exp3/confusion_matrix.png differ
diff --git a/yolov5_model/runs/val/exp3/val_batch0_labels.jpg b/yolov5_model/runs/val/exp3/val_batch0_labels.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..57fe4ba17b154d5a8ff05b9068f2d2050eb9cfae
Binary files /dev/null and b/yolov5_model/runs/val/exp3/val_batch0_labels.jpg differ
diff --git a/yolov5_model/runs/val/exp3/val_batch0_pred.jpg b/yolov5_model/runs/val/exp3/val_batch0_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9ba113a9b7990e93e3af19fa0dff922aebe29b5a
Binary files /dev/null and b/yolov5_model/runs/val/exp3/val_batch0_pred.jpg differ
diff --git a/yolov5_model/runs/val/exp3/val_batch1_labels.jpg b/yolov5_model/runs/val/exp3/val_batch1_labels.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5e7db3b303b40bdfb56bf1c7f8e9b9be2b6e07d5
Binary files /dev/null and b/yolov5_model/runs/val/exp3/val_batch1_labels.jpg differ
diff --git a/yolov5_model/runs/val/exp3/val_batch1_pred.jpg b/yolov5_model/runs/val/exp3/val_batch1_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6d3d131d79726d6320c79d6b0bfb818c825c7a2a
Binary files /dev/null and b/yolov5_model/runs/val/exp3/val_batch1_pred.jpg differ
diff --git a/yolov5_model/runs/val/exp3/val_batch2_labels.jpg b/yolov5_model/runs/val/exp3/val_batch2_labels.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..fd2c601a64ca6b395db272b3701377f64f9e2759
Binary files /dev/null and b/yolov5_model/runs/val/exp3/val_batch2_labels.jpg differ
diff --git a/yolov5_model/runs/val/exp3/val_batch2_pred.jpg b/yolov5_model/runs/val/exp3/val_batch2_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..662ca0e355208357cb1716fd796d04c67631ea1a
Binary files /dev/null and b/yolov5_model/runs/val/exp3/val_batch2_pred.jpg differ
diff --git a/yolov5_model/segment/predict.py b/yolov5_model/segment/predict.py
new file mode 100644
index 0000000000000000000000000000000000000000..d82df89a85b0f349544b3630a5d020ed255f0965
--- /dev/null
+++ b/yolov5_model/segment/predict.py
@@ -0,0 +1,284 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
+
+Usage - sources:
+    $ python segment/predict.py --weights yolov5s-seg.pt --source 0                               # webcam
+                                                                  img.jpg                         # image
+                                                                  vid.mp4                         # video
+                                                                  screen                          # screenshot
+                                                                  path/                           # directory
+                                                                  list.txt                        # list of images
+                                                                  list.streams                    # list of streams
+                                                                  'path/*.jpg'                    # glob
+                                                                  'https://youtu.be/Zgi9g1ksQHc'  # YouTube
+                                                                  'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python segment/predict.py --weights yolov5s-seg.pt                 # PyTorch
+                                          yolov5s-seg.torchscript        # TorchScript
+                                          yolov5s-seg.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                          yolov5s-seg_openvino_model     # OpenVINO
+                                          yolov5s-seg.engine             # TensorRT
+                                          yolov5s-seg.mlmodel            # CoreML (macOS-only)
+                                          yolov5s-seg_saved_model        # TensorFlow SavedModel
+                                          yolov5s-seg.pb                 # TensorFlow GraphDef
+                                          yolov5s-seg.tflite             # TensorFlow Lite
+                                          yolov5s-seg_edgetpu.tflite     # TensorFlow Edge TPU
+                                          yolov5s-seg_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import os
+import platform
+import sys
+from pathlib import Path
+
+import torch
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
+from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
+                           increment_path, non_max_suppression, print_args, scale_boxes, scale_segments,
+                           strip_optimizer)
+from utils.plots import Annotator, colors, save_one_box
+from utils.segment.general import masks2segments, process_mask, process_mask_native
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+@smart_inference_mode()
+def run(
+    weights=ROOT / 'yolov5s-seg.pt',  # model.pt path(s)
+    source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
+    data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+    imgsz=(640, 640),  # inference size (height, width)
+    conf_thres=0.25,  # confidence threshold
+    iou_thres=0.45,  # NMS IOU threshold
+    max_det=1000,  # maximum detections per image
+    device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+    view_img=False,  # show results
+    save_txt=False,  # save results to *.txt
+    save_conf=False,  # save confidences in --save-txt labels
+    save_crop=False,  # save cropped prediction boxes
+    nosave=False,  # do not save images/videos
+    classes=None,  # filter by class: --class 0, or --class 0 2 3
+    agnostic_nms=False,  # class-agnostic NMS
+    augment=False,  # augmented inference
+    visualize=False,  # visualize features
+    update=False,  # update all models
+    project=ROOT / 'runs/predict-seg',  # save results to project/name
+    name='exp',  # save results to project/name
+    exist_ok=False,  # existing project/name ok, do not increment
+    line_thickness=3,  # bounding box thickness (pixels)
+    hide_labels=False,  # hide labels
+    hide_conf=False,  # hide confidences
+    half=False,  # use FP16 half-precision inference
+    dnn=False,  # use OpenCV DNN for ONNX inference
+    vid_stride=1,  # video frame-rate stride
+    retina_masks=False,
+):
+    source = str(source)
+    save_img = not nosave and not source.endswith('.txt')  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+    webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
+    screenshot = source.lower().startswith('screen')
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+    stride, names, pt = model.stride, model.names, model.pt
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Dataloader
+    bs = 1  # batch_size
+    if webcam:
+        view_img = check_imshow(warn=True)
+        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+        bs = len(dataset)
+    elif screenshot:
+        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
+    else:
+        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
+    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
+    for path, im, im0s, vid_cap, s in dataset:
+        with dt[0]:
+            im = torch.from_numpy(im).to(model.device)
+            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            if len(im.shape) == 3:
+                im = im[None]  # expand for batch dim
+
+        # Inference
+        with dt[1]:
+            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+            pred, proto = model(im, augment=augment, visualize=visualize)[:2]
+
+        # NMS
+        with dt[2]:
+            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=32)
+
+        # Second-stage classifier (optional)
+        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+        # Process predictions
+        for i, det in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f'{i}: '
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
+            s += '%gx%g ' % im.shape[2:]  # print string
+            imc = im0.copy() if save_crop else im0  # for save_crop
+            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+            if len(det):
+                if retina_masks:
+                    # scale bbox first the crop masks
+                    det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()  # rescale boxes to im0 size
+                    masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2])  # HWC
+                else:
+                    masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True)  # HWC
+                    det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()  # rescale boxes to im0 size
+
+                # Segments
+                if save_txt:
+                    segments = [
+                        scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=True)
+                        for x in reversed(masks2segments(masks))]
+
+                # Print results
+                for c in det[:, 5].unique():
+                    n = (det[:, 5] == c).sum()  # detections per class
+                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
+
+                # Mask plotting
+                annotator.masks(
+                    masks,
+                    colors=[colors(x, True) for x in det[:, 5]],
+                    im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(0).contiguous() /
+                    255 if retina_masks else im[i])
+
+                # Write results
+                for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
+                    if save_txt:  # Write to file
+                        seg = segments[j].reshape(-1)  # (n,2) to (n*2)
+                        line = (cls, *seg, conf) if save_conf else (cls, *seg)  # label format
+                        with open(f'{txt_path}.txt', 'a') as f:
+                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+                    if save_img or save_crop or view_img:  # Add bbox to image
+                        c = int(cls)  # integer class
+                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+                        annotator.box_label(xyxy, label, color=colors(c, True))
+                        # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
+                    if save_crop:
+                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                if platform.system() == 'Linux' and p not in windows:
+                    windows.append(p)
+                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
+                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
+                cv2.imshow(str(p), im0)
+                if cv2.waitKey(1) == ord('q'):  # 1 millisecond
+                    exit()
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == 'image':
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
+
+    # Print results
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
+    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--view-img', action='store_true', help='show results')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--visualize', action='store_true', help='visualize features')
+    parser.add_argument('--update', action='store_true', help='update all models')
+    parser.add_argument('--project', default=ROOT / 'runs/predict-seg', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save results to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
+    parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(exclude=('tensorboard', 'thop'))
+    run(**vars(opt))
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/segment/train.py b/yolov5_model/segment/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..2e71de131a8d70915a79e6b2b76ef8cbc1258b6b
--- /dev/null
+++ b/yolov5_model/segment/train.py
@@ -0,0 +1,664 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Train a YOLOv5 segment model on a segment dataset
+Models and datasets download automatically from the latest YOLOv5 release.
+
+Usage - Single-GPU training:
+    $ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640  # from pretrained (recommended)
+    $ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640  # from scratch
+
+Usage - Multi-GPU DDP training:
+    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
+
+Models:     https://github.com/ultralytics/yolov5/tree/master/models
+Datasets:   https://github.com/ultralytics/yolov5/tree/master/data
+Tutorial:   https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
+"""
+
+import argparse
+import math
+import os
+import random
+import subprocess
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import segment.val as validate  # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import SegmentationModel
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
+                           check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
+                           get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
+                           labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
+from utils.loggers import GenericLogger
+from utils.plots import plot_evolve, plot_labels
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.loss import ComputeLoss
+from utils.segment.metrics import KEYS, fitness
+from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
+                               smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = check_git_info()
+
+
+def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
+    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \
+        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio
+    # callbacks.run('on_pretrain_routine_start')
+
+    # Directories
+    w = save_dir / 'weights'  # weights dir
+    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
+    last, best = w / 'last.pt', w / 'best.pt'
+
+    # Hyperparameters
+    if isinstance(hyp, str):
+        with open(hyp, errors='ignore') as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+    opt.hyp = hyp.copy()  # for saving hyps to checkpoints
+
+    # Save run settings
+    if not evolve:
+        yaml_save(save_dir / 'hyp.yaml', hyp)
+        yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+    # Loggers
+    data_dict = None
+    if RANK in {-1, 0}:
+        logger = GenericLogger(opt=opt, console_logger=LOGGER)
+
+    # Config
+    plots = not evolve and not opt.noplots  # create plots
+    overlap = not opt.no_overlap
+    cuda = device.type != 'cpu'
+    init_seeds(opt.seed + 1 + RANK, deterministic=True)
+    with torch_distributed_zero_first(LOCAL_RANK):
+        data_dict = data_dict or check_dataset(data)  # check if None
+    train_path, val_path = data_dict['train'], data_dict['val']
+    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
+    names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
+    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset
+
+    # Model
+    check_suffix(weights, '.pt')  # check weights
+    pretrained = weights.endswith('.pt')
+    if pretrained:
+        with torch_distributed_zero_first(LOCAL_RANK):
+            weights = attempt_download(weights)  # download if not found locally
+        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
+        model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)
+        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
+        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
+        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
+        model.load_state_dict(csd, strict=False)  # load
+        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
+    else:
+        model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
+    amp = check_amp(model)  # check AMP
+
+    # Freeze
+    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
+    for k, v in model.named_parameters():
+        v.requires_grad = True  # train all layers
+        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
+        if any(x in k for x in freeze):
+            LOGGER.info(f'freezing {k}')
+            v.requires_grad = False
+
+    # Image size
+    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
+    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple
+
+    # Batch size
+    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
+        batch_size = check_train_batch_size(model, imgsz, amp)
+        logger.update_params({'batch_size': batch_size})
+        # loggers.on_params_update({"batch_size": batch_size})
+
+    # Optimizer
+    nbs = 64  # nominal batch size
+    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
+    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
+    optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+    # Scheduler
+    if opt.cos_lr:
+        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
+    else:
+        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
+    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+    # EMA
+    ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+    # Resume
+    best_fitness, start_epoch = 0.0, 0
+    if pretrained:
+        if resume:
+            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+        del ckpt, csd
+
+    # DP mode
+    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+        LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
+                       'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
+        model = torch.nn.DataParallel(model)
+
+    # SyncBatchNorm
+    if opt.sync_bn and cuda and RANK != -1:
+        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+        LOGGER.info('Using SyncBatchNorm()')
+
+    # Trainloader
+    train_loader, dataset = create_dataloader(
+        train_path,
+        imgsz,
+        batch_size // WORLD_SIZE,
+        gs,
+        single_cls,
+        hyp=hyp,
+        augment=True,
+        cache=None if opt.cache == 'val' else opt.cache,
+        rect=opt.rect,
+        rank=LOCAL_RANK,
+        workers=workers,
+        image_weights=opt.image_weights,
+        quad=opt.quad,
+        prefix=colorstr('train: '),
+        shuffle=True,
+        mask_downsample_ratio=mask_ratio,
+        overlap_mask=overlap,
+    )
+    labels = np.concatenate(dataset.labels, 0)
+    mlc = int(labels[:, 0].max())  # max label class
+    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+    # Process 0
+    if RANK in {-1, 0}:
+        val_loader = create_dataloader(val_path,
+                                       imgsz,
+                                       batch_size // WORLD_SIZE * 2,
+                                       gs,
+                                       single_cls,
+                                       hyp=hyp,
+                                       cache=None if noval else opt.cache,
+                                       rect=True,
+                                       rank=-1,
+                                       workers=workers * 2,
+                                       pad=0.5,
+                                       mask_downsample_ratio=mask_ratio,
+                                       overlap_mask=overlap,
+                                       prefix=colorstr('val: '))[0]
+
+        if not resume:
+            if not opt.noautoanchor:
+                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)  # run AutoAnchor
+            model.half().float()  # pre-reduce anchor precision
+
+            if plots:
+                plot_labels(labels, names, save_dir)
+        # callbacks.run('on_pretrain_routine_end', labels, names)
+
+    # DDP mode
+    if cuda and RANK != -1:
+        model = smart_DDP(model)
+
+    # Model attributes
+    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
+    hyp['box'] *= 3 / nl  # scale to layers
+    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
+    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
+    hyp['label_smoothing'] = opt.label_smoothing
+    model.nc = nc  # attach number of classes to model
+    model.hyp = hyp  # attach hyperparameters to model
+    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
+    model.names = names
+
+    # Start training
+    t0 = time.time()
+    nb = len(train_loader)  # number of batches
+    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
+    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
+    last_opt_step = -1
+    maps = np.zeros(nc)  # mAP per class
+    results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+    scheduler.last_epoch = start_epoch - 1  # do not move
+    scaler = torch.cuda.amp.GradScaler(enabled=amp)
+    stopper, stop = EarlyStopping(patience=opt.patience), False
+    compute_loss = ComputeLoss(model, overlap=overlap)  # init loss class
+    # callbacks.run('on_train_start')
+    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+                f"Logging results to {colorstr('bold', save_dir)}\n"
+                f'Starting training for {epochs} epochs...')
+    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
+        # callbacks.run('on_train_epoch_start')
+        model.train()
+
+        # Update image weights (optional, single-GPU only)
+        if opt.image_weights:
+            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
+            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
+            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
+
+        # Update mosaic border (optional)
+        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
+
+        mloss = torch.zeros(4, device=device)  # mean losses
+        if RANK != -1:
+            train_loader.sampler.set_epoch(epoch)
+        pbar = enumerate(train_loader)
+        LOGGER.info(('\n' + '%11s' * 8) %
+                    ('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
+        if RANK in {-1, 0}:
+            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
+        optimizer.zero_grad()
+        for i, (imgs, targets, paths, _, masks) in pbar:  # batch ------------------------------------------------------
+            # callbacks.run('on_train_batch_start')
+            ni = i + nb * epoch  # number integrated batches (since train start)
+            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
+
+            # Warmup
+            if ni <= nw:
+                xi = [0, nw]  # x interp
+                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
+                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+                for j, x in enumerate(optimizer.param_groups):
+                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+                    if 'momentum' in x:
+                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+            # Multi-scale
+            if opt.multi_scale:
+                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
+                sf = sz / max(imgs.shape[2:])  # scale factor
+                if sf != 1:
+                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
+                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+            # Forward
+            with torch.cuda.amp.autocast(amp):
+                pred = model(imgs)  # forward
+                loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
+                if RANK != -1:
+                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
+                if opt.quad:
+                    loss *= 4.
+
+            # Backward
+            scaler.scale(loss).backward()
+
+            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+            if ni - last_opt_step >= accumulate:
+                scaler.unscale_(optimizer)  # unscale gradients
+                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
+                scaler.step(optimizer)  # optimizer.step
+                scaler.update()
+                optimizer.zero_grad()
+                if ema:
+                    ema.update(model)
+                last_opt_step = ni
+
+            # Log
+            if RANK in {-1, 0}:
+                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
+                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
+                pbar.set_description(('%11s' * 2 + '%11.4g' * 6) %
+                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+                # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
+                # if callbacks.stop_training:
+                #    return
+
+                # Mosaic plots
+                if plots:
+                    if ni < 3:
+                        plot_images_and_masks(imgs, targets, masks, paths, save_dir / f'train_batch{ni}.jpg')
+                    if ni == 10:
+                        files = sorted(save_dir.glob('train*.jpg'))
+                        logger.log_images(files, 'Mosaics', epoch)
+            # end batch ------------------------------------------------------------------------------------------------
+
+        # Scheduler
+        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
+        scheduler.step()
+
+        if RANK in {-1, 0}:
+            # mAP
+            # callbacks.run('on_train_epoch_end', epoch=epoch)
+            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+            if not noval or final_epoch:  # Calculate mAP
+                results, maps, _ = validate.run(data_dict,
+                                                batch_size=batch_size // WORLD_SIZE * 2,
+                                                imgsz=imgsz,
+                                                half=amp,
+                                                model=ema.ema,
+                                                single_cls=single_cls,
+                                                dataloader=val_loader,
+                                                save_dir=save_dir,
+                                                plots=False,
+                                                callbacks=callbacks,
+                                                compute_loss=compute_loss,
+                                                mask_downsample_ratio=mask_ratio,
+                                                overlap=overlap)
+
+            # Update best mAP
+            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
+            if fi > best_fitness:
+                best_fitness = fi
+            log_vals = list(mloss) + list(results) + lr
+            # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+            # Log val metrics and media
+            metrics_dict = dict(zip(KEYS, log_vals))
+            logger.log_metrics(metrics_dict, epoch)
+
+            # Save model
+            if (not nosave) or (final_epoch and not evolve):  # if save
+                ckpt = {
+                    'epoch': epoch,
+                    'best_fitness': best_fitness,
+                    'model': deepcopy(de_parallel(model)).half(),
+                    'ema': deepcopy(ema.ema).half(),
+                    'updates': ema.updates,
+                    'optimizer': optimizer.state_dict(),
+                    'opt': vars(opt),
+                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
+                    'date': datetime.now().isoformat()}
+
+                # Save last, best and delete
+                torch.save(ckpt, last)
+                if best_fitness == fi:
+                    torch.save(ckpt, best)
+                if opt.save_period > 0 and epoch % opt.save_period == 0:
+                    torch.save(ckpt, w / f'epoch{epoch}.pt')
+                    logger.log_model(w / f'epoch{epoch}.pt')
+                del ckpt
+                # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+        # EarlyStopping
+        if RANK != -1:  # if DDP training
+            broadcast_list = [stop if RANK == 0 else None]
+            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
+            if RANK != 0:
+                stop = broadcast_list[0]
+        if stop:
+            break  # must break all DDP ranks
+
+        # end epoch ----------------------------------------------------------------------------------------------------
+    # end training -----------------------------------------------------------------------------------------------------
+    if RANK in {-1, 0}:
+        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+        for f in last, best:
+            if f.exists():
+                strip_optimizer(f)  # strip optimizers
+                if f is best:
+                    LOGGER.info(f'\nValidating {f}...')
+                    results, _, _ = validate.run(
+                        data_dict,
+                        batch_size=batch_size // WORLD_SIZE * 2,
+                        imgsz=imgsz,
+                        model=attempt_load(f, device).half(),
+                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
+                        single_cls=single_cls,
+                        dataloader=val_loader,
+                        save_dir=save_dir,
+                        save_json=is_coco,
+                        verbose=True,
+                        plots=plots,
+                        callbacks=callbacks,
+                        compute_loss=compute_loss,
+                        mask_downsample_ratio=mask_ratio,
+                        overlap=overlap)  # val best model with plots
+                    if is_coco:
+                        # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+                        metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
+                        logger.log_metrics(metrics_dict, epoch)
+
+        # callbacks.run('on_train_end', last, best, epoch, results)
+        # on train end callback using genericLogger
+        logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
+        if not opt.evolve:
+            logger.log_model(best, epoch)
+        if plots:
+            plot_results_with_masks(file=save_dir / 'results.csv')  # save results.png
+            files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
+            files = [(save_dir / f) for f in files if (save_dir / f).exists()]  # filter
+            LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+            logger.log_images(files, 'Results', epoch + 1)
+            logger.log_images(sorted(save_dir.glob('val*.jpg')), 'Validation', epoch + 1)
+    torch.cuda.empty_cache()
+    return results
+
+
+def parse_opt(known=False):
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s-seg.pt', help='initial weights path')
+    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+    parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+    parser.add_argument('--rect', action='store_true', help='rectangular training')
+    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+    parser.add_argument('--noplots', action='store_true', help='save no plot files')
+    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
+    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--project', default=ROOT / 'runs/train-seg', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--quad', action='store_true', help='quad dataloader')
+    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+
+    # Instance Segmentation Args
+    parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
+    parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
+
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+    # Checks
+    if RANK in {-1, 0}:
+        print_args(vars(opt))
+        check_git_status()
+        check_requirements()
+
+    # Resume
+    if opt.resume and not opt.evolve:  # resume from specified or most recent last.pt
+        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+        opt_yaml = last.parent.parent / 'opt.yaml'  # train options yaml
+        opt_data = opt.data  # original dataset
+        if opt_yaml.is_file():
+            with open(opt_yaml, errors='ignore') as f:
+                d = yaml.safe_load(f)
+        else:
+            d = torch.load(last, map_location='cpu')['opt']
+        opt = argparse.Namespace(**d)  # replace
+        opt.cfg, opt.weights, opt.resume = '', str(last), True  # reinstate
+        if is_url(opt_data):
+            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
+    else:
+        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
+        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+        if opt.evolve:
+            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
+                opt.project = str(ROOT / 'runs/evolve')
+            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
+        if opt.name == 'cfg':
+            opt.name = Path(opt.cfg).stem  # use model.yaml as name
+        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+    # DDP mode
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    if LOCAL_RANK != -1:
+        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
+        assert not opt.image_weights, f'--image-weights {msg}'
+        assert not opt.evolve, f'--evolve {msg}'
+        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+        torch.cuda.set_device(LOCAL_RANK)
+        device = torch.device('cuda', LOCAL_RANK)
+        dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')
+
+    # Train
+    if not opt.evolve:
+        train(opt.hyp, opt, device, callbacks)
+
+    # Evolve hyperparameters (optional)
+    else:
+        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+        meta = {
+            'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
+            'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
+            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
+            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
+            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
+            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
+            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
+            'box': (1, 0.02, 0.2),  # box loss gain
+            'cls': (1, 0.2, 4.0),  # cls loss gain
+            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
+            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
+            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
+            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
+            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
+            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
+            'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
+            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
+            'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
+            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
+            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
+            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
+            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
+            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
+            'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
+            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
+            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
+            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
+            'mixup': (1, 0.0, 1.0),  # image mixup (probability)
+            'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)
+
+        with open(opt.hyp, errors='ignore') as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
+                hyp['anchors'] = 3
+        if opt.noautoanchor:
+            del hyp['anchors'], meta['anchors']
+        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
+        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
+        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+        if opt.bucket:
+            # download evolve.csv if exists
+            subprocess.run([
+                'gsutil',
+                'cp',
+                f'gs://{opt.bucket}/evolve.csv',
+                str(evolve_csv),])
+
+        for _ in range(opt.evolve):  # generations to evolve
+            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
+                # Select parent(s)
+                parent = 'single'  # parent selection method: 'single' or 'weighted'
+                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+                n = min(5, len(x))  # number of previous results to consider
+                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
+                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
+                if parent == 'single' or len(x) == 1:
+                    # x = x[random.randint(0, n - 1)]  # random selection
+                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
+                elif parent == 'weighted':
+                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
+
+                # Mutate
+                mp, s = 0.8, 0.2  # mutation probability, sigma
+                npr = np.random
+                npr.seed(int(time.time()))
+                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
+                ng = len(meta)
+                v = np.ones(ng)
+                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
+                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
+                    hyp[k] = float(x[i + 7] * v[i])  # mutate
+
+            # Constrain to limits
+            for k, v in meta.items():
+                hyp[k] = max(hyp[k], v[1])  # lower limit
+                hyp[k] = min(hyp[k], v[2])  # upper limit
+                hyp[k] = round(hyp[k], 5)  # significant digits
+
+            # Train mutation
+            results = train(hyp.copy(), opt, device, callbacks)
+            callbacks = Callbacks()
+            # Write mutation results
+            print_mutation(KEYS, results, hyp.copy(), save_dir, opt.bucket)
+
+        # Plot results
+        plot_evolve(evolve_csv)
+        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+                    f"Results saved to {colorstr('bold', save_dir)}\n"
+                    f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
+    opt = parse_opt(True)
+    for k, v in kwargs.items():
+        setattr(opt, k, v)
+    main(opt)
+    return opt
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/segment/tutorial.ipynb b/yolov5_model/segment/tutorial.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cb52045bcb2535ae416cb4468dd04da60929b08e
--- /dev/null
+++ b/yolov5_model/segment/tutorial.ipynb
@@ -0,0 +1,594 @@
+{
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "t6MPjfT5NrKQ"
+      },
+      "source": [
+        "<div align=\"center\">\n",
+        "\n",
+        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
+        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
+        "\n",
+        "\n",
+        "<br>\n",
+        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
+        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
+        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "<br>\n",
+        "\n",
+        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
+        "\n",
+        "</div>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7mGmQbAO5pQb"
+      },
+      "source": [
+        "# Setup\n",
+        "\n",
+        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "wbvMlHd_QwMG",
+        "outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
+          ]
+        }
+      ],
+      "source": [
+        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
+        "%cd yolov5\n",
+        "%pip install -qr requirements.txt  # install\n",
+        "\n",
+        "import torch\n",
+        "import utils\n",
+        "display = utils.notebook_init()  # checks"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4JnkELT0cIJg"
+      },
+      "source": [
+        "# 1. Predict\n",
+        "\n",
+        "`segment/predict.py` runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n",
+        "\n",
+        "```shell\n",
+        "python segment/predict.py --source 0  # webcam\n",
+        "                             img.jpg  # image \n",
+        "                             vid.mp4  # video\n",
+        "                             screen  # screenshot\n",
+        "                             path/  # directory\n",
+        "                             'path/*.jpg'  # glob\n",
+        "                             'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
+        "                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "zR9ZbuQCH7FX",
+        "outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n",
+            "100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
+            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n",
+            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n",
+            "Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n",
+            "Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n",
+        "#display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "hkAzDWJ7cWTr"
+      },
+      "source": [
+        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
+        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/199030123-08c72f8d-6871-4116-8ed3-c373642cf28e.jpg\" width=\"600\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0eq1SMWl6Sfn"
+      },
+      "source": [
+        "# 2. Validate\n",
+        "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "WQPtK1QYVaD_",
+        "outputId": "9d751d8c-bee8-4339-cf30-9854ca530449"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip  ...\n",
+            "Downloading http://images.cocodataset.org/zips/val2017.zip ...\n",
+            "######################################################################## 100.0%\n",
+            "######################################################################## 100.0%\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Download COCO val\n",
+        "!bash data/scripts/get_coco.sh --val --segments  # download (780M - 5000 images)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "X58w8JLpMnjH",
+        "outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 157/157 [01:54<00:00,  1.37it/s]\n",
+            "                   all       5000      36335      0.673      0.517      0.566      0.373      0.672       0.49      0.532      0.319\n",
+            "Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n",
+            "Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Validate YOLOv5s-seg on COCO val\n",
+        "!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZY2VXXXu74w5"
+      },
+      "source": [
+        "# 3. Train\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
+        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
+        "<br><br>\n",
+        "\n",
+        "Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n",
+        "\n",
+        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
+        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
+        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
+        "- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n",
+        "<br><br>\n",
+        "\n",
+        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
+        "\n",
+        "## Train on Custom Data with Roboflow 🌟 NEW\n",
+        "\n",
+        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
+        "\n",
+        "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n",
+        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n",
+        "<br>\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://robflow-public-assets.s3.amazonaws.com/how-to-train-yolov5-segmentation-annotation.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "i3oKtE4g-aNn"
+      },
+      "outputs": [],
+      "source": [
+        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
+        "logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']\n",
+        "\n",
+        "if logger == 'TensorBoard':\n",
+        "  %load_ext tensorboard\n",
+        "  %tensorboard --logdir runs/train-seg\n",
+        "elif logger == 'Comet':\n",
+        "  %pip install -q comet_ml\n",
+        "  import comet_ml; comet_ml.init()\n",
+        "elif logger == 'ClearML':\n",
+        "  import clearml; clearml.browser_login()"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "1NcFxRcFdJ_O",
+        "outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
+            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
+            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
+            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
+            "\n",
+            "Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
+            "Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
+            "100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n",
+            "Dataset download success ✅ (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
+            "\n",
+            "                 from  n    params  module                                  arguments                     \n",
+            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
+            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
+            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
+            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
+            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
+            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
+            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
+            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
+            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
+            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
+            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
+            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
+            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
+            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
+            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
+            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
+            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
+            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
+            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
+            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
+            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
+            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
+            " 24      [17, 20, 23]  1    615133  models.yolo.Segment                     [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n",
+            "Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n",
+            "\n",
+            "Transferred 367/367 items from yolov5s-seg.pt\n",
+            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
+            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
+            "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 98.90it/s]\n",
+            "\n",
+            "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
+            "Plotting labels to runs/train-seg/exp/labels.jpg... \n",
+            "Image sizes 640 train, 640 val\n",
+            "Using 2 dataloader workers\n",
+            "Logging results to \u001b[1mruns/train-seg/exp\u001b[0m\n",
+            "Starting training for 3 epochs...\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        0/2      4.92G     0.0417    0.04646    0.06066    0.02126        192        640: 100% 8/8 [00:08<00:00,  1.10s/it]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.81it/s]\n",
+            "                   all        128        929      0.737      0.649      0.715      0.492      0.719      0.617      0.658      0.408\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        1/2      6.29G    0.04157    0.04503    0.05772    0.01777        208        640: 100% 8/8 [00:09<00:00,  1.21s/it]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.87it/s]\n",
+            "                   all        128        929      0.756      0.674      0.738      0.506      0.725       0.64       0.68      0.422\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        2/2      6.29G     0.0425    0.04793    0.06784    0.01863        161        640: 100% 8/8 [00:03<00:00,  2.02it/s]\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.88it/s]\n",
+            "                   all        128        929      0.736      0.694      0.747      0.522      0.769      0.622      0.683      0.427\n",
+            "\n",
+            "3 epochs completed in 0.009 hours.\n",
+            "Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB\n",
+            "Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB\n",
+            "\n",
+            "Validating runs/train-seg/exp/weights/best.pt...\n",
+            "Fusing layers... \n",
+            "Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
+            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:06<00:00,  1.59s/it]\n",
+            "                   all        128        929      0.738      0.694      0.746      0.522      0.759      0.625      0.682      0.426\n",
+            "                person        128        254      0.845      0.756      0.836       0.55      0.861      0.669      0.759      0.407\n",
+            "               bicycle        128          6      0.475      0.333      0.549      0.341      0.711      0.333      0.526      0.322\n",
+            "                   car        128         46      0.612      0.565      0.539      0.257      0.555      0.435      0.477      0.171\n",
+            "            motorcycle        128          5       0.73        0.8      0.752      0.571      0.747        0.8      0.752       0.42\n",
+            "              airplane        128          6          1      0.943      0.995      0.732       0.92      0.833      0.839      0.555\n",
+            "                   bus        128          7      0.677      0.714      0.722      0.653      0.711      0.714      0.722      0.593\n",
+            "                 train        128          3          1      0.951      0.995      0.551          1      0.884      0.995      0.781\n",
+            "                 truck        128         12      0.555      0.417      0.457      0.285      0.624      0.417      0.397      0.277\n",
+            "                  boat        128          6      0.624        0.5      0.584      0.186          1      0.326      0.412      0.133\n",
+            "         traffic light        128         14      0.513      0.302      0.411      0.247      0.435      0.214      0.376      0.251\n",
+            "             stop sign        128          2      0.824          1      0.995      0.796      0.906          1      0.995      0.747\n",
+            "                 bench        128          9       0.75      0.667      0.763      0.367      0.724      0.585      0.698      0.209\n",
+            "                  bird        128         16      0.961          1      0.995      0.686      0.918      0.938       0.91      0.525\n",
+            "                   cat        128          4      0.771      0.857      0.945      0.752       0.76        0.8      0.945      0.728\n",
+            "                   dog        128          9      0.987      0.778      0.963      0.681          1      0.705       0.89      0.574\n",
+            "                 horse        128          2      0.703          1      0.995      0.697      0.759          1      0.995      0.249\n",
+            "              elephant        128         17      0.916      0.882       0.93      0.691      0.811      0.765      0.829      0.537\n",
+            "                  bear        128          1      0.664          1      0.995      0.995      0.701          1      0.995      0.895\n",
+            "                 zebra        128          4      0.864          1      0.995      0.921      0.879          1      0.995      0.804\n",
+            "               giraffe        128          9      0.883      0.889       0.94      0.683      0.845      0.778       0.78      0.463\n",
+            "              backpack        128          6          1       0.59      0.701      0.372          1      0.474       0.52      0.252\n",
+            "              umbrella        128         18      0.654      0.839      0.887       0.52      0.517      0.556      0.427      0.229\n",
+            "               handbag        128         19       0.54      0.211      0.408      0.221      0.796      0.206      0.396      0.196\n",
+            "                   tie        128          7      0.864      0.857      0.857      0.577      0.925      0.857      0.857      0.534\n",
+            "              suitcase        128          4      0.716          1      0.945      0.647      0.767          1      0.945      0.634\n",
+            "               frisbee        128          5      0.708        0.8      0.761      0.643      0.737        0.8      0.761      0.501\n",
+            "                  skis        128          1      0.691          1      0.995      0.796      0.761          1      0.995      0.199\n",
+            "             snowboard        128          7      0.918      0.857      0.904      0.604       0.32      0.286      0.235      0.137\n",
+            "           sports ball        128          6      0.902      0.667      0.701      0.466      0.727        0.5      0.497      0.471\n",
+            "                  kite        128         10      0.586        0.4      0.511      0.231      0.663      0.394      0.417      0.139\n",
+            "          baseball bat        128          4      0.359        0.5      0.401      0.169      0.631        0.5      0.526      0.133\n",
+            "        baseball glove        128          7          1      0.519       0.58      0.327      0.687      0.286      0.455      0.328\n",
+            "            skateboard        128          5      0.729        0.8      0.862      0.631      0.599        0.6      0.604      0.379\n",
+            "         tennis racket        128          7       0.57      0.714      0.645      0.448      0.608      0.714      0.645      0.412\n",
+            "                bottle        128         18      0.469      0.393      0.537      0.357      0.661      0.389      0.543      0.349\n",
+            "            wine glass        128         16      0.677      0.938      0.866      0.441       0.53      0.625       0.67      0.334\n",
+            "                   cup        128         36      0.777      0.722      0.812      0.466      0.725      0.583      0.762      0.467\n",
+            "                  fork        128          6      0.948      0.333      0.425       0.27      0.527      0.167       0.18      0.102\n",
+            "                 knife        128         16      0.757      0.587      0.669      0.458       0.79        0.5      0.552       0.34\n",
+            "                 spoon        128         22       0.74      0.364      0.559      0.269      0.925      0.364      0.513      0.213\n",
+            "                  bowl        128         28      0.766      0.714      0.725      0.559      0.803      0.584      0.665      0.353\n",
+            "                banana        128          1      0.408          1      0.995      0.398      0.539          1      0.995      0.497\n",
+            "              sandwich        128          2          1          0      0.695      0.536          1          0      0.498      0.448\n",
+            "                orange        128          4      0.467          1      0.995      0.693      0.518          1      0.995      0.663\n",
+            "              broccoli        128         11      0.462      0.455      0.383      0.259      0.548      0.455      0.384      0.256\n",
+            "                carrot        128         24      0.631      0.875       0.77      0.533      0.757      0.909      0.853      0.499\n",
+            "               hot dog        128          2      0.555          1      0.995      0.995      0.578          1      0.995      0.796\n",
+            "                 pizza        128          5       0.89        0.8      0.962      0.796          1      0.778      0.962      0.766\n",
+            "                 donut        128         14      0.695          1      0.893      0.772      0.704          1      0.893      0.696\n",
+            "                  cake        128          4      0.826          1      0.995       0.92      0.862          1      0.995      0.846\n",
+            "                 chair        128         35       0.53      0.571      0.613      0.336       0.67        0.6      0.538      0.271\n",
+            "                 couch        128          6      0.972      0.667      0.833      0.627          1       0.62      0.696      0.394\n",
+            "          potted plant        128         14        0.7      0.857      0.883      0.552      0.836      0.857      0.883      0.473\n",
+            "                   bed        128          3      0.979      0.667       0.83      0.366          1          0       0.83      0.373\n",
+            "          dining table        128         13      0.775      0.308      0.505      0.364      0.644      0.231       0.25     0.0804\n",
+            "                toilet        128          2      0.836          1      0.995      0.846      0.887          1      0.995      0.797\n",
+            "                    tv        128          2        0.6          1      0.995      0.846      0.655          1      0.995      0.896\n",
+            "                laptop        128          3      0.822      0.333      0.445      0.307          1          0      0.392       0.12\n",
+            "                 mouse        128          2          1          0          0          0          1          0          0          0\n",
+            "                remote        128          8      0.745        0.5       0.62      0.459      0.821        0.5      0.624      0.449\n",
+            "            cell phone        128          8      0.686      0.375      0.502      0.272      0.488       0.25       0.28      0.132\n",
+            "             microwave        128          3      0.831          1      0.995      0.722      0.867          1      0.995      0.592\n",
+            "                  oven        128          5      0.439        0.4      0.435      0.294      0.823        0.6      0.645      0.418\n",
+            "                  sink        128          6      0.677        0.5      0.565      0.448      0.722        0.5       0.46      0.362\n",
+            "          refrigerator        128          5      0.533        0.8      0.783      0.524      0.558        0.8      0.783      0.527\n",
+            "                  book        128         29      0.732      0.379      0.423      0.196       0.69      0.207       0.38      0.131\n",
+            "                 clock        128          9      0.889      0.778      0.917      0.677      0.908      0.778      0.875      0.604\n",
+            "                  vase        128          2      0.375          1      0.995      0.995      0.455          1      0.995      0.796\n",
+            "              scissors        128          1          1          0     0.0166    0.00166          1          0          0          0\n",
+            "            teddy bear        128         21      0.813      0.829      0.841      0.457      0.826      0.678      0.786      0.422\n",
+            "            toothbrush        128          5      0.806          1      0.995      0.733      0.991          1      0.995      0.628\n",
+            "Results saved to \u001b[1mruns/train-seg/exp\u001b[0m\n"
+          ]
+        }
+      ],
+      "source": [
+        "# Train YOLOv5s on COCO128 for 3 epochs\n",
+        "!python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "15glLzbQx5u0"
+      },
+      "source": [
+        "# 4. Visualize"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "nWOsI5wJR1o3"
+      },
+      "source": [
+        "## Comet Logging and Visualization 🌟 NEW\n",
+        "\n",
+        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
+        "\n",
+        "Getting started is easy:\n",
+        "```shell\n",
+        "pip install comet_ml  # 1. install\n",
+        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
+        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
+        "```\n",
+        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
+        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
+        "\n",
+        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
+        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Lay2WsTjNJzP"
+      },
+      "source": [
+        "## ClearML Logging and Automation 🌟 NEW\n",
+        "\n",
+        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
+        "\n",
+        "- `pip install clearml`\n",
+        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
+        "\n",
+        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
+        "\n",
+        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n",
+        "\n",
+        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
+        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-WPvRbS5Swl6"
+      },
+      "source": [
+        "## Local Logging\n",
+        "\n",
+        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
+        "\n",
+        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
+        "\n",
+        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Zelyeqbyt3GD"
+      },
+      "source": [
+        "# Environments\n",
+        "\n",
+        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
+        "\n",
+        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
+        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
+        "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "6Qu7Iesl0p54"
+      },
+      "source": [
+        "# Status\n",
+        "\n",
+        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
+        "\n",
+        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "IEijrePND_2I"
+      },
+      "source": [
+        "# Appendix\n",
+        "\n",
+        "Additional content below."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "GMusP4OAxFu6"
+      },
+      "outputs": [],
+      "source": [
+        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
+        "import torch\n",
+        "\n",
+        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s-seg')  # yolov5n - yolov5x6 or custom\n",
+        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
+        "results = model(im)  # inference\n",
+        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
+      ]
+    }
+  ],
+  "metadata": {
+    "accelerator": "GPU",
+    "colab": {
+      "name": "YOLOv5 Segmentation Tutorial",
+      "provenance": [],
+      "toc_visible": true
+    },
+    "kernelspec": {
+      "display_name": "Python 3 (ipykernel)",
+      "language": "python",
+      "name": "python3"
+    },
+    "language_info": {
+      "codemirror_mode": {
+        "name": "ipython",
+        "version": 3
+      },
+      "file_extension": ".py",
+      "mimetype": "text/x-python",
+      "name": "python",
+      "nbconvert_exporter": "python",
+      "pygments_lexer": "ipython3",
+      "version": "3.7.12"
+    }
+  },
+  "nbformat": 4,
+  "nbformat_minor": 0
+}
diff --git a/yolov5_model/segment/val.py b/yolov5_model/segment/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7f95fe9b6fcb5853408551eb7fff2fadedcc8ff
--- /dev/null
+++ b/yolov5_model/segment/val.py
@@ -0,0 +1,473 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Validate a trained YOLOv5 segment model on a segment dataset
+
+Usage:
+    $ bash data/scripts/get_coco.sh --val --segments  # download COCO-segments val split (1G, 5000 images)
+    $ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640  # validate COCO-segments
+
+Usage - formats:
+    $ python segment/val.py --weights yolov5s-seg.pt                 # PyTorch
+                                      yolov5s-seg.torchscript        # TorchScript
+                                      yolov5s-seg.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                      yolov5s-seg_openvino_label     # OpenVINO
+                                      yolov5s-seg.engine             # TensorRT
+                                      yolov5s-seg.mlmodel            # CoreML (macOS-only)
+                                      yolov5s-seg_saved_model        # TensorFlow SavedModel
+                                      yolov5s-seg.pb                 # TensorFlow GraphDef
+                                      yolov5s-seg.tflite             # TensorFlow Lite
+                                      yolov5s-seg_edgetpu.tflite     # TensorFlow Edge TPU
+                                      yolov5s-seg_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import json
+import os
+import subprocess
+import sys
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import torch.nn.functional as F
+
+from models.common import DetectMultiBackend
+from models.yolo import SegmentationModel
+from utils.callbacks import Callbacks
+from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
+                           check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
+                           non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, box_iou
+from utils.plots import output_to_target, plot_val_study
+from utils.segment.dataloaders import create_dataloader
+from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image
+from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
+from utils.segment.plots import plot_images_and_masks
+from utils.torch_utils import de_parallel, select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+    # Save one txt result
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, 'a') as f:
+            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map, pred_masks):
+    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+    from pycocotools.mask import encode
+
+    def single_encode(x):
+        rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
+        rle['counts'] = rle['counts'].decode('utf-8')
+        return rle
+
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    pred_masks = np.transpose(pred_masks, (2, 0, 1))
+    with ThreadPool(NUM_THREADS) as pool:
+        rles = pool.map(single_encode, pred_masks)
+    for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
+        jdict.append({
+            'image_id': image_id,
+            'category_id': class_map[int(p[5])],
+            'bbox': [round(x, 3) for x in b],
+            'score': round(p[4], 5),
+            'segmentation': rles[i]})
+
+
+def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
+    """
+    Return correct prediction matrix
+    Arguments:
+        detections (array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (array[N, 10]), for 10 IoU levels
+    """
+    if masks:
+        if overlap:
+            nl = len(labels)
+            index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
+            gt_masks = gt_masks.repeat(nl, 1, 1)  # shape(1,640,640) -> (n,640,640)
+            gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
+        if gt_masks.shape[1:] != pred_masks.shape[1:]:
+            gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
+            gt_masks = gt_masks.gt_(0.5)
+        iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
+    else:  # boxes
+        iou = box_iou(labels[:, 1:], detections[:, :4])
+
+    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+    correct_class = labels[:, 0:1] == detections[:, 5]
+    for i in range(len(iouv)):
+        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                # matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+            correct[matches[:, 1].astype(int), i] = True
+    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+        data,
+        weights=None,  # model.pt path(s)
+        batch_size=32,  # batch size
+        imgsz=640,  # inference size (pixels)
+        conf_thres=0.001,  # confidence threshold
+        iou_thres=0.6,  # NMS IoU threshold
+        max_det=300,  # maximum detections per image
+        task='val',  # train, val, test, speed or study
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        workers=8,  # max dataloader workers (per RANK in DDP mode)
+        single_cls=False,  # treat as single-class dataset
+        augment=False,  # augmented inference
+        verbose=False,  # verbose output
+        save_txt=False,  # save results to *.txt
+        save_hybrid=False,  # save label+prediction hybrid results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_json=False,  # save a COCO-JSON results file
+        project=ROOT / 'runs/val-seg',  # save to project/name
+        name='exp',  # save to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=True,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        model=None,
+        dataloader=None,
+        save_dir=Path(''),
+        plots=True,
+        overlap=False,
+        mask_downsample_ratio=1,
+        compute_loss=None,
+        callbacks=Callbacks(),
+):
+    if save_json:
+        check_requirements('pycocotools>=2.0.6')
+        process = process_mask_native  # more accurate
+    else:
+        process = process_mask  # faster
+
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != 'cpu'  # half precision only supported on CUDA
+        model.half() if half else model.float()
+        nm = de_parallel(model).model[-1].nm  # number of masks
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32  # number of masks
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    cuda = device.type != 'cpu'
+    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt')  # COCO dataset
+    nc = 1 if single_cls else int(data['nc'])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        if pt and not single_cls:  # check --weights are trained on --data
+            ncm = model.model.nc
+            assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+                              f'classes). Pass correct combination of --weights and --data that are trained together.'
+        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
+        pad, rect = (0.0, False) if task == 'speed' else (0.5, pt)  # square inference for benchmarks
+        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
+        dataloader = create_dataloader(data[task],
+                                       imgsz,
+                                       batch_size,
+                                       stride,
+                                       single_cls,
+                                       pad=pad,
+                                       rect=rect,
+                                       workers=workers,
+                                       prefix=colorstr(f'{task}: '),
+                                       overlap_mask=overlap,
+                                       mask_downsample_ratio=mask_downsample_ratio)[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = model.names if hasattr(model, 'names') else model.module.names  # get class names
+    if isinstance(names, (list, tuple)):  # old format
+        names = dict(enumerate(names))
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', 'R',
+                                  'mAP50', 'mAP50-95)')
+    dt = Profile(), Profile(), Profile()
+    metrics = Metrics()
+    loss = torch.zeros(4, device=device)
+    jdict, stats = [], []
+    # callbacks.run('on_val_start')
+    pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT)  # progress bar
+    for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
+        # callbacks.run('on_val_batch_start')
+        with dt[0]:
+            if cuda:
+                im = im.to(device, non_blocking=True)
+                targets = targets.to(device)
+                masks = masks.to(device)
+            masks = masks.float()
+            im = im.half() if half else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            nb, _, height, width = im.shape  # batch size, channels, height, width
+
+        # Inference
+        with dt[1]:
+            preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None)
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss((train_out, protos), targets, masks)[1]  # box, obj, cls
+
+        # NMS
+        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        with dt[2]:
+            preds = non_max_suppression(preds,
+                                        conf_thres,
+                                        iou_thres,
+                                        labels=lb,
+                                        multi_label=True,
+                                        agnostic=single_cls,
+                                        max_det=max_det,
+                                        nm=nm)
+
+        # Metrics
+        plot_masks = []  # masks for plotting
+        for si, (pred, proto) in enumerate(zip(preds, protos)):
+            labels = targets[targets[:, 0] == si, 1:]
+            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
+            path, shape = Path(paths[si]), shapes[si][0]
+            correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            seen += 1
+
+            if npr == 0:
+                if nl:
+                    stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
+                    if plots:
+                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+                continue
+
+            # Masks
+            midx = [si] if overlap else targets[:, 0] == si
+            gt_masks = masks[midx]
+            pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct_bboxes = process_batch(predn, labelsn, iouv)
+                correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
+                if plots:
+                    confusion_matrix.process_batch(predn, labelsn)
+            stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0]))  # (conf, pcls, tcls)
+
+            pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
+            if plots and batch_i < 3:
+                plot_masks.append(pred_masks[:15])  # filter top 15 to plot
+
+            # Save/log
+            if save_txt:
+                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+            if save_json:
+                pred_masks = scale_image(im[si].shape[1:],
+                                         pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
+                save_one_json(predn, jdict, path, class_map, pred_masks)  # append to COCO-JSON dictionary
+            # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            if len(plot_masks):
+                plot_masks = torch.cat(plot_masks, dim=0)
+            plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
+            plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
+                                  save_dir / f'val_batch{batch_i}_pred.jpg', names)  # pred
+
+        # callbacks.run('on_val_batch_end')
+
+    # Compute metrics
+    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
+        metrics.update(results)
+    nt = np.bincount(stats[4].astype(int), minlength=nc)  # number of targets per class
+
+    # Print results
+    pf = '%22s' + '%11i' * 2 + '%11.3g' * 8  # print format
+    LOGGER.info(pf % ('all', seen, nt.sum(), *metrics.mean_results()))
+    if nt.sum() == 0:
+        LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(metrics.ap_class_index):
+            LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
+
+    # Print speeds
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+    # callbacks.run('on_val_end')
+
+    mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
+        anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json'))  # annotations
+        pred_json = str(save_dir / f'{w}_predictions.json')  # predictions
+        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+        with open(pred_json, 'w') as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            results = []
+            for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
+                if is_coco:
+                    eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # img ID to evaluate
+                eval.evaluate()
+                eval.accumulate()
+                eval.summarize()
+                results.extend(eval.stats[:2])  # update results (mAP@0.5:0.95, mAP@0.5)
+            map_bbox, map50_bbox, map_mask, map50_mask = results
+        except Exception as e:
+            LOGGER.info(f'pycocotools unable to run: {e}')
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
+    return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
+    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+    parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    # opt.save_json |= opt.data.endswith('coco.yaml')
+    opt.save_txt |= opt.save_hybrid
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+    if opt.task in ('train', 'val', 'test'):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+        if opt.save_hybrid:
+            LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = torch.cuda.is_available() and opt.device != 'cpu'  # FP16 for fastest results
+        if opt.task == 'speed':  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == 'study':  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt='%10.4g')  # save
+            subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
+            plot_val_study(x=x)  # plot
+        else:
+            raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/setup.cfg b/yolov5_model/setup.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..d7c4cb3e1a4d34291816835b071ba0d75243d79b
--- /dev/null
+++ b/yolov5_model/setup.cfg
@@ -0,0 +1,54 @@
+# Project-wide configuration file, can be used for package metadata and other toll configurations
+# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
+# Local usage: pip install pre-commit, pre-commit run --all-files
+
+[metadata]
+license_file = LICENSE
+description_file = README.md
+
+[tool:pytest]
+norecursedirs =
+    .git
+    dist
+    build
+addopts =
+    --doctest-modules
+    --durations=25
+    --color=yes
+
+[flake8]
+max-line-length = 120
+exclude = .tox,*.egg,build,temp
+select = E,W,F
+doctests = True
+verbose = 2
+# https://pep8.readthedocs.io/en/latest/intro.html#error-codes
+format = pylint
+# see: https://www.flake8rules.com/
+ignore = E731,F405,E402,F401,W504,E127,E231,E501,F403
+    # E731: Do not assign a lambda expression, use a def
+    # F405: name may be undefined, or defined from star imports: module
+    # E402: module level import not at top of file
+    # F401: module imported but unused
+    # W504: line break after binary operator
+    # E127: continuation line over-indented for visual indent
+    # E231: missing whitespace after ‘,’, ‘;’, or ‘:’
+    # E501: line too long
+    # F403: ‘from module import *’ used; unable to detect undefined names
+
+[isort]
+# https://pycqa.github.io/isort/docs/configuration/options.html
+line_length = 120
+# see: https://pycqa.github.io/isort/docs/configuration/multi_line_output_modes.html
+multi_line_output = 0
+
+[yapf]
+based_on_style = pep8
+spaces_before_comment = 2
+COLUMN_LIMIT = 120
+COALESCE_BRACKETS = True
+SPACES_AROUND_POWER_OPERATOR = True
+SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET = False
+SPLIT_BEFORE_CLOSING_BRACKET = False
+SPLIT_BEFORE_FIRST_ARGUMENT = False
+# EACH_DICT_ENTRY_ON_SEPARATE_LINE = False
diff --git a/yolov5_model/train.py b/yolov5_model/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..c4e3aac3561acb1780696993472fc144129a3b77
--- /dev/null
+++ b/yolov5_model/train.py
@@ -0,0 +1,640 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Train a YOLOv5 model on a custom dataset.
+Models and datasets download automatically from the latest YOLOv5 release.
+
+Usage - Single-GPU training:
+    $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)
+    $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch
+
+Usage - Multi-GPU DDP training:
+    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
+
+Models:     https://github.com/ultralytics/yolov5/tree/master/models
+Datasets:   https://github.com/ultralytics/yolov5/tree/master/data
+Tutorial:   https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
+"""
+
+import argparse
+import math
+import os
+import random
+import subprocess
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.optim import lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import val as validate  # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import Model
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.downloads import attempt_download, is_url
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
+                           check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
+                           get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
+                           labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
+                           yaml_save)
+from utils.loggers import Loggers
+from utils.loggers.comet.comet_utils import check_comet_resume
+from utils.loss import ComputeLoss
+from utils.metrics import fitness
+from utils.plots import plot_evolve
+from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
+                               smart_resume, torch_distributed_zero_first)
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+GIT_INFO = check_git_info()
+
+
+def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
+    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
+        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
+    callbacks.run('on_pretrain_routine_start')
+
+    # Directories
+    w = save_dir / 'weights'  # weights dir
+    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
+    last, best = w / 'last.pt', w / 'best.pt'
+
+    # Hyperparameters
+    if isinstance(hyp, str):
+        with open(hyp, errors='ignore') as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+    opt.hyp = hyp.copy()  # for saving hyps to checkpoints
+
+    # Save run settings
+    if not evolve:
+        yaml_save(save_dir / 'hyp.yaml', hyp)
+        yaml_save(save_dir / 'opt.yaml', vars(opt))
+
+    # Loggers
+    data_dict = None
+    if RANK in {-1, 0}:
+        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
+
+        # Register actions
+        for k in methods(loggers):
+            callbacks.register_action(k, callback=getattr(loggers, k))
+
+        # Process custom dataset artifact link
+        data_dict = loggers.remote_dataset
+        if resume:  # If resuming runs from remote artifact
+            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
+
+    # Config
+    plots = not evolve and not opt.noplots  # create plots
+    cuda = device.type != 'cpu'
+    init_seeds(opt.seed + 1 + RANK, deterministic=True)
+    with torch_distributed_zero_first(LOCAL_RANK):
+        data_dict = data_dict or check_dataset(data)  # check if None
+    train_path, val_path = data_dict['train'], data_dict['val']
+    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
+    names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
+    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset
+
+    # Model
+    check_suffix(weights, '.pt')  # check weights
+    pretrained = weights.endswith('.pt')
+    if pretrained:
+        with torch_distributed_zero_first(LOCAL_RANK):
+            weights = attempt_download(weights)  # download if not found locally
+        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
+        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
+        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
+        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
+        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
+        model.load_state_dict(csd, strict=False)  # load
+        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
+    else:
+        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
+    amp = check_amp(model)  # check AMP
+
+    # Freeze
+    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
+    for k, v in model.named_parameters():
+        v.requires_grad = True  # train all layers
+        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
+        if any(x in k for x in freeze):
+            LOGGER.info(f'freezing {k}')
+            v.requires_grad = False
+
+    # Image size
+    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
+    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple
+
+    # Batch size
+    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
+        batch_size = check_train_batch_size(model, imgsz, amp)
+        loggers.on_params_update({'batch_size': batch_size})
+
+    # Optimizer
+    nbs = 64  # nominal batch size
+    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
+    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
+    optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
+
+    # Scheduler
+    if opt.cos_lr:
+        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
+    else:
+        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
+    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+    # EMA
+    ema = ModelEMA(model) if RANK in {-1, 0} else None
+
+    # Resume
+    best_fitness, start_epoch = 0.0, 0
+    if pretrained:
+        if resume:
+            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
+        del ckpt, csd
+
+    # DP mode
+    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+        LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
+                       'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
+        model = torch.nn.DataParallel(model)
+
+    # SyncBatchNorm
+    if opt.sync_bn and cuda and RANK != -1:
+        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+        LOGGER.info('Using SyncBatchNorm()')
+
+    # Trainloader
+    train_loader, dataset = create_dataloader(train_path,
+                                              imgsz,
+                                              batch_size // WORLD_SIZE,
+                                              gs,
+                                              single_cls,
+                                              hyp=hyp,
+                                              augment=True,
+                                              cache=None if opt.cache == 'val' else opt.cache,
+                                              rect=opt.rect,
+                                              rank=LOCAL_RANK,
+                                              workers=workers,
+                                              image_weights=opt.image_weights,
+                                              quad=opt.quad,
+                                              prefix=colorstr('train: '),
+                                              shuffle=True,
+                                              seed=opt.seed)
+    labels = np.concatenate(dataset.labels, 0)
+    mlc = int(labels[:, 0].max())  # max label class
+    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+    # Process 0
+    if RANK in {-1, 0}:
+        val_loader = create_dataloader(val_path,
+                                       imgsz,
+                                       batch_size // WORLD_SIZE * 2,
+                                       gs,
+                                       single_cls,
+                                       hyp=hyp,
+                                       cache=None if noval else opt.cache,
+                                       rect=True,
+                                       rank=-1,
+                                       workers=workers * 2,
+                                       pad=0.5,
+                                       prefix=colorstr('val: '))[0]
+
+        if not resume:
+            if not opt.noautoanchor:
+                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)  # run AutoAnchor
+            model.half().float()  # pre-reduce anchor precision
+
+        callbacks.run('on_pretrain_routine_end', labels, names)
+
+    # DDP mode
+    if cuda and RANK != -1:
+        model = smart_DDP(model)
+
+    # Model attributes
+    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
+    hyp['box'] *= 3 / nl  # scale to layers
+    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
+    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
+    hyp['label_smoothing'] = opt.label_smoothing
+    model.nc = nc  # attach number of classes to model
+    model.hyp = hyp  # attach hyperparameters to model
+    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
+    model.names = names
+
+    # Start training
+    t0 = time.time()
+    nb = len(train_loader)  # number of batches
+    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
+    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
+    last_opt_step = -1
+    maps = np.zeros(nc)  # mAP per class
+    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+    scheduler.last_epoch = start_epoch - 1  # do not move
+    scaler = torch.cuda.amp.GradScaler(enabled=amp)
+    stopper, stop = EarlyStopping(patience=opt.patience), False
+    compute_loss = ComputeLoss(model)  # init loss class
+    callbacks.run('on_train_start')
+    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+                f"Logging results to {colorstr('bold', save_dir)}\n"
+                f'Starting training for {epochs} epochs...')
+    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
+        callbacks.run('on_train_epoch_start')
+        model.train()
+
+        # Update image weights (optional, single-GPU only)
+        if opt.image_weights:
+            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
+            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
+            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
+
+        # Update mosaic border (optional)
+        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
+
+        mloss = torch.zeros(3, device=device)  # mean losses
+        if RANK != -1:
+            train_loader.sampler.set_epoch(epoch)
+        pbar = enumerate(train_loader)
+        LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
+        if RANK in {-1, 0}:
+            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
+        optimizer.zero_grad()
+        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
+            callbacks.run('on_train_batch_start')
+            ni = i + nb * epoch  # number integrated batches (since train start)
+            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
+
+            # Warmup
+            if ni <= nw:
+                xi = [0, nw]  # x interp
+                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
+                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+                for j, x in enumerate(optimizer.param_groups):
+                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
+                    if 'momentum' in x:
+                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+            # Multi-scale
+            if opt.multi_scale:
+                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
+                sf = sz / max(imgs.shape[2:])  # scale factor
+                if sf != 1:
+                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
+                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+            # Forward
+            with torch.cuda.amp.autocast(amp):
+                pred = model(imgs)  # forward
+                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
+                if RANK != -1:
+                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
+                if opt.quad:
+                    loss *= 4.
+
+            # Backward
+            scaler.scale(loss).backward()
+
+            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
+            if ni - last_opt_step >= accumulate:
+                scaler.unscale_(optimizer)  # unscale gradients
+                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
+                scaler.step(optimizer)  # optimizer.step
+                scaler.update()
+                optimizer.zero_grad()
+                if ema:
+                    ema.update(model)
+                last_opt_step = ni
+
+            # Log
+            if RANK in {-1, 0}:
+                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
+                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
+                pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
+                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+                callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
+                if callbacks.stop_training:
+                    return
+            # end batch ------------------------------------------------------------------------------------------------
+
+        # Scheduler
+        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
+        scheduler.step()
+
+        if RANK in {-1, 0}:
+            # mAP
+            callbacks.run('on_train_epoch_end', epoch=epoch)
+            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+            if not noval or final_epoch:  # Calculate mAP
+                results, maps, _ = validate.run(data_dict,
+                                                batch_size=batch_size // WORLD_SIZE * 2,
+                                                imgsz=imgsz,
+                                                half=amp,
+                                                model=ema.ema,
+                                                single_cls=single_cls,
+                                                dataloader=val_loader,
+                                                save_dir=save_dir,
+                                                plots=False,
+                                                callbacks=callbacks,
+                                                compute_loss=compute_loss)
+
+            # Update best mAP
+            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
+            if fi > best_fitness:
+                best_fitness = fi
+            log_vals = list(mloss) + list(results) + lr
+            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+
+            # Save model
+            if (not nosave) or (final_epoch and not evolve):  # if save
+                ckpt = {
+                    'epoch': epoch,
+                    'best_fitness': best_fitness,
+                    'model': deepcopy(de_parallel(model)).half(),
+                    'ema': deepcopy(ema.ema).half(),
+                    'updates': ema.updates,
+                    'optimizer': optimizer.state_dict(),
+                    'opt': vars(opt),
+                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
+                    'date': datetime.now().isoformat()}
+
+                # Save last, best and delete
+                torch.save(ckpt, last)
+                if best_fitness == fi:
+                    torch.save(ckpt, best)
+                if opt.save_period > 0 and epoch % opt.save_period == 0:
+                    torch.save(ckpt, w / f'epoch{epoch}.pt')
+                del ckpt
+                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+        # EarlyStopping
+        if RANK != -1:  # if DDP training
+            broadcast_list = [stop if RANK == 0 else None]
+            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
+            if RANK != 0:
+                stop = broadcast_list[0]
+        if stop:
+            break  # must break all DDP ranks
+
+        # end epoch ----------------------------------------------------------------------------------------------------
+    # end training -----------------------------------------------------------------------------------------------------
+    if RANK in {-1, 0}:
+        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+        for f in last, best:
+            if f.exists():
+                strip_optimizer(f)  # strip optimizers
+                if f is best:
+                    LOGGER.info(f'\nValidating {f}...')
+                    results, _, _ = validate.run(
+                        data_dict,
+                        batch_size=batch_size // WORLD_SIZE * 2,
+                        imgsz=imgsz,
+                        model=attempt_load(f, device).half(),
+                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
+                        single_cls=single_cls,
+                        dataloader=val_loader,
+                        save_dir=save_dir,
+                        save_json=is_coco,
+                        verbose=True,
+                        plots=plots,
+                        callbacks=callbacks,
+                        compute_loss=compute_loss)  # val best model with plots
+                    if is_coco:
+                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+
+        callbacks.run('on_train_end', last, best, epoch, results)
+
+    torch.cuda.empty_cache()
+    return results
+
+
+def parse_opt(known=False):
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
+    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+    parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
+    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+    parser.add_argument('--rect', action='store_true', help='rectangular training')
+    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+    parser.add_argument('--noplots', action='store_true', help='save no plot files')
+    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
+    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
+    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--quad', action='store_true', help='quad dataloader')
+    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+
+    # Logger arguments
+    parser.add_argument('--entity', default=None, help='Entity')
+    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
+    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
+    parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')
+
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def main(opt, callbacks=Callbacks()):
+    # Checks
+    if RANK in {-1, 0}:
+        print_args(vars(opt))
+        check_git_status()
+        check_requirements()
+
+    # Resume (from specified or most recent last.pt)
+    if opt.resume and not check_comet_resume(opt) and not opt.evolve:
+        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
+        opt_yaml = last.parent.parent / 'opt.yaml'  # train options yaml
+        opt_data = opt.data  # original dataset
+        if opt_yaml.is_file():
+            with open(opt_yaml, errors='ignore') as f:
+                d = yaml.safe_load(f)
+        else:
+            d = torch.load(last, map_location='cpu')['opt']
+        opt = argparse.Namespace(**d)  # replace
+        opt.cfg, opt.weights, opt.resume = '', str(last), True  # reinstate
+        if is_url(opt_data):
+            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
+    else:
+        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
+        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+        if opt.evolve:
+            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
+                opt.project = str(ROOT / 'runs/evolve')
+            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
+        if opt.name == 'cfg':
+            opt.name = Path(opt.cfg).stem  # use model.yaml as name
+        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+    # DDP mode
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    if LOCAL_RANK != -1:
+        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
+        assert not opt.image_weights, f'--image-weights {msg}'
+        assert not opt.evolve, f'--evolve {msg}'
+        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+        torch.cuda.set_device(LOCAL_RANK)
+        device = torch.device('cuda', LOCAL_RANK)
+        dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')
+
+    # Train
+    if not opt.evolve:
+        train(opt.hyp, opt, device, callbacks)
+
+    # Evolve hyperparameters (optional)
+    else:
+        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+        meta = {
+            'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
+            'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
+            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
+            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
+            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
+            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
+            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
+            'box': (1, 0.02, 0.2),  # box loss gain
+            'cls': (1, 0.2, 4.0),  # cls loss gain
+            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
+            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
+            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
+            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
+            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
+            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
+            'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
+            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
+            'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
+            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
+            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
+            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
+            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
+            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
+            'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
+            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
+            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
+            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
+            'mixup': (1, 0.0, 1.0),  # image mixup (probability)
+            'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)
+
+        with open(opt.hyp, errors='ignore') as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
+                hyp['anchors'] = 3
+        if opt.noautoanchor:
+            del hyp['anchors'], meta['anchors']
+        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
+        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
+        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+        if opt.bucket:
+            # download evolve.csv if exists
+            subprocess.run([
+                'gsutil',
+                'cp',
+                f'gs://{opt.bucket}/evolve.csv',
+                str(evolve_csv),])
+
+        for _ in range(opt.evolve):  # generations to evolve
+            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
+                # Select parent(s)
+                parent = 'single'  # parent selection method: 'single' or 'weighted'
+                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+                n = min(5, len(x))  # number of previous results to consider
+                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
+                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
+                if parent == 'single' or len(x) == 1:
+                    # x = x[random.randint(0, n - 1)]  # random selection
+                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
+                elif parent == 'weighted':
+                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
+
+                # Mutate
+                mp, s = 0.8, 0.2  # mutation probability, sigma
+                npr = np.random
+                npr.seed(int(time.time()))
+                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
+                ng = len(meta)
+                v = np.ones(ng)
+                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
+                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
+                    hyp[k] = float(x[i + 7] * v[i])  # mutate
+
+            # Constrain to limits
+            for k, v in meta.items():
+                hyp[k] = max(hyp[k], v[1])  # lower limit
+                hyp[k] = min(hyp[k], v[2])  # upper limit
+                hyp[k] = round(hyp[k], 5)  # significant digits
+
+            # Train mutation
+            results = train(hyp.copy(), opt, device, callbacks)
+            callbacks = Callbacks()
+            # Write mutation results
+            keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
+                    'val/obj_loss', 'val/cls_loss')
+            print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
+
+        # Plot results
+        plot_evolve(evolve_csv)
+        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+                    f"Results saved to {colorstr('bold', save_dir)}\n"
+                    f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
+    opt = parse_opt(True)
+    for k, v in kwargs.items():
+        setattr(opt, k, v)
+    main(opt)
+    return opt
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/tutorial.ipynb b/yolov5_model/tutorial.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..32af68b579450d32c658b4a8571418e1f2e53545
--- /dev/null
+++ b/yolov5_model/tutorial.ipynb
@@ -0,0 +1,976 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "name": "YOLOv5 Tutorial",
+      "provenance": [],
+      "toc_visible": true
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "accelerator": "GPU",
+    "widgets": {
+      "application/vnd.jupyter.widget-state+json": {
+        "1f7df330663048998adcf8a45bc8f69b": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HBoxModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HBoxView",
+            "box_style": "",
+            "children": [
+              "IPY_MODEL_e896e6096dd244c59d7955e2035cd729",
+              "IPY_MODEL_a6ff238c29984b24bf6d0bd175c19430",
+              "IPY_MODEL_3c085ba3f3fd4c3c8a6bb41b41ce1479"
+            ],
+            "layout": "IPY_MODEL_16b0c8aa6e0f427e8a54d3791abb7504"
+          }
+        },
+        "e896e6096dd244c59d7955e2035cd729": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_c7b2dd0f78384cad8e400b282996cdf5",
+            "placeholder": "​",
+            "style": "IPY_MODEL_6a27e43b0e434edd82ee63f0a91036ca",
+            "value": "100%"
+          }
+        },
+        "a6ff238c29984b24bf6d0bd175c19430": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "FloatProgressModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "ProgressView",
+            "bar_style": "success",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_cce0e6c0c4ec442cb47e65c674e02e92",
+            "max": 818322941,
+            "min": 0,
+            "orientation": "horizontal",
+            "style": "IPY_MODEL_c5b9f38e2f0d4f9aa97fe87265263743",
+            "value": 818322941
+          }
+        },
+        "3c085ba3f3fd4c3c8a6bb41b41ce1479": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_dom_classes": [],
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "HTMLModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/controls",
+            "_view_module_version": "1.5.0",
+            "_view_name": "HTMLView",
+            "description": "",
+            "description_tooltip": null,
+            "layout": "IPY_MODEL_df554fb955c7454696beac5a82889386",
+            "placeholder": "​",
+            "style": "IPY_MODEL_74e9112a87a242f4831b7d68c7da6333",
+            "value": " 780M/780M [00:05&lt;00:00, 126MB/s]"
+          }
+        },
+        "16b0c8aa6e0f427e8a54d3791abb7504": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c7b2dd0f78384cad8e400b282996cdf5": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "6a27e43b0e434edd82ee63f0a91036ca": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        },
+        "cce0e6c0c4ec442cb47e65c674e02e92": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "c5b9f38e2f0d4f9aa97fe87265263743": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "ProgressStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "bar_color": null,
+            "description_width": ""
+          }
+        },
+        "df554fb955c7454696beac5a82889386": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.2.0",
+            "_model_name": "LayoutModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "LayoutView",
+            "align_content": null,
+            "align_items": null,
+            "align_self": null,
+            "border": null,
+            "bottom": null,
+            "display": null,
+            "flex": null,
+            "flex_flow": null,
+            "grid_area": null,
+            "grid_auto_columns": null,
+            "grid_auto_flow": null,
+            "grid_auto_rows": null,
+            "grid_column": null,
+            "grid_gap": null,
+            "grid_row": null,
+            "grid_template_areas": null,
+            "grid_template_columns": null,
+            "grid_template_rows": null,
+            "height": null,
+            "justify_content": null,
+            "justify_items": null,
+            "left": null,
+            "margin": null,
+            "max_height": null,
+            "max_width": null,
+            "min_height": null,
+            "min_width": null,
+            "object_fit": null,
+            "object_position": null,
+            "order": null,
+            "overflow": null,
+            "overflow_x": null,
+            "overflow_y": null,
+            "padding": null,
+            "right": null,
+            "top": null,
+            "visibility": null,
+            "width": null
+          }
+        },
+        "74e9112a87a242f4831b7d68c7da6333": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_model_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_model_name": "DescriptionStyleModel",
+            "_view_count": null,
+            "_view_module": "@jupyter-widgets/base",
+            "_view_module_version": "1.2.0",
+            "_view_name": "StyleView",
+            "description_width": ""
+          }
+        }
+      }
+    }
+  },
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "t6MPjfT5NrKQ"
+      },
+      "source": [
+        "<div align=\"center\">\n",
+        "\n",
+        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
+        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
+        "\n",
+        "\n",
+        "<br>\n",
+        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
+        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
+        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "<br>\n",
+        "\n",
+        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
+        "\n",
+        "</div>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7mGmQbAO5pQb"
+      },
+      "source": [
+        "# Setup\n",
+        "\n",
+        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "wbvMlHd_QwMG",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "f9f016ad-3dcf-4bd2-e1c3-d5b79efc6f32"
+      },
+      "source": [
+        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
+        "%cd yolov5\n",
+        "%pip install -qr requirements.txt  # install\n",
+        "\n",
+        "import torch\n",
+        "import utils\n",
+        "display = utils.notebook_init()  # checks"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
+          ]
+        },
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4JnkELT0cIJg"
+      },
+      "source": [
+        "# 1. Detect\n",
+        "\n",
+        "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
+        "\n",
+        "```shell\n",
+        "python detect.py --source 0  # webcam\n",
+        "                          img.jpg  # image \n",
+        "                          vid.mp4  # video\n",
+        "                          screen  # screenshot\n",
+        "                          path/  # directory\n",
+        "                         'path/*.jpg'  # glob\n",
+        "                         'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
+        "                         'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "zR9ZbuQCH7FX",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "b4db5c49-f501-4505-cf0d-a1d35236c485"
+      },
+      "source": [
+        "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
+        "# display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1\n",
+            "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...\n",
+            "100% 14.1M/14.1M [00:00<00:00, 116MB/s] \n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
+            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 17.0ms\n",
+            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, 14.3ms\n",
+            "Speed: 0.5ms pre-process, 15.7ms inference, 18.6ms NMS per image at shape (1, 3, 640, 640)\n",
+            "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "hkAzDWJ7cWTr"
+      },
+      "source": [
+        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
+        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0eq1SMWl6Sfn"
+      },
+      "source": [
+        "# 2. Validate\n",
+        "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "WQPtK1QYVaD_",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 49,
+          "referenced_widgets": [
+            "1f7df330663048998adcf8a45bc8f69b",
+            "e896e6096dd244c59d7955e2035cd729",
+            "a6ff238c29984b24bf6d0bd175c19430",
+            "3c085ba3f3fd4c3c8a6bb41b41ce1479",
+            "16b0c8aa6e0f427e8a54d3791abb7504",
+            "c7b2dd0f78384cad8e400b282996cdf5",
+            "6a27e43b0e434edd82ee63f0a91036ca",
+            "cce0e6c0c4ec442cb47e65c674e02e92",
+            "c5b9f38e2f0d4f9aa97fe87265263743",
+            "df554fb955c7454696beac5a82889386",
+            "74e9112a87a242f4831b7d68c7da6333"
+          ]
+        },
+        "outputId": "c7d0a0d2-abfb-44c3-d60d-f99d0e7aabad"
+      },
+      "source": [
+        "# Download COCO val\n",
+        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')  # download (780M - 5000 images)\n",
+        "!unzip -q tmp.zip -d ../datasets && rm tmp.zip  # unzip"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "  0%|          | 0.00/780M [00:00<?, ?B/s]"
+            ],
+            "application/vnd.jupyter.widget-view+json": {
+              "version_major": 2,
+              "version_minor": 0,
+              "model_id": "1f7df330663048998adcf8a45bc8f69b"
+            }
+          },
+          "metadata": {}
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "X58w8JLpMnjH",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "5fc61358-7bc5-4310-a310-9059f66c6322"
+      },
+      "source": [
+        "# Validate YOLOv5s on COCO val\n",
+        "!python val.py --weights yolov5s.pt --data coco.yaml --img 640 --half"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
+            "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "Fusing layers... \n",
+            "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:02<00:00, 1977.30it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 157/157 [01:12<00:00,  2.17it/s]\n",
+            "                   all       5000      36335       0.67      0.521      0.566      0.371\n",
+            "Speed: 0.1ms pre-process, 2.9ms inference, 2.0ms NMS per image at shape (32, 3, 640, 640)\n",
+            "\n",
+            "Evaluating pycocotools mAP... saving runs/val/exp/yolov5s_predictions.json...\n",
+            "loading annotations into memory...\n",
+            "Done (t=0.43s)\n",
+            "creating index...\n",
+            "index created!\n",
+            "Loading and preparing results...\n",
+            "DONE (t=5.85s)\n",
+            "creating index...\n",
+            "index created!\n",
+            "Running per image evaluation...\n",
+            "Evaluate annotation type *bbox*\n",
+            "DONE (t=82.22s).\n",
+            "Accumulating evaluation results...\n",
+            "DONE (t=14.92s).\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.374\n",
+            " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.572\n",
+            " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.402\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.423\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.489\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.311\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.516\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.566\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.378\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.625\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.723\n",
+            "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZY2VXXXu74w5"
+      },
+      "source": [
+        "# 3. Train\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
+        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
+        "<br><br>\n",
+        "\n",
+        "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
+        "\n",
+        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
+        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
+        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
+        "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
+        "<br><br>\n",
+        "\n",
+        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
+        "\n",
+        "## Train on Custom Data with Roboflow 🌟 NEW\n",
+        "\n",
+        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
+        "\n",
+        "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
+        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
+        "<br>\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
+        "logger = 'ClearML' #@param ['ClearML', 'Comet', 'TensorBoard']\n",
+        "\n",
+        "if logger == 'ClearML':\n",
+        "  %pip install -q clearml\n",
+        "  import clearml; clearml.browser_login()\n",
+        "elif logger == 'Comet':\n",
+        "  %pip install -q comet_ml\n",
+        "  import comet_ml; comet_ml.init()\n",
+        "elif logger == 'TensorBoard':\n",
+        "  %load_ext tensorboard\n",
+        "  %tensorboard --logdir runs/train"
+      ],
+      "metadata": {
+        "id": "i3oKtE4g-aNn"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "1NcFxRcFdJ_O",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "721b9028-767f-4a05-c964-692c245f7398"
+      },
+      "source": [
+        "# Train YOLOv5s on COCO128 for 3 epochs\n",
+        "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
+            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
+            "YOLOv5 🚀 v7.0-1-gb32f67f Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
+            "\n",
+            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
+            "\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
+            "\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet\n",
+            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
+            "\n",
+            "Dataset not found ⚠️, missing paths ['/content/datasets/coco128/images/train2017']\n",
+            "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
+            "100% 6.66M/6.66M [00:00<00:00, 261MB/s]\n",
+            "Dataset download success ✅ (0.3s), saved to \u001b[1m/content/datasets\u001b[0m\n",
+            "\n",
+            "                 from  n    params  module                                  arguments                     \n",
+            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
+            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
+            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
+            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
+            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
+            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
+            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
+            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
+            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
+            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
+            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
+            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
+            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
+            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
+            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
+            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
+            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
+            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
+            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
+            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
+            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
+            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
+            " 24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
+            "Model summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs\n",
+            "\n",
+            "Transferred 349/349 items from yolov5s.pt\n",
+            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
+            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias\n",
+            "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1911.57it/s]\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 229.69it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 97.70it/s] \n",
+            "\n",
+            "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
+            "Plotting labels to runs/train/exp/labels.jpg... \n",
+            "Image sizes 640 train, 640 val\n",
+            "Using 2 dataloader workers\n",
+            "Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
+            "Starting training for 3 epochs...\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        0/2      3.74G    0.04618    0.07207      0.017        232        640: 100% 8/8 [00:07<00:00,  1.10it/s]\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  2.28it/s]\n",
+            "                   all        128        929      0.672      0.594      0.682      0.451\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        1/2      5.36G    0.04623    0.06888    0.01821        201        640: 100% 8/8 [00:02<00:00,  3.29it/s]\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  3.17it/s]\n",
+            "                   all        128        929      0.721      0.639      0.724       0.48\n",
+            "\n",
+            "      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size\n",
+            "        2/2      5.36G    0.04361    0.06479    0.01698        227        640: 100% 8/8 [00:02<00:00,  3.46it/s]\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:01<00:00,  3.11it/s]\n",
+            "                   all        128        929      0.758      0.641      0.731      0.487\n",
+            "\n",
+            "3 epochs completed in 0.005 hours.\n",
+            "Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
+            "Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n",
+            "\n",
+            "Validating runs/train/exp/weights/best.pt...\n",
+            "Fusing layers... \n",
+            "Model summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs\n",
+            "                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100% 4/4 [00:03<00:00,  1.05it/s]\n",
+            "                   all        128        929      0.757      0.641      0.732      0.487\n",
+            "                person        128        254       0.86      0.705      0.804      0.528\n",
+            "               bicycle        128          6      0.773      0.578      0.725      0.426\n",
+            "                   car        128         46      0.658      0.435      0.554      0.239\n",
+            "            motorcycle        128          5       0.59        0.8      0.837      0.635\n",
+            "              airplane        128          6          1      0.996      0.995      0.696\n",
+            "                   bus        128          7      0.635      0.714      0.756      0.666\n",
+            "                 train        128          3      0.691      0.333      0.753      0.511\n",
+            "                 truck        128         12      0.604      0.333      0.472       0.26\n",
+            "                  boat        128          6      0.941      0.333       0.46      0.183\n",
+            "         traffic light        128         14      0.557      0.183      0.302      0.214\n",
+            "             stop sign        128          2      0.827          1      0.995      0.846\n",
+            "                 bench        128          9       0.79      0.556      0.677      0.318\n",
+            "                  bird        128         16      0.962          1      0.995      0.663\n",
+            "                   cat        128          4      0.867          1      0.995      0.754\n",
+            "                   dog        128          9          1      0.649      0.903      0.654\n",
+            "                 horse        128          2      0.853          1      0.995      0.622\n",
+            "              elephant        128         17      0.908      0.882      0.934      0.698\n",
+            "                  bear        128          1      0.697          1      0.995      0.995\n",
+            "                 zebra        128          4      0.867          1      0.995      0.905\n",
+            "               giraffe        128          9      0.788      0.829      0.912      0.701\n",
+            "              backpack        128          6      0.841        0.5      0.738      0.311\n",
+            "              umbrella        128         18      0.786      0.815      0.859       0.48\n",
+            "               handbag        128         19      0.772      0.263      0.366      0.216\n",
+            "                   tie        128          7      0.975      0.714       0.77      0.491\n",
+            "              suitcase        128          4      0.643       0.75      0.912      0.563\n",
+            "               frisbee        128          5       0.72        0.8       0.76      0.717\n",
+            "                  skis        128          1      0.748          1      0.995        0.3\n",
+            "             snowboard        128          7      0.827      0.686      0.833       0.57\n",
+            "           sports ball        128          6      0.637      0.667      0.602      0.311\n",
+            "                  kite        128         10      0.645        0.6      0.594      0.224\n",
+            "          baseball bat        128          4      0.519      0.278      0.468      0.205\n",
+            "        baseball glove        128          7      0.483      0.429      0.465      0.278\n",
+            "            skateboard        128          5      0.923        0.6      0.687      0.493\n",
+            "         tennis racket        128          7      0.774      0.429      0.544      0.333\n",
+            "                bottle        128         18      0.577      0.379      0.551      0.275\n",
+            "            wine glass        128         16      0.715      0.875      0.893      0.511\n",
+            "                   cup        128         36      0.843      0.667      0.833      0.531\n",
+            "                  fork        128          6      0.998      0.333       0.45      0.315\n",
+            "                 knife        128         16       0.77      0.688      0.695      0.399\n",
+            "                 spoon        128         22      0.839      0.473      0.638      0.383\n",
+            "                  bowl        128         28      0.765      0.583      0.715      0.512\n",
+            "                banana        128          1      0.903          1      0.995      0.301\n",
+            "              sandwich        128          2          1          0      0.359      0.301\n",
+            "                orange        128          4      0.718       0.75      0.912      0.581\n",
+            "              broccoli        128         11      0.545      0.364       0.43      0.319\n",
+            "                carrot        128         24       0.62      0.625      0.724      0.495\n",
+            "               hot dog        128          2      0.385          1      0.828      0.762\n",
+            "                 pizza        128          5      0.833          1      0.962      0.725\n",
+            "                 donut        128         14      0.631          1       0.96      0.833\n",
+            "                  cake        128          4      0.871          1      0.995       0.83\n",
+            "                 chair        128         35      0.583        0.6      0.608      0.318\n",
+            "                 couch        128          6      0.909      0.667      0.813      0.543\n",
+            "          potted plant        128         14      0.745      0.786      0.822       0.48\n",
+            "                   bed        128          3      0.973      0.333      0.753       0.41\n",
+            "          dining table        128         13      0.821      0.356      0.577      0.342\n",
+            "                toilet        128          2          1      0.949      0.995      0.797\n",
+            "                    tv        128          2      0.566          1      0.995      0.796\n",
+            "                laptop        128          3          1          0       0.59      0.311\n",
+            "                 mouse        128          2          1          0      0.105     0.0527\n",
+            "                remote        128          8          1      0.623      0.634      0.538\n",
+            "            cell phone        128          8      0.565      0.375      0.399      0.179\n",
+            "             microwave        128          3      0.709          1      0.995      0.736\n",
+            "                  oven        128          5      0.328        0.4       0.43      0.282\n",
+            "                  sink        128          6      0.438      0.333      0.339      0.266\n",
+            "          refrigerator        128          5      0.564        0.8      0.798      0.535\n",
+            "                  book        128         29      0.597      0.256      0.351      0.155\n",
+            "                 clock        128          9      0.763      0.889      0.934      0.737\n",
+            "                  vase        128          2      0.331          1      0.995      0.895\n",
+            "              scissors        128          1          1          0      0.497     0.0552\n",
+            "            teddy bear        128         21      0.857       0.57      0.837      0.544\n",
+            "            toothbrush        128          5      0.799          1      0.928      0.556\n",
+            "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "15glLzbQx5u0"
+      },
+      "source": [
+        "# 4. Visualize"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## Comet Logging and Visualization 🌟 NEW\n",
+        "\n",
+        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
+        "\n",
+        "Getting started is easy:\n",
+        "```shell\n",
+        "pip install comet_ml  # 1. install\n",
+        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
+        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
+        "```\n",
+        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
+        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
+        "\n",
+        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
+        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
+      ],
+      "metadata": {
+        "id": "nWOsI5wJR1o3"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "## ClearML Logging and Automation 🌟 NEW\n",
+        "\n",
+        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
+        "\n",
+        "- `pip install clearml`\n",
+        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
+        "\n",
+        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
+        "\n",
+        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n",
+        "\n",
+        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
+        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
+      ],
+      "metadata": {
+        "id": "Lay2WsTjNJzP"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-WPvRbS5Swl6"
+      },
+      "source": [
+        "## Local Logging\n",
+        "\n",
+        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
+        "\n",
+        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
+        "\n",
+        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Zelyeqbyt3GD"
+      },
+      "source": [
+        "# Environments\n",
+        "\n",
+        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
+        "\n",
+        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
+        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
+        "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "6Qu7Iesl0p54"
+      },
+      "source": [
+        "# Status\n",
+        "\n",
+        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
+        "\n",
+        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "IEijrePND_2I"
+      },
+      "source": [
+        "# Appendix\n",
+        "\n",
+        "Additional content below."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "GMusP4OAxFu6"
+      },
+      "source": [
+        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
+        "import torch\n",
+        "\n",
+        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True)  # yolov5n - yolov5x6 or custom\n",
+        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
+        "results = model(im)  # inference\n",
+        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
+      ],
+      "execution_count": null,
+      "outputs": []
+    }
+  ]
+}
diff --git a/yolov5_model/utils/__init__.py b/yolov5_model/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d158c5515a1274a0677dc64acf391b300ec11cd4
--- /dev/null
+++ b/yolov5_model/utils/__init__.py
@@ -0,0 +1,80 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+utils/initialization
+"""
+
+import contextlib
+import platform
+import threading
+
+
+def emojis(str=''):
+    # Return platform-dependent emoji-safe version of string
+    return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
+
+
+class TryExcept(contextlib.ContextDecorator):
+    # YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
+    def __init__(self, msg=''):
+        self.msg = msg
+
+    def __enter__(self):
+        pass
+
+    def __exit__(self, exc_type, value, traceback):
+        if value:
+            print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
+        return True
+
+
+def threaded(func):
+    # Multi-threads a target function and returns thread. Usage: @threaded decorator
+    def wrapper(*args, **kwargs):
+        thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
+        thread.start()
+        return thread
+
+    return wrapper
+
+
+def join_threads(verbose=False):
+    # Join all daemon threads, i.e. atexit.register(lambda: join_threads())
+    main_thread = threading.current_thread()
+    for t in threading.enumerate():
+        if t is not main_thread:
+            if verbose:
+                print(f'Joining thread {t.name}')
+            t.join()
+
+
+def notebook_init(verbose=True):
+    # Check system software and hardware
+    print('Checking setup...')
+
+    import os
+    import shutil
+
+    from utils.general import check_font, check_requirements, is_colab
+    from utils.torch_utils import select_device  # imports
+
+    check_font()
+
+    import psutil
+    from IPython import display  # to display images and clear console output
+
+    if is_colab():
+        shutil.rmtree('/content/sample_data', ignore_errors=True)  # remove colab /sample_data directory
+
+    # System info
+    if verbose:
+        gb = 1 << 30  # bytes to GiB (1024 ** 3)
+        ram = psutil.virtual_memory().total
+        total, used, free = shutil.disk_usage('/')
+        display.clear_output()
+        s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
+    else:
+        s = ''
+
+    select_device(newline=False)
+    print(emojis(f'Setup complete ✅ {s}'))
+    return display
diff --git a/yolov5_model/utils/__pycache__/__init__.cpython-39.pyc b/yolov5_model/utils/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a518bbca4924949c2d6c77876696e931959f3c8b
Binary files /dev/null and b/yolov5_model/utils/__pycache__/__init__.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/augmentations.cpython-39.pyc b/yolov5_model/utils/__pycache__/augmentations.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4f557e10250faf48c1aa2f0a1969b91d6dded9cc
Binary files /dev/null and b/yolov5_model/utils/__pycache__/augmentations.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/autoanchor.cpython-39.pyc b/yolov5_model/utils/__pycache__/autoanchor.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0896ae1d3434196437225befc8822217d26bd093
Binary files /dev/null and b/yolov5_model/utils/__pycache__/autoanchor.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/autobatch.cpython-39.pyc b/yolov5_model/utils/__pycache__/autobatch.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8bba1c7868970b2ad0ab167006e9ecb269716c09
Binary files /dev/null and b/yolov5_model/utils/__pycache__/autobatch.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/callbacks.cpython-39.pyc b/yolov5_model/utils/__pycache__/callbacks.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fe8de76df2cc92f5ac52617d32b368c27cff1dcf
Binary files /dev/null and b/yolov5_model/utils/__pycache__/callbacks.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/dataloaders.cpython-39.pyc b/yolov5_model/utils/__pycache__/dataloaders.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d94d9d7eaed67536b868c36af7b9bacb34d110f2
Binary files /dev/null and b/yolov5_model/utils/__pycache__/dataloaders.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/downloads.cpython-39.pyc b/yolov5_model/utils/__pycache__/downloads.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..73a9b9b7bd0900796b259ae4044469c4091de938
Binary files /dev/null and b/yolov5_model/utils/__pycache__/downloads.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/general.cpython-39.pyc b/yolov5_model/utils/__pycache__/general.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fa9a878e1cc6df047336e58fa24e714ec9e99058
Binary files /dev/null and b/yolov5_model/utils/__pycache__/general.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/loss.cpython-39.pyc b/yolov5_model/utils/__pycache__/loss.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..414f60dd7374151df084bcd4c1c8b01afb3d2d43
Binary files /dev/null and b/yolov5_model/utils/__pycache__/loss.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/metrics.cpython-39.pyc b/yolov5_model/utils/__pycache__/metrics.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6d90fab5cd1d81efef21dab987ce7d378749d125
Binary files /dev/null and b/yolov5_model/utils/__pycache__/metrics.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/plots.cpython-39.pyc b/yolov5_model/utils/__pycache__/plots.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a2c3fb551fbe69709118f341cb9fa99d2f33111d
Binary files /dev/null and b/yolov5_model/utils/__pycache__/plots.cpython-39.pyc differ
diff --git a/yolov5_model/utils/__pycache__/torch_utils.cpython-39.pyc b/yolov5_model/utils/__pycache__/torch_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..46a703f5d7855e3cc7ec154e98c9c540b66677f6
Binary files /dev/null and b/yolov5_model/utils/__pycache__/torch_utils.cpython-39.pyc differ
diff --git a/yolov5_model/utils/activations.py b/yolov5_model/utils/activations.py
new file mode 100644
index 0000000000000000000000000000000000000000..084ce8c41230dcde25f0c01311a4c0abcd4584e7
--- /dev/null
+++ b/yolov5_model/utils/activations.py
@@ -0,0 +1,103 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Activation functions
+"""
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class SiLU(nn.Module):
+    # SiLU activation https://arxiv.org/pdf/1606.08415.pdf
+    @staticmethod
+    def forward(x):
+        return x * torch.sigmoid(x)
+
+
+class Hardswish(nn.Module):
+    # Hard-SiLU activation
+    @staticmethod
+    def forward(x):
+        # return x * F.hardsigmoid(x)  # for TorchScript and CoreML
+        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX
+
+
+class Mish(nn.Module):
+    # Mish activation https://github.com/digantamisra98/Mish
+    @staticmethod
+    def forward(x):
+        return x * F.softplus(x).tanh()
+
+
+class MemoryEfficientMish(nn.Module):
+    # Mish activation memory-efficient
+    class F(torch.autograd.Function):
+
+        @staticmethod
+        def forward(ctx, x):
+            ctx.save_for_backward(x)
+            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))
+
+        @staticmethod
+        def backward(ctx, grad_output):
+            x = ctx.saved_tensors[0]
+            sx = torch.sigmoid(x)
+            fx = F.softplus(x).tanh()
+            return grad_output * (fx + x * sx * (1 - fx * fx))
+
+    def forward(self, x):
+        return self.F.apply(x)
+
+
+class FReLU(nn.Module):
+    # FReLU activation https://arxiv.org/abs/2007.11824
+    def __init__(self, c1, k=3):  # ch_in, kernel
+        super().__init__()
+        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
+        self.bn = nn.BatchNorm2d(c1)
+
+    def forward(self, x):
+        return torch.max(x, self.bn(self.conv(x)))
+
+
+class AconC(nn.Module):
+    r""" ACON activation (activate or not)
+    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
+    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
+    """
+
+    def __init__(self, c1):
+        super().__init__()
+        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
+
+    def forward(self, x):
+        dpx = (self.p1 - self.p2) * x
+        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
+
+
+class MetaAconC(nn.Module):
+    r""" ACON activation (activate or not)
+    MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
+    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
+    """
+
+    def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, r
+        super().__init__()
+        c2 = max(r, c1 // r)
+        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
+        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
+        # self.bn1 = nn.BatchNorm2d(c2)
+        # self.bn2 = nn.BatchNorm2d(c1)
+
+    def forward(self, x):
+        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
+        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
+        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
+        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
+        dpx = (self.p1 - self.p2) * x
+        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
diff --git a/yolov5_model/utils/augmentations.py b/yolov5_model/utils/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..7ab75f17fb18c61252fc5c5829597a6e0c64f3f0
--- /dev/null
+++ b/yolov5_model/utils/augmentations.py
@@ -0,0 +1,397 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Image augmentation functions
+"""
+
+import math
+import random
+
+import cv2
+import numpy as np
+import torch
+import torchvision.transforms as T
+import torchvision.transforms.functional as TF
+
+from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
+from utils.metrics import bbox_ioa
+
+IMAGENET_MEAN = 0.485, 0.456, 0.406  # RGB mean
+IMAGENET_STD = 0.229, 0.224, 0.225  # RGB standard deviation
+
+
+class Albumentations:
+    # YOLOv5 Albumentations class (optional, only used if package is installed)
+    def __init__(self, size=640):
+        self.transform = None
+        prefix = colorstr('albumentations: ')
+        try:
+            import albumentations as A
+            check_version(A.__version__, '1.0.3', hard=True)  # version requirement
+
+            T = [
+                A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
+                A.Blur(p=0.01),
+                A.MedianBlur(p=0.01),
+                A.ToGray(p=0.01),
+                A.CLAHE(p=0.01),
+                A.RandomBrightnessContrast(p=0.0),
+                A.RandomGamma(p=0.0),
+                A.ImageCompression(quality_lower=75, p=0.0)]  # transforms
+            self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
+
+            LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
+        except ImportError:  # package not installed, skip
+            pass
+        except Exception as e:
+            LOGGER.info(f'{prefix}{e}')
+
+    def __call__(self, im, labels, p=1.0):
+        if self.transform and random.random() < p:
+            new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0])  # transformed
+            im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
+        return im, labels
+
+
+def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
+    # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
+    return TF.normalize(x, mean, std, inplace=inplace)
+
+
+def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
+    # Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
+    for i in range(3):
+        x[:, i] = x[:, i] * std[i] + mean[i]
+    return x
+
+
+def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
+    # HSV color-space augmentation
+    if hgain or sgain or vgain:
+        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
+        hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
+        dtype = im.dtype  # uint8
+
+        x = np.arange(0, 256, dtype=r.dtype)
+        lut_hue = ((x * r[0]) % 180).astype(dtype)
+        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
+        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im)  # no return needed
+
+
+def hist_equalize(im, clahe=True, bgr=False):
+    # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
+    yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
+    if clahe:
+        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
+        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
+    else:
+        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
+    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB
+
+
+def replicate(im, labels):
+    # Replicate labels
+    h, w = im.shape[:2]
+    boxes = labels[:, 1:].astype(int)
+    x1, y1, x2, y2 = boxes.T
+    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
+    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
+        x1b, y1b, x2b, y2b = boxes[i]
+        bh, bw = y2b - y1b, x2b - x1b
+        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
+        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+        im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]  # im4[ymin:ymax, xmin:xmax]
+        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+    return im, labels
+
+
+def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+    # Resize and pad image while meeting stride-multiple constraints
+    shape = im.shape[:2]  # current shape [height, width]
+    if isinstance(new_shape, int):
+        new_shape = (new_shape, new_shape)
+
+    # Scale ratio (new / old)
+    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+    if not scaleup:  # only scale down, do not scale up (for better val mAP)
+        r = min(r, 1.0)
+
+    # Compute padding
+    ratio = r, r  # width, height ratios
+    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
+    if auto:  # minimum rectangle
+        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
+    elif scaleFill:  # stretch
+        dw, dh = 0.0, 0.0
+        new_unpad = (new_shape[1], new_shape[0])
+        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
+
+    dw /= 2  # divide padding into 2 sides
+    dh /= 2
+
+    if shape[::-1] != new_unpad:  # resize
+        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
+    return im, ratio, (dw, dh)
+
+
+def random_perspective(im,
+                       targets=(),
+                       segments=(),
+                       degrees=10,
+                       translate=.1,
+                       scale=.1,
+                       shear=10,
+                       perspective=0.0,
+                       border=(0, 0)):
+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
+    # targets = [cls, xyxy]
+
+    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
+    width = im.shape[1] + border[1] * 2
+
+    # Center
+    C = np.eye(3)
+    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
+    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)
+
+    # Perspective
+    P = np.eye(3)
+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
+
+    # Rotation and Scale
+    R = np.eye(3)
+    a = random.uniform(-degrees, degrees)
+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
+    s = random.uniform(1 - scale, 1 + scale)
+    # s = 2 ** random.uniform(-scale, scale)
+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+    # Shear
+    S = np.eye(3)
+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
+
+    # Translation
+    T = np.eye(3)
+    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
+    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)
+
+    # Combined rotation matrix
+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
+        if perspective:
+            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+        else:  # affine
+            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+    # Visualize
+    # import matplotlib.pyplot as plt
+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+    # ax[0].imshow(im[:, :, ::-1])  # base
+    # ax[1].imshow(im2[:, :, ::-1])  # warped
+
+    # Transform label coordinates
+    n = len(targets)
+    if n:
+        use_segments = any(x.any() for x in segments) and len(segments) == n
+        new = np.zeros((n, 4))
+        if use_segments:  # warp segments
+            segments = resample_segments(segments)  # upsample
+            for i, segment in enumerate(segments):
+                xy = np.ones((len(segment), 3))
+                xy[:, :2] = segment
+                xy = xy @ M.T  # transform
+                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine
+
+                # clip
+                new[i] = segment2box(xy, width, height)
+
+        else:  # warp boxes
+            xy = np.ones((n * 4, 3))
+            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
+            xy = xy @ M.T  # transform
+            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine
+
+            # create new boxes
+            x = xy[:, [0, 2, 4, 6]]
+            y = xy[:, [1, 3, 5, 7]]
+            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+            # clip
+            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
+            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
+
+        # filter candidates
+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
+        targets = targets[i]
+        targets[:, 1:5] = new[i]
+
+    return im, targets
+
+
+def copy_paste(im, labels, segments, p=0.5):
+    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+    n = len(segments)
+    if p and n:
+        h, w, c = im.shape  # height, width, channels
+        im_new = np.zeros(im.shape, np.uint8)
+        for j in random.sample(range(n), k=round(p * n)):
+            l, s = labels[j], segments[j]
+            box = w - l[3], l[2], w - l[1], l[4]
+            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
+            if (ioa < 0.30).all():  # allow 30% obscuration of existing labels
+                labels = np.concatenate((labels, [[l[0], *box]]), 0)
+                segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+                cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
+
+        result = cv2.flip(im, 1)  # augment segments (flip left-right)
+        i = cv2.flip(im_new, 1).astype(bool)
+        im[i] = result[i]  # cv2.imwrite('debug.jpg', im)  # debug
+
+    return im, labels, segments
+
+
+def cutout(im, labels, p=0.5):
+    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+    if random.random() < p:
+        h, w = im.shape[:2]
+        scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
+        for s in scales:
+            mask_h = random.randint(1, int(h * s))  # create random masks
+            mask_w = random.randint(1, int(w * s))
+
+            # box
+            xmin = max(0, random.randint(0, w) - mask_w // 2)
+            ymin = max(0, random.randint(0, h) - mask_h // 2)
+            xmax = min(w, xmin + mask_w)
+            ymax = min(h, ymin + mask_h)
+
+            # apply random color mask
+            im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+            # return unobscured labels
+            if len(labels) and s > 0.03:
+                box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+                ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))  # intersection over area
+                labels = labels[ioa < 0.60]  # remove >60% obscured labels
+
+    return labels
+
+
+def mixup(im, labels, im2, labels2):
+    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
+    im = (im * r + im2 * (1 - r)).astype(np.uint8)
+    labels = np.concatenate((labels, labels2), 0)
+    return im, labels
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
+    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
+    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates
+
+
+def classify_albumentations(
+        augment=True,
+        size=224,
+        scale=(0.08, 1.0),
+        ratio=(0.75, 1.0 / 0.75),  # 0.75, 1.33
+        hflip=0.5,
+        vflip=0.0,
+        jitter=0.4,
+        mean=IMAGENET_MEAN,
+        std=IMAGENET_STD,
+        auto_aug=False):
+    # YOLOv5 classification Albumentations (optional, only used if package is installed)
+    prefix = colorstr('albumentations: ')
+    try:
+        import albumentations as A
+        from albumentations.pytorch import ToTensorV2
+        check_version(A.__version__, '1.0.3', hard=True)  # version requirement
+        if augment:  # Resize and crop
+            T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
+            if auto_aug:
+                # TODO: implement AugMix, AutoAug & RandAug in albumentation
+                LOGGER.info(f'{prefix}auto augmentations are currently not supported')
+            else:
+                if hflip > 0:
+                    T += [A.HorizontalFlip(p=hflip)]
+                if vflip > 0:
+                    T += [A.VerticalFlip(p=vflip)]
+                if jitter > 0:
+                    color_jitter = (float(jitter),) * 3  # repeat value for brightness, contrast, satuaration, 0 hue
+                    T += [A.ColorJitter(*color_jitter, 0)]
+        else:  # Use fixed crop for eval set (reproducibility)
+            T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
+        T += [A.Normalize(mean=mean, std=std), ToTensorV2()]  # Normalize and convert to Tensor
+        LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
+        return A.Compose(T)
+
+    except ImportError:  # package not installed, skip
+        LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
+    except Exception as e:
+        LOGGER.info(f'{prefix}{e}')
+
+
+def classify_transforms(size=224):
+    # Transforms to apply if albumentations not installed
+    assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
+    # T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
+    return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
+
+
+class LetterBox:
+    # YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
+    def __init__(self, size=(640, 640), auto=False, stride=32):
+        super().__init__()
+        self.h, self.w = (size, size) if isinstance(size, int) else size
+        self.auto = auto  # pass max size integer, automatically solve for short side using stride
+        self.stride = stride  # used with auto
+
+    def __call__(self, im):  # im = np.array HWC
+        imh, imw = im.shape[:2]
+        r = min(self.h / imh, self.w / imw)  # ratio of new/old
+        h, w = round(imh * r), round(imw * r)  # resized image
+        hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
+        top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
+        im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
+        im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
+        return im_out
+
+
+class CenterCrop:
+    # YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
+    def __init__(self, size=640):
+        super().__init__()
+        self.h, self.w = (size, size) if isinstance(size, int) else size
+
+    def __call__(self, im):  # im = np.array HWC
+        imh, imw = im.shape[:2]
+        m = min(imh, imw)  # min dimension
+        top, left = (imh - m) // 2, (imw - m) // 2
+        return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
+
+
+class ToTensor:
+    # YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
+    def __init__(self, half=False):
+        super().__init__()
+        self.half = half
+
+    def __call__(self, im):  # im = np.array HWC in BGR order
+        im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1])  # HWC to CHW -> BGR to RGB -> contiguous
+        im = torch.from_numpy(im)  # to torch
+        im = im.half() if self.half else im.float()  # uint8 to fp16/32
+        im /= 255.0  # 0-255 to 0.0-1.0
+        return im
diff --git a/yolov5_model/utils/autoanchor.py b/yolov5_model/utils/autoanchor.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb5cf6e6965e1b1d356c0386f1eeb05767c6fed6
--- /dev/null
+++ b/yolov5_model/utils/autoanchor.py
@@ -0,0 +1,169 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+AutoAnchor utils
+"""
+
+import random
+
+import numpy as np
+import torch
+import yaml
+from tqdm import tqdm
+
+from utils import TryExcept
+from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
+
+PREFIX = colorstr('AutoAnchor: ')
+
+
+def check_anchor_order(m):
+    # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
+    a = m.anchors.prod(-1).mean(-1).view(-1)  # mean anchor area per output layer
+    da = a[-1] - a[0]  # delta a
+    ds = m.stride[-1] - m.stride[0]  # delta s
+    if da and (da.sign() != ds.sign()):  # same order
+        LOGGER.info(f'{PREFIX}Reversing anchor order')
+        m.anchors[:] = m.anchors.flip(0)
+
+
+@TryExcept(f'{PREFIX}ERROR')
+def check_anchors(dataset, model, thr=4.0, imgsz=640):
+    # Check anchor fit to data, recompute if necessary
+    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
+    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
+    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # wh
+
+    def metric(k):  # compute metric
+        r = wh[:, None] / k[None]
+        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
+        best = x.max(1)[0]  # best_x
+        aat = (x > 1 / thr).float().sum(1).mean()  # anchors above threshold
+        bpr = (best > 1 / thr).float().mean()  # best possible recall
+        return bpr, aat
+
+    stride = m.stride.to(m.anchors.device).view(-1, 1, 1)  # model strides
+    anchors = m.anchors.clone() * stride  # current anchors
+    bpr, aat = metric(anchors.cpu().view(-1, 2))
+    s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
+    if bpr > 0.98:  # threshold to recompute
+        LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
+    else:
+        LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
+        na = m.anchors.numel() // 2  # number of anchors
+        anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
+        new_bpr = metric(anchors)[0]
+        if new_bpr > bpr:  # replace anchors
+            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
+            m.anchors[:] = anchors.clone().view_as(m.anchors)
+            check_anchor_order(m)  # must be in pixel-space (not grid-space)
+            m.anchors /= stride
+            s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
+        else:
+            s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
+        LOGGER.info(s)
+
+
+def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
+    """ Creates kmeans-evolved anchors from training dataset
+
+        Arguments:
+            dataset: path to data.yaml, or a loaded dataset
+            n: number of anchors
+            img_size: image size used for training
+            thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
+            gen: generations to evolve anchors using genetic algorithm
+            verbose: print all results
+
+        Return:
+            k: kmeans evolved anchors
+
+        Usage:
+            from utils.autoanchor import *; _ = kmean_anchors()
+    """
+    from scipy.cluster.vq import kmeans
+
+    npr = np.random
+    thr = 1 / thr
+
+    def metric(k, wh):  # compute metrics
+        r = wh[:, None] / k[None]
+        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
+        # x = wh_iou(wh, torch.tensor(k))  # iou metric
+        return x, x.max(1)[0]  # x, best_x
+
+    def anchor_fitness(k):  # mutation fitness
+        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
+        return (best * (best > thr).float()).mean()  # fitness
+
+    def print_results(k, verbose=True):
+        k = k[np.argsort(k.prod(1))]  # sort small to large
+        x, best = metric(k, wh0)
+        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
+        s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
+            f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
+            f'past_thr={x[x > thr].mean():.3f}-mean: '
+        for x in k:
+            s += '%i,%i, ' % (round(x[0]), round(x[1]))
+        if verbose:
+            LOGGER.info(s[:-2])
+        return k
+
+    if isinstance(dataset, str):  # *.yaml file
+        with open(dataset, errors='ignore') as f:
+            data_dict = yaml.safe_load(f)  # model dict
+        from utils.dataloaders import LoadImagesAndLabels
+        dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
+
+    # Get label wh
+    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh
+
+    # Filter
+    i = (wh0 < 3.0).any(1).sum()
+    if i:
+        LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
+    wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32)  # filter > 2 pixels
+    # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1
+
+    # Kmeans init
+    try:
+        LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
+        assert n <= len(wh)  # apply overdetermined constraint
+        s = wh.std(0)  # sigmas for whitening
+        k = kmeans(wh / s, n, iter=30)[0] * s  # points
+        assert n == len(k)  # kmeans may return fewer points than requested if wh is insufficient or too similar
+    except Exception:
+        LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
+        k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random init
+    wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
+    k = print_results(k, verbose=False)
+
+    # Plot
+    # k, d = [None] * 20, [None] * 20
+    # for i in tqdm(range(1, 21)):
+    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
+    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
+    # ax = ax.ravel()
+    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
+    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
+    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
+    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
+    # fig.savefig('wh.png', dpi=200)
+
+    # Evolve
+    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
+    pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT)  # progress bar
+    for _ in pbar:
+        v = np.ones(sh)
+        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
+            v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
+        kg = (k.copy() * v).clip(min=2.0)
+        fg = anchor_fitness(kg)
+        if fg > f:
+            f, k = fg, kg.copy()
+            pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
+            if verbose:
+                print_results(k, verbose)
+
+    return print_results(k).astype(np.float32)
diff --git a/yolov5_model/utils/autobatch.py b/yolov5_model/utils/autobatch.py
new file mode 100644
index 0000000000000000000000000000000000000000..bdeb91c3d2bd15e53eb65715228932d3e87e0989
--- /dev/null
+++ b/yolov5_model/utils/autobatch.py
@@ -0,0 +1,72 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Auto-batch utils
+"""
+
+from copy import deepcopy
+
+import numpy as np
+import torch
+
+from utils.general import LOGGER, colorstr
+from utils.torch_utils import profile
+
+
+def check_train_batch_size(model, imgsz=640, amp=True):
+    # Check YOLOv5 training batch size
+    with torch.cuda.amp.autocast(amp):
+        return autobatch(deepcopy(model).train(), imgsz)  # compute optimal batch size
+
+
+def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
+    # Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
+    # Usage:
+    #     import torch
+    #     from utils.autobatch import autobatch
+    #     model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
+    #     print(autobatch(model))
+
+    # Check device
+    prefix = colorstr('AutoBatch: ')
+    LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
+    device = next(model.parameters()).device  # get model device
+    if device.type == 'cpu':
+        LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
+        return batch_size
+    if torch.backends.cudnn.benchmark:
+        LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
+        return batch_size
+
+    # Inspect CUDA memory
+    gb = 1 << 30  # bytes to GiB (1024 ** 3)
+    d = str(device).upper()  # 'CUDA:0'
+    properties = torch.cuda.get_device_properties(device)  # device properties
+    t = properties.total_memory / gb  # GiB total
+    r = torch.cuda.memory_reserved(device) / gb  # GiB reserved
+    a = torch.cuda.memory_allocated(device) / gb  # GiB allocated
+    f = t - (r + a)  # GiB free
+    LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
+
+    # Profile batch sizes
+    batch_sizes = [1, 2, 4, 8, 16]
+    try:
+        img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
+        results = profile(img, model, n=3, device=device)
+    except Exception as e:
+        LOGGER.warning(f'{prefix}{e}')
+
+    # Fit a solution
+    y = [x[2] for x in results if x]  # memory [2]
+    p = np.polyfit(batch_sizes[:len(y)], y, deg=1)  # first degree polynomial fit
+    b = int((f * fraction - p[1]) / p[0])  # y intercept (optimal batch size)
+    if None in results:  # some sizes failed
+        i = results.index(None)  # first fail index
+        if b >= batch_sizes[i]:  # y intercept above failure point
+            b = batch_sizes[max(i - 1, 0)]  # select prior safe point
+    if b < 1 or b > 1024:  # b outside of safe range
+        b = batch_size
+        LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
+
+    fraction = (np.polyval(p, b) + r + a) / t  # actual fraction predicted
+    LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
+    return b
diff --git a/yolov5_model/utils/aws/__init__.py b/yolov5_model/utils/aws/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5_model/utils/aws/mime.sh b/yolov5_model/utils/aws/mime.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c319a83cfbdf09bea634c3bd9fca737c0b1dd505
--- /dev/null
+++ b/yolov5_model/utils/aws/mime.sh
@@ -0,0 +1,26 @@
+# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
+# This script will run on every instance restart, not only on first start
+# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
+
+Content-Type: multipart/mixed; boundary="//"
+MIME-Version: 1.0
+
+--//
+Content-Type: text/cloud-config; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="cloud-config.txt"
+
+#cloud-config
+cloud_final_modules:
+- [scripts-user, always]
+
+--//
+Content-Type: text/x-shellscript; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="userdata.txt"
+
+#!/bin/bash
+# --- paste contents of userdata.sh here ---
+--//
diff --git a/yolov5_model/utils/aws/resume.py b/yolov5_model/utils/aws/resume.py
new file mode 100644
index 0000000000000000000000000000000000000000..b21731c979a121ab8227280351b70d6062efd983
--- /dev/null
+++ b/yolov5_model/utils/aws/resume.py
@@ -0,0 +1,40 @@
+# Resume all interrupted trainings in yolov5/ dir including DDP trainings
+# Usage: $ python utils/aws/resume.py
+
+import os
+import sys
+from pathlib import Path
+
+import torch
+import yaml
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[2]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+port = 0  # --master_port
+path = Path('').resolve()
+for last in path.rglob('*/**/last.pt'):
+    ckpt = torch.load(last)
+    if ckpt['optimizer'] is None:
+        continue
+
+    # Load opt.yaml
+    with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
+        opt = yaml.safe_load(f)
+
+    # Get device count
+    d = opt['device'].split(',')  # devices
+    nd = len(d)  # number of devices
+    ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1)  # distributed data parallel
+
+    if ddp:  # multi-GPU
+        port += 1
+        cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
+    else:  # single-GPU
+        cmd = f'python train.py --resume {last}'
+
+    cmd += ' > /dev/null 2>&1 &'  # redirect output to dev/null and run in daemon thread
+    print(cmd)
+    os.system(cmd)
diff --git a/yolov5_model/utils/aws/userdata.sh b/yolov5_model/utils/aws/userdata.sh
new file mode 100644
index 0000000000000000000000000000000000000000..5fc1332ac1b0d1794cf8f8c5f6918059ae5dc381
--- /dev/null
+++ b/yolov5_model/utils/aws/userdata.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
+# This script will run only once on first instance start (for a re-start script see mime.sh)
+# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
+# Use >300 GB SSD
+
+cd home/ubuntu
+if [ ! -d yolov5 ]; then
+  echo "Running first-time script." # install dependencies, download COCO, pull Docker
+  git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
+  cd yolov5
+  bash data/scripts/get_coco.sh && echo "COCO done." &
+  sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
+  python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
+  wait && echo "All tasks done." # finish background tasks
+else
+  echo "Running re-start script." # resume interrupted runs
+  i=0
+  list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
+  while IFS= read -r id; do
+    ((i++))
+    echo "restarting container $i: $id"
+    sudo docker start $id
+    # sudo docker exec -it $id python train.py --resume # single-GPU
+    sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
+  done <<<"$list"
+fi
diff --git a/yolov5_model/utils/callbacks.py b/yolov5_model/utils/callbacks.py
new file mode 100644
index 0000000000000000000000000000000000000000..166d8938322d4b35783be4068ae9561f66c94749
--- /dev/null
+++ b/yolov5_model/utils/callbacks.py
@@ -0,0 +1,76 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Callback utils
+"""
+
+import threading
+
+
+class Callbacks:
+    """"
+    Handles all registered callbacks for YOLOv5 Hooks
+    """
+
+    def __init__(self):
+        # Define the available callbacks
+        self._callbacks = {
+            'on_pretrain_routine_start': [],
+            'on_pretrain_routine_end': [],
+            'on_train_start': [],
+            'on_train_epoch_start': [],
+            'on_train_batch_start': [],
+            'optimizer_step': [],
+            'on_before_zero_grad': [],
+            'on_train_batch_end': [],
+            'on_train_epoch_end': [],
+            'on_val_start': [],
+            'on_val_batch_start': [],
+            'on_val_image_end': [],
+            'on_val_batch_end': [],
+            'on_val_end': [],
+            'on_fit_epoch_end': [],  # fit = train + val
+            'on_model_save': [],
+            'on_train_end': [],
+            'on_params_update': [],
+            'teardown': [],}
+        self.stop_training = False  # set True to interrupt training
+
+    def register_action(self, hook, name='', callback=None):
+        """
+        Register a new action to a callback hook
+
+        Args:
+            hook: The callback hook name to register the action to
+            name: The name of the action for later reference
+            callback: The callback to fire
+        """
+        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+        assert callable(callback), f"callback '{callback}' is not callable"
+        self._callbacks[hook].append({'name': name, 'callback': callback})
+
+    def get_registered_actions(self, hook=None):
+        """"
+        Returns all the registered actions by callback hook
+
+        Args:
+            hook: The name of the hook to check, defaults to all
+        """
+        return self._callbacks[hook] if hook else self._callbacks
+
+    def run(self, hook, *args, thread=False, **kwargs):
+        """
+        Loop through the registered actions and fire all callbacks on main thread
+
+        Args:
+            hook: The name of the hook to check, defaults to all
+            args: Arguments to receive from YOLOv5
+            thread: (boolean) Run callbacks in daemon thread
+            kwargs: Keyword Arguments to receive from YOLOv5
+        """
+
+        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+        for logger in self._callbacks[hook]:
+            if thread:
+                threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
+            else:
+                logger['callback'](*args, **kwargs)
diff --git a/yolov5_model/utils/dataloaders.py b/yolov5_model/utils/dataloaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..7687a2ba26651a3986439e1f3ff724b07f2c847e
--- /dev/null
+++ b/yolov5_model/utils/dataloaders.py
@@ -0,0 +1,1221 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Dataloaders and dataset utils
+"""
+
+import contextlib
+import glob
+import hashlib
+import json
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import Pool, ThreadPool
+from pathlib import Path
+from threading import Thread
+from urllib.parse import urlparse
+
+import numpy as np
+import psutil
+import torch
+import torch.nn.functional as F
+import torchvision
+import yaml
+from PIL import ExifTags, Image, ImageOps
+from torch.utils.data import DataLoader, Dataset, dataloader, distributed
+from tqdm import tqdm
+
+from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
+                                 letterbox, mixup, random_perspective)
+from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
+                           check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
+                           xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm'  # include image suffixes
+VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv'  # include video suffixes
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true'  # global pin_memory for dataloaders
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+    if ExifTags.TAGS[orientation] == 'Orientation':
+        break
+
+
+def get_hash(paths):
+    # Returns a single hash value of a list of paths (files or dirs)
+    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
+    h = hashlib.sha256(str(size).encode())  # hash sizes
+    h.update(''.join(paths).encode())  # hash paths
+    return h.hexdigest()  # return hash
+
+
+def exif_size(img):
+    # Returns exif-corrected PIL size
+    s = img.size  # (width, height)
+    with contextlib.suppress(Exception):
+        rotation = dict(img._getexif().items())[orientation]
+        if rotation in [6, 8]:  # rotation 270 or 90
+            s = (s[1], s[0])
+    return s
+
+
+def exif_transpose(image):
+    """
+    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
+    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
+
+    :param image: The image to transpose.
+    :return: An image.
+    """
+    exif = image.getexif()
+    orientation = exif.get(0x0112, 1)  # default 1
+    if orientation > 1:
+        method = {
+            2: Image.FLIP_LEFT_RIGHT,
+            3: Image.ROTATE_180,
+            4: Image.FLIP_TOP_BOTTOM,
+            5: Image.TRANSPOSE,
+            6: Image.ROTATE_270,
+            7: Image.TRANSVERSE,
+            8: Image.ROTATE_90}.get(orientation)
+        if method is not None:
+            image = image.transpose(method)
+            del exif[0x0112]
+            image.info['exif'] = exif.tobytes()
+    return image
+
+
+def seed_worker(worker_id):
+    # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
+    worker_seed = torch.initial_seed() % 2 ** 32
+    np.random.seed(worker_seed)
+    random.seed(worker_seed)
+
+
+def create_dataloader(path,
+                      imgsz,
+                      batch_size,
+                      stride,
+                      single_cls=False,
+                      hyp=None,
+                      augment=False,
+                      cache=False,
+                      pad=0.0,
+                      rect=False,
+                      rank=-1,
+                      workers=8,
+                      image_weights=False,
+                      quad=False,
+                      prefix='',
+                      shuffle=False,
+                      seed=0):
+    if rect and shuffle:
+        LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabels(
+            path,
+            imgsz,
+            batch_size,
+            augment=augment,  # augmentation
+            hyp=hyp,  # hyperparameters
+            rect=rect,  # rectangular batches
+            cache_images=cache,
+            single_cls=single_cls,
+            stride=int(stride),
+            pad=pad,
+            image_weights=image_weights,
+            prefix=prefix)
+
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()  # number of CUDA devices
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + seed + RANK)
+    return loader(dataset,
+                  batch_size=batch_size,
+                  shuffle=shuffle and sampler is None,
+                  num_workers=nw,
+                  sampler=sampler,
+                  pin_memory=PIN_MEMORY,
+                  collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
+                  worker_init_fn=seed_worker,
+                  generator=generator), dataset
+
+
+class InfiniteDataLoader(dataloader.DataLoader):
+    """ Dataloader that reuses workers
+
+    Uses same syntax as vanilla DataLoader
+    """
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+        self.iterator = super().__iter__()
+
+    def __len__(self):
+        return len(self.batch_sampler.sampler)
+
+    def __iter__(self):
+        for _ in range(len(self)):
+            yield next(self.iterator)
+
+
+class _RepeatSampler:
+    """ Sampler that repeats forever
+
+    Args:
+        sampler (Sampler)
+    """
+
+    def __init__(self, sampler):
+        self.sampler = sampler
+
+    def __iter__(self):
+        while True:
+            yield from iter(self.sampler)
+
+
+class LoadScreenshots:
+    # YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
+    def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
+        # source = [screen_number left top width height] (pixels)
+        check_requirements('mss')
+        import mss
+
+        source, *params = source.split()
+        self.screen, left, top, width, height = 0, None, None, None, None  # default to full screen 0
+        if len(params) == 1:
+            self.screen = int(params[0])
+        elif len(params) == 4:
+            left, top, width, height = (int(x) for x in params)
+        elif len(params) == 5:
+            self.screen, left, top, width, height = (int(x) for x in params)
+        self.img_size = img_size
+        self.stride = stride
+        self.transforms = transforms
+        self.auto = auto
+        self.mode = 'stream'
+        self.frame = 0
+        self.sct = mss.mss()
+
+        # Parse monitor shape
+        monitor = self.sct.monitors[self.screen]
+        self.top = monitor['top'] if top is None else (monitor['top'] + top)
+        self.left = monitor['left'] if left is None else (monitor['left'] + left)
+        self.width = width or monitor['width']
+        self.height = height or monitor['height']
+        self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height}
+
+    def __iter__(self):
+        return self
+
+    def __next__(self):
+        # mss screen capture: get raw pixels from the screen as np array
+        im0 = np.array(self.sct.grab(self.monitor))[:, :, :3]  # [:, :, :3] BGRA to BGR
+        s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
+
+        if self.transforms:
+            im = self.transforms(im0)  # transforms
+        else:
+            im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0]  # padded resize
+            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+            im = np.ascontiguousarray(im)  # contiguous
+        self.frame += 1
+        return str(self.screen), im, im0, None, s  # screen, img, original img, im0s, s
+
+
+class LoadImages:
+    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
+    def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+        if isinstance(path, str) and Path(path).suffix == '.txt':  # *.txt file with img/vid/dir on each line
+            path = Path(path).read_text().rsplit()
+        files = []
+        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
+            p = str(Path(p).resolve())
+            if '*' in p:
+                files.extend(sorted(glob.glob(p, recursive=True)))  # glob
+            elif os.path.isdir(p):
+                files.extend(sorted(glob.glob(os.path.join(p, '*.*'))))  # dir
+            elif os.path.isfile(p):
+                files.append(p)  # files
+            else:
+                raise FileNotFoundError(f'{p} does not exist')
+
+        images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
+        videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
+        ni, nv = len(images), len(videos)
+
+        self.img_size = img_size
+        self.stride = stride
+        self.files = images + videos
+        self.nf = ni + nv  # number of files
+        self.video_flag = [False] * ni + [True] * nv
+        self.mode = 'image'
+        self.auto = auto
+        self.transforms = transforms  # optional
+        self.vid_stride = vid_stride  # video frame-rate stride
+        if any(videos):
+            self._new_video(videos[0])  # new video
+        else:
+            self.cap = None
+        assert self.nf > 0, f'No images or videos found in {p}. ' \
+                            f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
+
+    def __iter__(self):
+        self.count = 0
+        return self
+
+    def __next__(self):
+        if self.count == self.nf:
+            raise StopIteration
+        path = self.files[self.count]
+
+        if self.video_flag[self.count]:
+            # Read video
+            self.mode = 'video'
+            for _ in range(self.vid_stride):
+                self.cap.grab()
+            ret_val, im0 = self.cap.retrieve()
+            while not ret_val:
+                self.count += 1
+                self.cap.release()
+                if self.count == self.nf:  # last video
+                    raise StopIteration
+                path = self.files[self.count]
+                self._new_video(path)
+                ret_val, im0 = self.cap.read()
+
+            self.frame += 1
+            # im0 = self._cv2_rotate(im0)  # for use if cv2 autorotation is False
+            s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
+
+        else:
+            # Read image
+            self.count += 1
+            im0 = cv2.imread(path)  # BGR
+            assert im0 is not None, f'Image Not Found {path}'
+            s = f'image {self.count}/{self.nf} {path}: '
+
+        if self.transforms:
+            im = self.transforms(im0)  # transforms
+        else:
+            im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0]  # padded resize
+            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+            im = np.ascontiguousarray(im)  # contiguous
+
+        return path, im, im0, self.cap, s
+
+    def _new_video(self, path):
+        # Create a new video capture object
+        self.frame = 0
+        self.cap = cv2.VideoCapture(path)
+        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
+        self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META))  # rotation degrees
+        # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0)  # disable https://github.com/ultralytics/yolov5/issues/8493
+
+    def _cv2_rotate(self, im):
+        # Rotate a cv2 video manually
+        if self.orientation == 0:
+            return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
+        elif self.orientation == 180:
+            return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
+        elif self.orientation == 90:
+            return cv2.rotate(im, cv2.ROTATE_180)
+        return im
+
+    def __len__(self):
+        return self.nf  # number of files
+
+
+class LoadStreams:
+    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
+    def __init__(self, sources='file.streams', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
+        torch.backends.cudnn.benchmark = True  # faster for fixed-size inference
+        self.mode = 'stream'
+        self.img_size = img_size
+        self.stride = stride
+        self.vid_stride = vid_stride  # video frame-rate stride
+        sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
+        n = len(sources)
+        self.sources = [clean_str(x) for x in sources]  # clean source names for later
+        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
+        for i, s in enumerate(sources):  # index, source
+            # Start thread to read frames from video stream
+            st = f'{i + 1}/{n}: {s}... '
+            if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'):  # if source is YouTube video
+                # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
+                check_requirements(('pafy', 'youtube_dl==2020.12.2'))
+                import pafy
+                s = pafy.new(s).getbest(preftype='mp4').url  # YouTube URL
+            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
+            if s == 0:
+                assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
+                assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
+            cap = cv2.VideoCapture(s)
+            assert cap.isOpened(), f'{st}Failed to open {s}'
+            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
+            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
+            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback
+
+            _, self.imgs[i] = cap.read()  # guarantee first frame
+            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
+            LOGGER.info(f'{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)')
+            self.threads[i].start()
+        LOGGER.info('')  # newline
+
+        # check for common shapes
+        s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
+        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
+        self.auto = auto and self.rect
+        self.transforms = transforms  # optional
+        if not self.rect:
+            LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
+
+    def update(self, i, cap, stream):
+        # Read stream `i` frames in daemon thread
+        n, f = 0, self.frames[i]  # frame number, frame array
+        while cap.isOpened() and n < f:
+            n += 1
+            cap.grab()  # .read() = .grab() followed by .retrieve()
+            if n % self.vid_stride == 0:
+                success, im = cap.retrieve()
+                if success:
+                    self.imgs[i] = im
+                else:
+                    LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
+                    self.imgs[i] = np.zeros_like(self.imgs[i])
+                    cap.open(stream)  # re-open stream if signal was lost
+            time.sleep(0.0)  # wait time
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        im0 = self.imgs.copy()
+        if self.transforms:
+            im = np.stack([self.transforms(x) for x in im0])  # transforms
+        else:
+            im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0])  # resize
+            im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
+            im = np.ascontiguousarray(im)  # contiguous
+
+        return self.sources, im, im0, None, ''
+
+    def __len__(self):
+        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+    # Define label paths as a function of image paths
+    sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}'  # /images/, /labels/ substrings
+    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset):
+    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
+    cache_version = 0.6  # dataset labels *.cache version
+    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
+
+    def __init__(self,
+                 path,
+                 img_size=640,
+                 batch_size=16,
+                 augment=False,
+                 hyp=None,
+                 rect=False,
+                 image_weights=False,
+                 cache_images=False,
+                 single_cls=False,
+                 stride=32,
+                 pad=0.0,
+                 min_items=0,
+                 prefix=''):
+        self.img_size = img_size
+        self.augment = augment
+        self.hyp = hyp
+        self.image_weights = image_weights
+        self.rect = False if image_weights else rect
+        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
+        self.mosaic_border = [-img_size // 2, -img_size // 2]
+        self.stride = stride
+        self.path = path
+        self.albumentations = Albumentations(size=img_size) if augment else None
+
+        try:
+            f = []  # image files
+            for p in path if isinstance(path, list) else [path]:
+                p = Path(p)  # os-agnostic
+                if p.is_dir():  # dir
+                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+                    # f = list(p.rglob('*.*'))  # pathlib
+                elif p.is_file():  # file
+                    with open(p) as t:
+                        t = t.read().strip().splitlines()
+                        parent = str(p.parent) + os.sep
+                        f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t]  # to global path
+                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # to global path (pathlib)
+                else:
+                    raise FileNotFoundError(f'{prefix}{p} does not exist')
+            self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
+            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
+            assert self.im_files, f'{prefix}No images found'
+        except Exception as e:
+            raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
+
+        # Check cache
+        self.label_files = img2label_paths(self.im_files)  # labels
+        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
+        try:
+            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
+            assert cache['version'] == self.cache_version  # matches current version
+            assert cache['hash'] == get_hash(self.label_files + self.im_files)  # identical hash
+        except Exception:
+            cache, exists = self.cache_labels(cache_path, prefix), False  # run cache ops
+
+        # Display cache
+        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupt, total
+        if exists and LOCAL_RANK in {-1, 0}:
+            d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt'
+            tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT)  # display cache results
+            if cache['msgs']:
+                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
+        assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
+
+        # Read cache
+        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
+        labels, shapes, self.segments = zip(*cache.values())
+        nl = len(np.concatenate(labels, 0))  # number of labels
+        assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
+        self.labels = list(labels)
+        self.shapes = np.array(shapes)
+        self.im_files = list(cache.keys())  # update
+        self.label_files = img2label_paths(cache.keys())  # update
+
+        # Filter images
+        if min_items:
+            include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
+            LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset')
+            self.im_files = [self.im_files[i] for i in include]
+            self.label_files = [self.label_files[i] for i in include]
+            self.labels = [self.labels[i] for i in include]
+            self.segments = [self.segments[i] for i in include]
+            self.shapes = self.shapes[include]  # wh
+
+        # Create indices
+        n = len(self.shapes)  # number of images
+        bi = np.floor(np.arange(n) / batch_size).astype(int)  # batch index
+        nb = bi[-1] + 1  # number of batches
+        self.batch = bi  # batch index of image
+        self.n = n
+        self.indices = range(n)
+
+        # Update labels
+        include_class = []  # filter labels to include only these classes (optional)
+        include_class_array = np.array(include_class).reshape(1, -1)
+        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
+            if include_class:
+                j = (label[:, 0:1] == include_class_array).any(1)
+                self.labels[i] = label[j]
+                if segment:
+                    self.segments[i] = segment[j]
+            if single_cls:  # single-class training, merge all classes into 0
+                self.labels[i][:, 0] = 0
+
+        # Rectangular Training
+        if self.rect:
+            # Sort by aspect ratio
+            s = self.shapes  # wh
+            ar = s[:, 1] / s[:, 0]  # aspect ratio
+            irect = ar.argsort()
+            self.im_files = [self.im_files[i] for i in irect]
+            self.label_files = [self.label_files[i] for i in irect]
+            self.labels = [self.labels[i] for i in irect]
+            self.segments = [self.segments[i] for i in irect]
+            self.shapes = s[irect]  # wh
+            ar = ar[irect]
+
+            # Set training image shapes
+            shapes = [[1, 1]] * nb
+            for i in range(nb):
+                ari = ar[bi == i]
+                mini, maxi = ari.min(), ari.max()
+                if maxi < 1:
+                    shapes[i] = [maxi, 1]
+                elif mini > 1:
+                    shapes[i] = [1, 1 / mini]
+
+            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
+
+        # Cache images into RAM/disk for faster training
+        if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix):
+            cache_images = False
+        self.ims = [None] * n
+        self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
+        if cache_images:
+            b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
+            self.im_hw0, self.im_hw = [None] * n, [None] * n
+            fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
+            results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
+            pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
+            for i, x in pbar:
+                if cache_images == 'disk':
+                    b += self.npy_files[i].stat().st_size
+                else:  # 'ram'
+                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
+                    b += self.ims[i].nbytes
+                pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})'
+            pbar.close()
+
+    def check_cache_ram(self, safety_margin=0.1, prefix=''):
+        # Check image caching requirements vs available memory
+        b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
+        n = min(self.n, 30)  # extrapolate from 30 random images
+        for _ in range(n):
+            im = cv2.imread(random.choice(self.im_files))  # sample image
+            ratio = self.img_size / max(im.shape[0], im.shape[1])  # max(h, w)  # ratio
+            b += im.nbytes * ratio ** 2
+        mem_required = b * self.n / n  # GB required to cache dataset into RAM
+        mem = psutil.virtual_memory()
+        cache = mem_required * (1 + safety_margin) < mem.available  # to cache or not to cache, that is the question
+        if not cache:
+            LOGGER.info(f'{prefix}{mem_required / gb:.1f}GB RAM required, '
+                        f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, '
+                        f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
+        return cache
+
+    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+        # Cache dataset labels, check images and read shapes
+        x = {}  # dict
+        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
+        desc = f'{prefix}Scanning {path.parent / path.stem}...'
+        with Pool(NUM_THREADS) as pool:
+            pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
+                        desc=desc,
+                        total=len(self.im_files),
+                        bar_format=TQDM_BAR_FORMAT)
+            for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
+                nm += nm_f
+                nf += nf_f
+                ne += ne_f
+                nc += nc_f
+                if im_file:
+                    x[im_file] = [lb, shape, segments]
+                if msg:
+                    msgs.append(msg)
+                pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt'
+
+        pbar.close()
+        if msgs:
+            LOGGER.info('\n'.join(msgs))
+        if nf == 0:
+            LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
+        x['hash'] = get_hash(self.label_files + self.im_files)
+        x['results'] = nf, nm, ne, nc, len(self.im_files)
+        x['msgs'] = msgs  # warnings
+        x['version'] = self.cache_version  # cache version
+        try:
+            np.save(path, x)  # save cache for next time
+            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
+            LOGGER.info(f'{prefix}New cache created: {path}')
+        except Exception as e:
+            LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}')  # not writeable
+        return x
+
+    def __len__(self):
+        return len(self.im_files)
+
+    # def __iter__(self):
+    #     self.count = -1
+    #     print('ran dataset iter')
+    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+    #     return self
+
+    def __getitem__(self, index):
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp['mosaic']
+        if mosaic:
+            # Load mosaic
+            img, labels = self.load_mosaic(index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp['mixup']:
+                img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = self.load_image(index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+            if self.augment:
+                img, labels = random_perspective(img,
+                                                 labels,
+                                                 degrees=hyp['degrees'],
+                                                 translate=hyp['translate'],
+                                                 scale=hyp['scale'],
+                                                 shear=hyp['shear'],
+                                                 perspective=hyp['perspective'])
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
+
+        if self.augment:
+            # Albumentations
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+            # Flip up-down
+            if random.random() < hyp['flipud']:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+
+            # Flip left-right
+            if random.random() < hyp['fliplr']:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+
+            # Cutouts
+            # labels = cutout(img, labels, p=0.5)
+            # nl = len(labels)  # update after cutout
+
+        labels_out = torch.zeros((nl, 6))
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return torch.from_numpy(img), labels_out, self.im_files[index], shapes
+
+    def load_image(self, i):
+        # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
+        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
+        if im is None:  # not cached in RAM
+            if fn.exists():  # load npy
+                im = np.load(fn)
+            else:  # read image
+                im = cv2.imread(f)  # BGR
+                assert im is not None, f'Image Not Found {f}'
+            h0, w0 = im.shape[:2]  # orig hw
+            r = self.img_size / max(h0, w0)  # ratio
+            if r != 1:  # if sizes are not equal
+                interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
+                im = cv2.resize(im, (math.ceil(w0 * r), math.ceil(h0 * r)), interpolation=interp)
+            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
+        return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized
+
+    def cache_images_to_disk(self, i):
+        # Saves an image as an *.npy file for faster loading
+        f = self.npy_files[i]
+        if not f.exists():
+            np.save(f.as_posix(), cv2.imread(self.im_files[i]))
+
+    def load_mosaic(self, index):
+        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+        labels4, segments4 = [], []
+        s = self.img_size
+        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+        random.shuffle(indices)
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img4
+            if i == 0:  # top left
+                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+            elif i == 1:  # top right
+                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+            elif i == 2:  # bottom left
+                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+            elif i == 3:  # bottom right
+                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+            padw = x1a - x1b
+            padh = y1a - y1b
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+            labels4.append(labels)
+            segments4.extend(segments)
+
+        # Concat/clip labels
+        labels4 = np.concatenate(labels4, 0)
+        for x in (labels4[:, 1:], *segments4):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img4, labels4 = replicate(img4, labels4)  # replicate
+
+        # Augment
+        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
+        img4, labels4 = random_perspective(img4,
+                                           labels4,
+                                           segments4,
+                                           degrees=self.hyp['degrees'],
+                                           translate=self.hyp['translate'],
+                                           scale=self.hyp['scale'],
+                                           shear=self.hyp['shear'],
+                                           perspective=self.hyp['perspective'],
+                                           border=self.mosaic_border)  # border to remove
+
+        return img4, labels4
+
+    def load_mosaic9(self, index):
+        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
+        labels9, segments9 = [], []
+        s = self.img_size
+        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
+        random.shuffle(indices)
+        hp, wp = -1, -1  # height, width previous
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img9
+            if i == 0:  # center
+                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                h0, w0 = h, w
+                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
+            elif i == 1:  # top
+                c = s, s - h, s + w, s
+            elif i == 2:  # top right
+                c = s + wp, s - h, s + wp + w, s
+            elif i == 3:  # right
+                c = s + w0, s, s + w0 + w, s + h
+            elif i == 4:  # bottom right
+                c = s + w0, s + hp, s + w0 + w, s + hp + h
+            elif i == 5:  # bottom
+                c = s + w0 - w, s + h0, s + w0, s + h0 + h
+            elif i == 6:  # bottom left
+                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+            elif i == 7:  # left
+                c = s - w, s + h0 - h, s, s + h0
+            elif i == 8:  # top left
+                c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+            padx, pady = c[:2]
+            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+            labels9.append(labels)
+            segments9.extend(segments)
+
+            # Image
+            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
+            hp, wp = h, w  # height, width previous
+
+        # Offset
+        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
+        img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+        # Concat/clip labels
+        labels9 = np.concatenate(labels9, 0)
+        labels9[:, [1, 3]] -= xc
+        labels9[:, [2, 4]] -= yc
+        c = np.array([xc, yc])  # centers
+        segments9 = [x - c for x in segments9]
+
+        for x in (labels9[:, 1:], *segments9):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img9, labels9 = replicate(img9, labels9)  # replicate
+
+        # Augment
+        img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste'])
+        img9, labels9 = random_perspective(img9,
+                                           labels9,
+                                           segments9,
+                                           degrees=self.hyp['degrees'],
+                                           translate=self.hyp['translate'],
+                                           scale=self.hyp['scale'],
+                                           shear=self.hyp['shear'],
+                                           perspective=self.hyp['perspective'],
+                                           border=self.mosaic_border)  # border to remove
+
+        return img9, labels9
+
+    @staticmethod
+    def collate_fn(batch):
+        im, label, path, shapes = zip(*batch)  # transposed
+        for i, lb in enumerate(label):
+            lb[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(im, 0), torch.cat(label, 0), path, shapes
+
+    @staticmethod
+    def collate_fn4(batch):
+        im, label, path, shapes = zip(*batch)  # transposed
+        n = len(shapes) // 4
+        im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
+        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
+        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
+        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
+            i *= 4
+            if random.random() < 0.5:
+                im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
+                                    align_corners=False)[0].type(im[i].type())
+                lb = label[i]
+            else:
+                im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2)
+                lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+            im4.append(im1)
+            label4.append(lb)
+
+        for i, lb in enumerate(label4):
+            lb[:, 0] = i  # add target image index for build_targets()
+
+        return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def flatten_recursive(path=DATASETS_DIR / 'coco128'):
+    # Flatten a recursive directory by bringing all files to top level
+    new_path = Path(f'{str(path)}_flat')
+    if os.path.exists(new_path):
+        shutil.rmtree(new_path)  # delete output folder
+    os.makedirs(new_path)  # make new output folder
+    for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
+        shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path=DATASETS_DIR / 'coco128'):  # from utils.dataloaders import *; extract_boxes()
+    # Convert detection dataset into classification dataset, with one directory per class
+    path = Path(path)  # images dir
+    shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None  # remove existing
+    files = list(path.rglob('*.*'))
+    n = len(files)  # number of files
+    for im_file in tqdm(files, total=n):
+        if im_file.suffix[1:] in IMG_FORMATS:
+            # image
+            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
+            h, w = im.shape[:2]
+
+            # labels
+            lb_file = Path(img2label_paths([str(im_file)])[0])
+            if Path(lb_file).exists():
+                with open(lb_file) as f:
+                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
+
+                for j, x in enumerate(lb):
+                    c = int(x[0])  # class
+                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
+                    if not f.parent.is_dir():
+                        f.parent.mkdir(parents=True)
+
+                    b = x[1:] * [w, h, w, h]  # box
+                    # b[2:] = b[2:].max()  # rectangle to square
+                    b[2:] = b[2:] * 1.2 + 3  # pad
+                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
+
+                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
+                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
+    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+    Usage: from utils.dataloaders import *; autosplit()
+    Arguments
+        path:            Path to images directory
+        weights:         Train, val, test weights (list, tuple)
+        annotated_only:  Only use images with an annotated txt file
+    """
+    path = Path(path)  # images dir
+    files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS)  # image files only
+    n = len(files)  # number of files
+    random.seed(0)  # for reproducibility
+    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
+
+    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
+    for x in txt:
+        if (path.parent / x).exists():
+            (path.parent / x).unlink()  # remove existing
+
+    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+    for i, img in tqdm(zip(indices, files), total=n):
+        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
+            with open(path.parent / txt[i], 'a') as f:
+                f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n')  # add image to txt file
+
+
+def verify_image_label(args):
+    # Verify one image-label pair
+    im_file, lb_file, prefix = args
+    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', []  # number (missing, found, empty, corrupt), message, segments
+    try:
+        # verify images
+        im = Image.open(im_file)
+        im.verify()  # PIL verify
+        shape = exif_size(im)  # image size
+        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+        assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
+        if im.format.lower() in ('jpg', 'jpeg'):
+            with open(im_file, 'rb') as f:
+                f.seek(-2, 2)
+                if f.read() != b'\xff\xd9':  # corrupt JPEG
+                    ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
+                    msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
+
+        # verify labels
+        if os.path.isfile(lb_file):
+            nf = 1  # label found
+            with open(lb_file) as f:
+                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
+                if any(len(x) > 6 for x in lb):  # is segment
+                    classes = np.array([x[0] for x in lb], dtype=np.float32)
+                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
+                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
+                lb = np.array(lb, dtype=np.float32)
+            nl = len(lb)
+            if nl:
+                assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
+                assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
+                assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
+                _, i = np.unique(lb, axis=0, return_index=True)
+                if len(i) < nl:  # duplicate row check
+                    lb = lb[i]  # remove duplicates
+                    if segments:
+                        segments = [segments[x] for x in i]
+                    msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
+            else:
+                ne = 1  # label empty
+                lb = np.zeros((0, 5), dtype=np.float32)
+        else:
+            nm = 1  # label missing
+            lb = np.zeros((0, 5), dtype=np.float32)
+        return im_file, lb, shape, segments, nm, nf, ne, nc, msg
+    except Exception as e:
+        nc = 1
+        msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
+        return [None, None, None, None, nm, nf, ne, nc, msg]
+
+
+class HUBDatasetStats():
+    """ Class for generating HUB dataset JSON and `-hub` dataset directory
+
+    Arguments
+        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
+        autodownload:   Attempt to download dataset if not found locally
+
+    Usage
+        from utils.dataloaders import HUBDatasetStats
+        stats = HUBDatasetStats('coco128.yaml', autodownload=True)  # usage 1
+        stats = HUBDatasetStats('path/to/coco128.zip')  # usage 2
+        stats.get_json(save=False)
+        stats.process_images()
+    """
+
+    def __init__(self, path='coco128.yaml', autodownload=False):
+        # Initialize class
+        zipped, data_dir, yaml_path = self._unzip(Path(path))
+        try:
+            with open(check_yaml(yaml_path), errors='ignore') as f:
+                data = yaml.safe_load(f)  # data dict
+                if zipped:
+                    data['path'] = data_dir
+        except Exception as e:
+            raise Exception('error/HUB/dataset_stats/yaml_load') from e
+
+        check_dataset(data, autodownload)  # download dataset if missing
+        self.hub_dir = Path(data['path'] + '-hub')
+        self.im_dir = self.hub_dir / 'images'
+        self.im_dir.mkdir(parents=True, exist_ok=True)  # makes /images
+        self.stats = {'nc': data['nc'], 'names': list(data['names'].values())}  # statistics dictionary
+        self.data = data
+
+    @staticmethod
+    def _find_yaml(dir):
+        # Return data.yaml file
+        files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml'))  # try root level first and then recursive
+        assert files, f'No *.yaml file found in {dir}'
+        if len(files) > 1:
+            files = [f for f in files if f.stem == dir.stem]  # prefer *.yaml files that match dir name
+            assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
+        assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
+        return files[0]
+
+    def _unzip(self, path):
+        # Unzip data.zip
+        if not str(path).endswith('.zip'):  # path is data.yaml
+            return False, None, path
+        assert Path(path).is_file(), f'Error unzipping {path}, file not found'
+        unzip_file(path, path=path.parent)
+        dir = path.with_suffix('')  # dataset directory == zip name
+        assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
+        return True, str(dir), self._find_yaml(dir)  # zipped, data_dir, yaml_path
+
+    def _hub_ops(self, f, max_dim=1920):
+        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
+        f_new = self.im_dir / Path(f).name  # dataset-hub image filename
+        try:  # use PIL
+            im = Image.open(f)
+            r = max_dim / max(im.height, im.width)  # ratio
+            if r < 1.0:  # image too large
+                im = im.resize((int(im.width * r), int(im.height * r)))
+            im.save(f_new, 'JPEG', quality=50, optimize=True)  # save
+        except Exception as e:  # use OpenCV
+            LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
+            im = cv2.imread(f)
+            im_height, im_width = im.shape[:2]
+            r = max_dim / max(im_height, im_width)  # ratio
+            if r < 1.0:  # image too large
+                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
+            cv2.imwrite(str(f_new), im)
+
+    def get_json(self, save=False, verbose=False):
+        # Return dataset JSON for Ultralytics HUB
+        def _round(labels):
+            # Update labels to integer class and 6 decimal place floats
+            return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
+
+        for split in 'train', 'val', 'test':
+            if self.data.get(split) is None:
+                self.stats[split] = None  # i.e. no test set
+                continue
+            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
+            x = np.array([
+                np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
+                for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')])  # shape(128x80)
+            self.stats[split] = {
+                'instance_stats': {
+                    'total': int(x.sum()),
+                    'per_class': x.sum(0).tolist()},
+                'image_stats': {
+                    'total': dataset.n,
+                    'unlabelled': int(np.all(x == 0, 1).sum()),
+                    'per_class': (x > 0).sum(0).tolist()},
+                'labels': [{
+                    str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
+
+        # Save, print and return
+        if save:
+            stats_path = self.hub_dir / 'stats.json'
+            print(f'Saving {stats_path.resolve()}...')
+            with open(stats_path, 'w') as f:
+                json.dump(self.stats, f)  # save stats.json
+        if verbose:
+            print(json.dumps(self.stats, indent=2, sort_keys=False))
+        return self.stats
+
+    def process_images(self):
+        # Compress images for Ultralytics HUB
+        for split in 'train', 'val', 'test':
+            if self.data.get(split) is None:
+                continue
+            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
+            desc = f'{split} images'
+            for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
+                pass
+        print(f'Done. All images saved to {self.im_dir}')
+        return self.im_dir
+
+
+# Classification dataloaders -------------------------------------------------------------------------------------------
+class ClassificationDataset(torchvision.datasets.ImageFolder):
+    """
+    YOLOv5 Classification Dataset.
+    Arguments
+        root:  Dataset path
+        transform:  torchvision transforms, used by default
+        album_transform: Albumentations transforms, used if installed
+    """
+
+    def __init__(self, root, augment, imgsz, cache=False):
+        super().__init__(root=root)
+        self.torch_transforms = classify_transforms(imgsz)
+        self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
+        self.cache_ram = cache is True or cache == 'ram'
+        self.cache_disk = cache == 'disk'
+        self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples]  # file, index, npy, im
+
+    def __getitem__(self, i):
+        f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
+        if self.cache_ram and im is None:
+            im = self.samples[i][3] = cv2.imread(f)
+        elif self.cache_disk:
+            if not fn.exists():  # load npy
+                np.save(fn.as_posix(), cv2.imread(f))
+            im = np.load(fn)
+        else:  # read image
+            im = cv2.imread(f)  # BGR
+        if self.album_transforms:
+            sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image']
+        else:
+            sample = self.torch_transforms(im)
+        return sample, j
+
+
+def create_classification_dataloader(path,
+                                     imgsz=224,
+                                     batch_size=16,
+                                     augment=True,
+                                     cache=False,
+                                     rank=-1,
+                                     workers=8,
+                                     shuffle=True):
+    # Returns Dataloader object to be used with YOLOv5 Classifier
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
+    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + RANK)
+    return InfiniteDataLoader(dataset,
+                              batch_size=batch_size,
+                              shuffle=shuffle and sampler is None,
+                              num_workers=nw,
+                              sampler=sampler,
+                              pin_memory=PIN_MEMORY,
+                              worker_init_fn=seed_worker,
+                              generator=generator)  # or DataLoader(persistent_workers=True)
diff --git a/yolov5_model/utils/docker/Dockerfile b/yolov5_model/utils/docker/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..b5d2af9fb08e792d1d5040c556e84539117ead8e
--- /dev/null
+++ b/yolov5_model/utils/docker/Dockerfile
@@ -0,0 +1,75 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
+# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
+
+# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
+# FROM docker.io/pytorch/pytorch:latest
+FROM pytorch/pytorch:latest
+
+# Downloads to user config dir
+ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
+
+# Install linux packages
+ENV DEBIAN_FRONTEND noninteractive
+RUN apt update
+RUN TZ=Etc/UTC apt install -y tzdata
+RUN apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg
+# RUN alias python=python3
+
+# Security updates
+# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
+RUN apt upgrade --no-install-recommends -y openssl
+
+# Create working directory
+RUN rm -rf /usr/src/app && mkdir -p /usr/src/app
+WORKDIR /usr/src/app
+
+# Copy contents
+# COPY . /usr/src/app  (issues as not a .git directory)
+RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
+
+# Install pip packages
+COPY requirements.txt .
+RUN python3 -m pip install --upgrade pip wheel
+RUN pip install --no-cache -r requirements.txt albumentations comet gsutil notebook \
+    coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2022.3'
+    # tensorflow tensorflowjs \
+
+# Set environment variables
+ENV OMP_NUM_THREADS=1
+
+# Cleanup
+ENV DEBIAN_FRONTEND teletype
+
+
+# Usage Examples -------------------------------------------------------------------------------------------------------
+
+# Build and Push
+# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
+
+# Pull and Run
+# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
+
+# Pull and Run with local directory access
+# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
+
+# Kill all
+# sudo docker kill $(sudo docker ps -q)
+
+# Kill all image-based
+# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
+
+# DockerHub tag update
+# t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
+
+# Clean up
+# sudo docker system prune -a --volumes
+
+# Update Ubuntu drivers
+# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
+
+# DDP test
+# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
+
+# GCP VM from Image
+# docker.io/ultralytics/yolov5:latest
diff --git a/yolov5_model/utils/docker/Dockerfile-arm64 b/yolov5_model/utils/docker/Dockerfile-arm64
new file mode 100644
index 0000000000000000000000000000000000000000..7023c6a4bb1fcc2045465f375e922238f39aca18
--- /dev/null
+++ b/yolov5_model/utils/docker/Dockerfile-arm64
@@ -0,0 +1,41 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Builds ultralytics/yolov5:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
+# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
+
+# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
+FROM arm64v8/ubuntu:rolling
+
+# Downloads to user config dir
+ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
+
+# Install linux packages
+ENV DEBIAN_FRONTEND noninteractive
+RUN apt update
+RUN TZ=Etc/UTC apt install -y tzdata
+RUN apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1-mesa-glx libglib2.0-0 libpython3-dev
+# RUN alias python=python3
+
+# Install pip packages
+COPY requirements.txt .
+RUN python3 -m pip install --upgrade pip wheel
+RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
+    coremltools onnx onnxruntime
+    # tensorflow-aarch64 tensorflowjs \
+
+# Create working directory
+RUN mkdir -p /usr/src/app
+WORKDIR /usr/src/app
+
+# Copy contents
+# COPY . /usr/src/app  (issues as not a .git directory)
+RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
+ENV DEBIAN_FRONTEND teletype
+
+
+# Usage Examples -------------------------------------------------------------------------------------------------------
+
+# Build and Push
+# t=ultralytics/yolov5:latest-arm64 && sudo docker build --platform linux/arm64 -f utils/docker/Dockerfile-arm64 -t $t . && sudo docker push $t
+
+# Pull and Run
+# t=ultralytics/yolov5:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
diff --git a/yolov5_model/utils/docker/Dockerfile-cpu b/yolov5_model/utils/docker/Dockerfile-cpu
new file mode 100644
index 0000000000000000000000000000000000000000..06bad9a3790d57fa5369ff62d9381f49ce54c708
--- /dev/null
+++ b/yolov5_model/utils/docker/Dockerfile-cpu
@@ -0,0 +1,42 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
+# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
+
+# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
+FROM ubuntu:rolling
+
+# Downloads to user config dir
+ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
+
+# Install linux packages
+ENV DEBIAN_FRONTEND noninteractive
+RUN apt update
+RUN TZ=Etc/UTC apt install -y tzdata
+RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg
+# RUN alias python=python3
+
+# Install pip packages
+COPY requirements.txt .
+RUN python3 -m pip install --upgrade pip wheel
+RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
+    coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2022.3' \
+    # tensorflow tensorflowjs \
+    --extra-index-url https://download.pytorch.org/whl/cpu
+
+# Create working directory
+RUN mkdir -p /usr/src/app
+WORKDIR /usr/src/app
+
+# Copy contents
+# COPY . /usr/src/app  (issues as not a .git directory)
+RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
+ENV DEBIAN_FRONTEND teletype
+
+
+# Usage Examples -------------------------------------------------------------------------------------------------------
+
+# Build and Push
+# t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
+
+# Pull and Run
+# t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
diff --git a/yolov5_model/utils/downloads.py b/yolov5_model/utils/downloads.py
new file mode 100644
index 0000000000000000000000000000000000000000..643b529fba3b4599c244893ebab9e4f5668c45f4
--- /dev/null
+++ b/yolov5_model/utils/downloads.py
@@ -0,0 +1,128 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Download utils
+"""
+
+import logging
+import os
+import subprocess
+import urllib
+from pathlib import Path
+
+import requests
+import torch
+
+
+def is_url(url, check=True):
+    # Check if string is URL and check if URL exists
+    try:
+        url = str(url)
+        result = urllib.parse.urlparse(url)
+        assert all([result.scheme, result.netloc])  # check if is url
+        return (urllib.request.urlopen(url).getcode() == 200) if check else True  # check if exists online
+    except (AssertionError, urllib.request.HTTPError):
+        return False
+
+
+def gsutil_getsize(url=''):
+    # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
+    output = subprocess.check_output(['gsutil', 'du', url], shell=True, encoding='utf-8')
+    if output:
+        return int(output.split()[0])
+    return 0
+
+
+def url_getsize(url='https://ultralytics.com/images/bus.jpg'):
+    # Return downloadable file size in bytes
+    response = requests.head(url, allow_redirects=True)
+    return int(response.headers.get('content-length', -1))
+
+
+def curl_download(url, filename, *, silent: bool = False) -> bool:
+    """
+    Download a file from a url to a filename using curl.
+    """
+    silent_option = 'sS' if silent else ''  # silent
+    proc = subprocess.run([
+        'curl',
+        '-#',
+        f'-{silent_option}L',
+        url,
+        '--output',
+        filename,
+        '--retry',
+        '9',
+        '-C',
+        '-',])
+    return proc.returncode == 0
+
+
+def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
+    # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
+    from utils.general import LOGGER
+
+    file = Path(file)
+    assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
+    try:  # url1
+        LOGGER.info(f'Downloading {url} to {file}...')
+        torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
+        assert file.exists() and file.stat().st_size > min_bytes, assert_msg  # check
+    except Exception as e:  # url2
+        if file.exists():
+            file.unlink()  # remove partial downloads
+        LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
+        # curl download, retry and resume on fail
+        curl_download(url2 or url, file)
+    finally:
+        if not file.exists() or file.stat().st_size < min_bytes:  # check
+            if file.exists():
+                file.unlink()  # remove partial downloads
+            LOGGER.info(f'ERROR: {assert_msg}\n{error_msg}')
+        LOGGER.info('')
+
+
+def attempt_download(file, repo='ultralytics/yolov5', release='v7.0'):
+    # Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v7.0', etc.
+    from utils.general import LOGGER
+
+    def github_assets(repository, version='latest'):
+        # Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
+        if version != 'latest':
+            version = f'tags/{version}'  # i.e. tags/v7.0
+        response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json()  # github api
+        return response['tag_name'], [x['name'] for x in response['assets']]  # tag, assets
+
+    file = Path(str(file).strip().replace("'", ''))
+    if not file.exists():
+        # URL specified
+        name = Path(urllib.parse.unquote(str(file))).name  # decode '%2F' to '/' etc.
+        if str(file).startswith(('http:/', 'https:/')):  # download
+            url = str(file).replace(':/', '://')  # Pathlib turns :// -> :/
+            file = name.split('?')[0]  # parse authentication https://url.com/file.txt?auth...
+            if Path(file).is_file():
+                LOGGER.info(f'Found {url} locally at {file}')  # file already exists
+            else:
+                safe_download(file=file, url=url, min_bytes=1E5)
+            return file
+
+        # GitHub assets
+        assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')]  # default
+        try:
+            tag, assets = github_assets(repo, release)
+        except Exception:
+            try:
+                tag, assets = github_assets(repo)  # latest release
+            except Exception:
+                try:
+                    tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
+                except Exception:
+                    tag = release
+
+        file.parent.mkdir(parents=True, exist_ok=True)  # make parent dir (if required)
+        if name in assets:
+            safe_download(file,
+                          url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
+                          min_bytes=1E5,
+                          error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag}')
+
+    return str(file)
diff --git a/yolov5_model/utils/flask_rest_api/README.md b/yolov5_model/utils/flask_rest_api/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a726acbd92043458311dd949cc09c0195cd35400
--- /dev/null
+++ b/yolov5_model/utils/flask_rest_api/README.md
@@ -0,0 +1,73 @@
+# Flask REST API
+
+[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
+commonly used to expose Machine Learning (ML)  models to other services. This folder contains an example REST API
+created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
+
+## Requirements
+
+[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
+
+```shell
+$ pip install Flask
+```
+
+## Run
+
+After Flask installation run:
+
+```shell
+$ python3 restapi.py --port 5000
+```
+
+Then use [curl](https://curl.se/) to perform a request:
+
+```shell
+$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
+```
+
+The model inference results are returned as a JSON response:
+
+```json
+[
+  {
+    "class": 0,
+    "confidence": 0.8900438547,
+    "height": 0.9318675399,
+    "name": "person",
+    "width": 0.3264600933,
+    "xcenter": 0.7438579798,
+    "ycenter": 0.5207948685
+  },
+  {
+    "class": 0,
+    "confidence": 0.8440024257,
+    "height": 0.7155083418,
+    "name": "person",
+    "width": 0.6546785235,
+    "xcenter": 0.427829951,
+    "ycenter": 0.6334488392
+  },
+  {
+    "class": 27,
+    "confidence": 0.3771208823,
+    "height": 0.3902671337,
+    "name": "tie",
+    "width": 0.0696444362,
+    "xcenter": 0.3675483763,
+    "ycenter": 0.7991207838
+  },
+  {
+    "class": 27,
+    "confidence": 0.3527112305,
+    "height": 0.1540903747,
+    "name": "tie",
+    "width": 0.0336618312,
+    "xcenter": 0.7814827561,
+    "ycenter": 0.5065554976
+  }
+]
+```
+
+An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
+in `example_request.py`
diff --git a/yolov5_model/utils/flask_rest_api/example_request.py b/yolov5_model/utils/flask_rest_api/example_request.py
new file mode 100644
index 0000000000000000000000000000000000000000..952e5dcb90fa5ad58628596ed8866b8b7a521d22
--- /dev/null
+++ b/yolov5_model/utils/flask_rest_api/example_request.py
@@ -0,0 +1,19 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Perform test request
+"""
+
+import pprint
+
+import requests
+
+DETECTION_URL = 'http://localhost:5000/v1/object-detection/yolov5s'
+IMAGE = 'zidane.jpg'
+
+# Read image
+with open(IMAGE, 'rb') as f:
+    image_data = f.read()
+
+response = requests.post(DETECTION_URL, files={'image': image_data}).json()
+
+pprint.pprint(response)
diff --git a/yolov5_model/utils/flask_rest_api/restapi.py b/yolov5_model/utils/flask_rest_api/restapi.py
new file mode 100644
index 0000000000000000000000000000000000000000..9258b1a68860e1c6c4d0a4dfc3fad5ed245b3688
--- /dev/null
+++ b/yolov5_model/utils/flask_rest_api/restapi.py
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run a Flask REST API exposing one or more YOLOv5s models
+"""
+
+import argparse
+import io
+
+import torch
+from flask import Flask, request
+from PIL import Image
+
+app = Flask(__name__)
+models = {}
+
+DETECTION_URL = '/v1/object-detection/<model>'
+
+
+@app.route(DETECTION_URL, methods=['POST'])
+def predict(model):
+    if request.method != 'POST':
+        return
+
+    if request.files.get('image'):
+        # Method 1
+        # with request.files["image"] as f:
+        #     im = Image.open(io.BytesIO(f.read()))
+
+        # Method 2
+        im_file = request.files['image']
+        im_bytes = im_file.read()
+        im = Image.open(io.BytesIO(im_bytes))
+
+        if model in models:
+            results = models[model](im, size=640)  # reduce size=320 for faster inference
+            return results.pandas().xyxy[0].to_json(orient='records')
+
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser(description='Flask API exposing YOLOv5 model')
+    parser.add_argument('--port', default=5000, type=int, help='port number')
+    parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s')
+    opt = parser.parse_args()
+
+    for m in opt.model:
+        models[m] = torch.hub.load('ultralytics/yolov5', m, force_reload=True, skip_validation=True)
+
+    app.run(host='0.0.0.0', port=opt.port)  # debug=True causes Restarting with stat
diff --git a/yolov5_model/utils/general.py b/yolov5_model/utils/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..b6efe6bb873299446b71ea51602f9457cf1f55ed
--- /dev/null
+++ b/yolov5_model/utils/general.py
@@ -0,0 +1,1133 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+General utils
+"""
+
+import contextlib
+import glob
+import inspect
+import logging
+import logging.config
+import math
+import os
+import platform
+import random
+import re
+import signal
+import subprocess
+import sys
+import time
+import urllib
+from copy import deepcopy
+from datetime import datetime
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from subprocess import check_output
+from tarfile import is_tarfile
+from typing import Optional
+from zipfile import ZipFile, is_zipfile
+
+import cv2
+import IPython
+import numpy as np
+import pandas as pd
+import pkg_resources as pkg
+import torch
+import torchvision
+import yaml
+
+from utils import TryExcept, emojis
+from utils.downloads import curl_download, gsutil_getsize
+from utils.metrics import box_iou, fitness
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+RANK = int(os.getenv('RANK', -1))
+
+# Settings
+NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
+DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets'))  # global datasets directory
+AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true'  # global auto-install mode
+VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true'  # global verbose mode
+TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}'  # tqdm bar format
+FONT = 'Arial.ttf'  # https://ultralytics.com/assets/Arial.ttf
+
+torch.set_printoptions(linewidth=320, precision=5, profile='long')
+np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
+pd.options.display.max_columns = 10
+cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
+os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS)  # NumExpr max threads
+os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS)  # OpenMP (PyTorch and SciPy)
+
+
+def is_ascii(s=''):
+    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
+    s = str(s)  # convert list, tuple, None, etc. to str
+    return len(s.encode().decode('ascii', 'ignore')) == len(s)
+
+
+def is_chinese(s='人工智能'):
+    # Is string composed of any Chinese characters?
+    return bool(re.search('[\u4e00-\u9fff]', str(s)))
+
+
+def is_colab():
+    # Is environment a Google Colab instance?
+    return 'google.colab' in sys.modules
+
+
+def is_notebook():
+    # Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace
+    ipython_type = str(type(IPython.get_ipython()))
+    return 'colab' in ipython_type or 'zmqshell' in ipython_type
+
+
+def is_kaggle():
+    # Is environment a Kaggle Notebook?
+    return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
+
+
+def is_docker() -> bool:
+    """Check if the process runs inside a docker container."""
+    if Path('/.dockerenv').exists():
+        return True
+    try:  # check if docker is in control groups
+        with open('/proc/self/cgroup') as file:
+            return any('docker' in line for line in file)
+    except OSError:
+        return False
+
+
+def is_writeable(dir, test=False):
+    # Return True if directory has write permissions, test opening a file with write permissions if test=True
+    if not test:
+        return os.access(dir, os.W_OK)  # possible issues on Windows
+    file = Path(dir) / 'tmp.txt'
+    try:
+        with open(file, 'w'):  # open file with write permissions
+            pass
+        file.unlink()  # remove file
+        return True
+    except OSError:
+        return False
+
+
+LOGGING_NAME = 'yolov5'
+
+
+def set_logging(name=LOGGING_NAME, verbose=True):
+    # sets up logging for the given name
+    rank = int(os.getenv('RANK', -1))  # rank in world for Multi-GPU trainings
+    level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
+    logging.config.dictConfig({
+        'version': 1,
+        'disable_existing_loggers': False,
+        'formatters': {
+            name: {
+                'format': '%(message)s'}},
+        'handlers': {
+            name: {
+                'class': 'logging.StreamHandler',
+                'formatter': name,
+                'level': level,}},
+        'loggers': {
+            name: {
+                'level': level,
+                'handlers': [name],
+                'propagate': False,}}})
+
+
+set_logging(LOGGING_NAME)  # run before defining LOGGER
+LOGGER = logging.getLogger(LOGGING_NAME)  # define globally (used in train.py, val.py, detect.py, etc.)
+if platform.system() == 'Windows':
+    for fn in LOGGER.info, LOGGER.warning:
+        setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x)))  # emoji safe logging
+
+
+def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
+    # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
+    env = os.getenv(env_var)
+    if env:
+        path = Path(env)  # use environment variable
+    else:
+        cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'}  # 3 OS dirs
+        path = Path.home() / cfg.get(platform.system(), '')  # OS-specific config dir
+        path = (path if is_writeable(path) else Path('/tmp')) / dir  # GCP and AWS lambda fix, only /tmp is writeable
+    path.mkdir(exist_ok=True)  # make if required
+    return path
+
+
+CONFIG_DIR = user_config_dir()  # Ultralytics settings dir
+
+
+class Profile(contextlib.ContextDecorator):
+    # YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
+    def __init__(self, t=0.0):
+        self.t = t
+        self.cuda = torch.cuda.is_available()
+
+    def __enter__(self):
+        self.start = self.time()
+        return self
+
+    def __exit__(self, type, value, traceback):
+        self.dt = self.time() - self.start  # delta-time
+        self.t += self.dt  # accumulate dt
+
+    def time(self):
+        if self.cuda:
+            torch.cuda.synchronize()
+        return time.time()
+
+
+class Timeout(contextlib.ContextDecorator):
+    # YOLOv5 Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
+    def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
+        self.seconds = int(seconds)
+        self.timeout_message = timeout_msg
+        self.suppress = bool(suppress_timeout_errors)
+
+    def _timeout_handler(self, signum, frame):
+        raise TimeoutError(self.timeout_message)
+
+    def __enter__(self):
+        if platform.system() != 'Windows':  # not supported on Windows
+            signal.signal(signal.SIGALRM, self._timeout_handler)  # Set handler for SIGALRM
+            signal.alarm(self.seconds)  # start countdown for SIGALRM to be raised
+
+    def __exit__(self, exc_type, exc_val, exc_tb):
+        if platform.system() != 'Windows':
+            signal.alarm(0)  # Cancel SIGALRM if it's scheduled
+            if self.suppress and exc_type is TimeoutError:  # Suppress TimeoutError
+                return True
+
+
+class WorkingDirectory(contextlib.ContextDecorator):
+    # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
+    def __init__(self, new_dir):
+        self.dir = new_dir  # new dir
+        self.cwd = Path.cwd().resolve()  # current dir
+
+    def __enter__(self):
+        os.chdir(self.dir)
+
+    def __exit__(self, exc_type, exc_val, exc_tb):
+        os.chdir(self.cwd)
+
+
+def methods(instance):
+    # Get class/instance methods
+    return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith('__')]
+
+
+def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
+    # Print function arguments (optional args dict)
+    x = inspect.currentframe().f_back  # previous frame
+    file, _, func, _, _ = inspect.getframeinfo(x)
+    if args is None:  # get args automatically
+        args, _, _, frm = inspect.getargvalues(x)
+        args = {k: v for k, v in frm.items() if k in args}
+    try:
+        file = Path(file).resolve().relative_to(ROOT).with_suffix('')
+    except ValueError:
+        file = Path(file).stem
+    s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
+    LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
+
+
+def init_seeds(seed=0, deterministic=False):
+    # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    torch.cuda.manual_seed(seed)
+    torch.cuda.manual_seed_all(seed)  # for Multi-GPU, exception safe
+    # torch.backends.cudnn.benchmark = True  # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
+    if deterministic and check_version(torch.__version__, '1.12.0'):  # https://github.com/ultralytics/yolov5/pull/8213
+        torch.use_deterministic_algorithms(True)
+        torch.backends.cudnn.deterministic = True
+        os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
+        os.environ['PYTHONHASHSEED'] = str(seed)
+
+
+def intersect_dicts(da, db, exclude=()):
+    # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
+    return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
+
+
+def get_default_args(func):
+    # Get func() default arguments
+    signature = inspect.signature(func)
+    return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
+
+
+def get_latest_run(search_dir='.'):
+    # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
+    last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
+    return max(last_list, key=os.path.getctime) if last_list else ''
+
+
+def file_age(path=__file__):
+    # Return days since last file update
+    dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime))  # delta
+    return dt.days  # + dt.seconds / 86400  # fractional days
+
+
+def file_date(path=__file__):
+    # Return human-readable file modification date, i.e. '2021-3-26'
+    t = datetime.fromtimestamp(Path(path).stat().st_mtime)
+    return f'{t.year}-{t.month}-{t.day}'
+
+
+def file_size(path):
+    # Return file/dir size (MB)
+    mb = 1 << 20  # bytes to MiB (1024 ** 2)
+    path = Path(path)
+    if path.is_file():
+        return path.stat().st_size / mb
+    elif path.is_dir():
+        return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
+    else:
+        return 0.0
+
+
+def check_online():
+    # Check internet connectivity
+    import socket
+
+    def run_once():
+        # Check once
+        try:
+            socket.create_connection(('1.1.1.1', 443), 5)  # check host accessibility
+            return True
+        except OSError:
+            return False
+
+    return run_once() or run_once()  # check twice to increase robustness to intermittent connectivity issues
+
+
+def git_describe(path=ROOT):  # path must be a directory
+    # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
+    try:
+        assert (Path(path) / '.git').is_dir()
+        return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
+    except Exception:
+        return ''
+
+
+@TryExcept()
+@WorkingDirectory(ROOT)
+def check_git_status(repo='ultralytics/yolov5', branch='master'):
+    # YOLOv5 status check, recommend 'git pull' if code is out of date
+    url = f'https://github.com/{repo}'
+    msg = f', for updates see {url}'
+    s = colorstr('github: ')  # string
+    assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
+    assert check_online(), s + 'skipping check (offline)' + msg
+
+    splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode())
+    matches = [repo in s for s in splits]
+    if any(matches):
+        remote = splits[matches.index(True) - 1]
+    else:
+        remote = 'ultralytics'
+        check_output(f'git remote add {remote} {url}', shell=True)
+    check_output(f'git fetch {remote}', shell=True, timeout=5)  # git fetch
+    local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()  # checked out
+    n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True))  # commits behind
+    if n > 0:
+        pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}'
+        s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update."
+    else:
+        s += f'up to date with {url} ✅'
+    LOGGER.info(s)
+
+
+@WorkingDirectory(ROOT)
+def check_git_info(path='.'):
+    # YOLOv5 git info check, return {remote, branch, commit}
+    check_requirements('gitpython')
+    import git
+    try:
+        repo = git.Repo(path)
+        remote = repo.remotes.origin.url.replace('.git', '')  # i.e. 'https://github.com/ultralytics/yolov5'
+        commit = repo.head.commit.hexsha  # i.e. '3134699c73af83aac2a481435550b968d5792c0d'
+        try:
+            branch = repo.active_branch.name  # i.e. 'main'
+        except TypeError:  # not on any branch
+            branch = None  # i.e. 'detached HEAD' state
+        return {'remote': remote, 'branch': branch, 'commit': commit}
+    except git.exc.InvalidGitRepositoryError:  # path is not a git dir
+        return {'remote': None, 'branch': None, 'commit': None}
+
+
+def check_python(minimum='3.7.0'):
+    # Check current python version vs. required python version
+    check_version(platform.python_version(), minimum, name='Python ', hard=True)
+
+
+def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
+    # Check version vs. required version
+    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
+    result = (current == minimum) if pinned else (current >= minimum)  # bool
+    s = f'WARNING ⚠️ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed'  # string
+    if hard:
+        assert result, emojis(s)  # assert min requirements met
+    if verbose and not result:
+        LOGGER.warning(s)
+    return result
+
+
+@TryExcept()
+def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''):
+    # Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages or single package str)
+    prefix = colorstr('red', 'bold', 'requirements:')
+    check_python()  # check python version
+    if isinstance(requirements, Path):  # requirements.txt file
+        file = requirements.resolve()
+        assert file.exists(), f'{prefix} {file} not found, check failed.'
+        with file.open() as f:
+            requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
+    elif isinstance(requirements, str):
+        requirements = [requirements]
+
+    s = ''
+    n = 0
+    for r in requirements:
+        try:
+            pkg.require(r)
+        except (pkg.VersionConflict, pkg.DistributionNotFound):  # exception if requirements not met
+            s += f'"{r}" '
+            n += 1
+
+    if s and install and AUTOINSTALL:  # check environment variable
+        LOGGER.info(f"{prefix} YOLOv5 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
+        try:
+            # assert check_online(), "AutoUpdate skipped (offline)"
+            LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
+            source = file if 'file' in locals() else requirements
+            s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
+                f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
+            LOGGER.info(s)
+        except Exception as e:
+            LOGGER.warning(f'{prefix} ❌ {e}')
+
+
+def check_img_size(imgsz, s=32, floor=0):
+    # Verify image size is a multiple of stride s in each dimension
+    if isinstance(imgsz, int):  # integer i.e. img_size=640
+        new_size = max(make_divisible(imgsz, int(s)), floor)
+    else:  # list i.e. img_size=[640, 480]
+        imgsz = list(imgsz)  # convert to list if tuple
+        new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
+    if new_size != imgsz:
+        LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
+    return new_size
+
+
+def check_imshow(warn=False):
+    # Check if environment supports image displays
+    try:
+        assert not is_notebook()
+        assert not is_docker()
+        cv2.imshow('test', np.zeros((1, 1, 3)))
+        cv2.waitKey(1)
+        cv2.destroyAllWindows()
+        cv2.waitKey(1)
+        return True
+    except Exception as e:
+        if warn:
+            LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
+        return False
+
+
+def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
+    # Check file(s) for acceptable suffix
+    if file and suffix:
+        if isinstance(suffix, str):
+            suffix = [suffix]
+        for f in file if isinstance(file, (list, tuple)) else [file]:
+            s = Path(f).suffix.lower()  # file suffix
+            if len(s):
+                assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}'
+
+
+def check_yaml(file, suffix=('.yaml', '.yml')):
+    # Search/download YAML file (if necessary) and return path, checking suffix
+    return check_file(file, suffix)
+
+
+def check_file(file, suffix=''):
+    # Search/download file (if necessary) and return path
+    check_suffix(file, suffix)  # optional
+    file = str(file)  # convert to str()
+    if os.path.isfile(file) or not file:  # exists
+        return file
+    elif file.startswith(('http:/', 'https:/')):  # download
+        url = file  # warning: Pathlib turns :// -> :/
+        file = Path(urllib.parse.unquote(file).split('?')[0]).name  # '%2F' to '/', split https://url.com/file.txt?auth
+        if os.path.isfile(file):
+            LOGGER.info(f'Found {url} locally at {file}')  # file already exists
+        else:
+            LOGGER.info(f'Downloading {url} to {file}...')
+            torch.hub.download_url_to_file(url, file)
+            assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}'  # check
+        return file
+    elif file.startswith('clearml://'):  # ClearML Dataset ID
+        assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
+        return file
+    else:  # search
+        files = []
+        for d in 'data', 'models', 'utils':  # search directories
+            files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True))  # find file
+        assert len(files), f'File not found: {file}'  # assert file was found
+        assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
+        return files[0]  # return file
+
+
+def check_font(font=FONT, progress=False):
+    # Download font to CONFIG_DIR if necessary
+    font = Path(font)
+    file = CONFIG_DIR / font.name
+    if not font.exists() and not file.exists():
+        url = f'https://ultralytics.com/assets/{font.name}'
+        LOGGER.info(f'Downloading {url} to {file}...')
+        torch.hub.download_url_to_file(url, str(file), progress=progress)
+
+
+def check_dataset(data, autodownload=True):
+    # Download, check and/or unzip dataset if not found locally
+
+    # Download (optional)
+    extract_dir = ''
+    if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
+        download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
+        data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
+        extract_dir, autodownload = data.parent, False
+
+    # Read yaml (optional)
+    if isinstance(data, (str, Path)):
+        data = yaml_load(data)  # dictionary
+
+    # Checks
+    for k in 'train', 'val', 'names':
+        assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
+    if isinstance(data['names'], (list, tuple)):  # old array format
+        data['names'] = dict(enumerate(data['names']))  # convert to dict
+    assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car'
+    data['nc'] = len(data['names'])
+
+    # Resolve paths
+    path = Path(extract_dir or data.get('path') or '')  # optional 'path' default to '.'
+    if not path.is_absolute():
+        path = (ROOT / path).resolve()
+        data['path'] = path  # download scripts
+    for k in 'train', 'val', 'test':
+        if data.get(k):  # prepend path
+            if isinstance(data[k], str):
+                x = (path / data[k]).resolve()
+                if not x.exists() and data[k].startswith('../'):
+                    x = (path / data[k][3:]).resolve()
+                data[k] = str(x)
+            else:
+                data[k] = [str((path / x).resolve()) for x in data[k]]
+
+    # Parse yaml
+    train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
+    if val:
+        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
+        if not all(x.exists() for x in val):
+            LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()])
+            if not s or not autodownload:
+                raise Exception('Dataset not found ❌')
+            t = time.time()
+            if s.startswith('http') and s.endswith('.zip'):  # URL
+                f = Path(s).name  # filename
+                LOGGER.info(f'Downloading {s} to {f}...')
+                torch.hub.download_url_to_file(s, f)
+                Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True)  # create root
+                unzip_file(f, path=DATASETS_DIR)  # unzip
+                Path(f).unlink()  # remove zip
+                r = None  # success
+            elif s.startswith('bash '):  # bash script
+                LOGGER.info(f'Running {s} ...')
+                r = subprocess.run(s, shell=True)
+            else:  # python script
+                r = exec(s, {'yaml': data})  # return None
+            dt = f'({round(time.time() - t, 1)}s)'
+            s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌'
+            LOGGER.info(f'Dataset download {s}')
+    check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True)  # download fonts
+    return data  # dictionary
+
+
+def check_amp(model):
+    # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
+    from models.common import AutoShape, DetectMultiBackend
+
+    def amp_allclose(model, im):
+        # All close FP32 vs AMP results
+        m = AutoShape(model, verbose=False)  # model
+        a = m(im).xywhn[0]  # FP32 inference
+        m.amp = True
+        b = m(im).xywhn[0]  # AMP inference
+        return a.shape == b.shape and torch.allclose(a, b, atol=0.1)  # close to 10% absolute tolerance
+
+    prefix = colorstr('AMP: ')
+    device = next(model.parameters()).device  # get model device
+    if device.type in ('cpu', 'mps'):
+        return False  # AMP only used on CUDA devices
+    f = ROOT / 'data' / 'images' / 'bus.jpg'  # image to check
+    im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
+    try:
+        assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im)
+        LOGGER.info(f'{prefix}checks passed ✅')
+        return True
+    except Exception:
+        help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
+        LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')
+        return False
+
+
+def yaml_load(file='data.yaml'):
+    # Single-line safe yaml loading
+    with open(file, errors='ignore') as f:
+        return yaml.safe_load(f)
+
+
+def yaml_save(file='data.yaml', data={}):
+    # Single-line safe yaml saving
+    with open(file, 'w') as f:
+        yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
+
+
+def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
+    # Unzip a *.zip file to path/, excluding files containing strings in exclude list
+    if path is None:
+        path = Path(file).parent  # default path
+    with ZipFile(file) as zipObj:
+        for f in zipObj.namelist():  # list all archived filenames in the zip
+            if all(x not in f for x in exclude):
+                zipObj.extract(f, path=path)
+
+
+def url2file(url):
+    # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
+    url = str(Path(url)).replace(':/', '://')  # Pathlib turns :// -> :/
+    return Path(urllib.parse.unquote(url)).name.split('?')[0]  # '%2F' to '/', split https://url.com/file.txt?auth
+
+
+def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
+    # Multithreaded file download and unzip function, used in data.yaml for autodownload
+    def download_one(url, dir):
+        # Download 1 file
+        success = True
+        if os.path.isfile(url):
+            f = Path(url)  # filename
+        else:  # does not exist
+            f = dir / Path(url).name
+            LOGGER.info(f'Downloading {url} to {f}...')
+            for i in range(retry + 1):
+                if curl:
+                    success = curl_download(url, f, silent=(threads > 1))
+                else:
+                    torch.hub.download_url_to_file(url, f, progress=threads == 1)  # torch download
+                    success = f.is_file()
+                if success:
+                    break
+                elif i < retry:
+                    LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
+                else:
+                    LOGGER.warning(f'❌ Failed to download {url}...')
+
+        if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)):
+            LOGGER.info(f'Unzipping {f}...')
+            if is_zipfile(f):
+                unzip_file(f, dir)  # unzip
+            elif is_tarfile(f):
+                subprocess.run(['tar', 'xf', f, '--directory', f.parent], check=True)  # unzip
+            elif f.suffix == '.gz':
+                subprocess.run(['tar', 'xfz', f, '--directory', f.parent], check=True)  # unzip
+            if delete:
+                f.unlink()  # remove zip
+
+    dir = Path(dir)
+    dir.mkdir(parents=True, exist_ok=True)  # make directory
+    if threads > 1:
+        pool = ThreadPool(threads)
+        pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))  # multithreaded
+        pool.close()
+        pool.join()
+    else:
+        for u in [url] if isinstance(url, (str, Path)) else url:
+            download_one(u, dir)
+
+
+def make_divisible(x, divisor):
+    # Returns nearest x divisible by divisor
+    if isinstance(divisor, torch.Tensor):
+        divisor = int(divisor.max())  # to int
+    return math.ceil(x / divisor) * divisor
+
+
+def clean_str(s):
+    # Cleans a string by replacing special characters with underscore _
+    return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)
+
+
+def one_cycle(y1=0.0, y2=1.0, steps=100):
+    # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
+    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+
+
+def colorstr(*input):
+    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
+    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
+    colors = {
+        'black': '\033[30m',  # basic colors
+        'red': '\033[31m',
+        'green': '\033[32m',
+        'yellow': '\033[33m',
+        'blue': '\033[34m',
+        'magenta': '\033[35m',
+        'cyan': '\033[36m',
+        'white': '\033[37m',
+        'bright_black': '\033[90m',  # bright colors
+        'bright_red': '\033[91m',
+        'bright_green': '\033[92m',
+        'bright_yellow': '\033[93m',
+        'bright_blue': '\033[94m',
+        'bright_magenta': '\033[95m',
+        'bright_cyan': '\033[96m',
+        'bright_white': '\033[97m',
+        'end': '\033[0m',  # misc
+        'bold': '\033[1m',
+        'underline': '\033[4m'}
+    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
+
+
+def labels_to_class_weights(labels, nc=80):
+    # Get class weights (inverse frequency) from training labels
+    if labels[0] is None:  # no labels loaded
+        return torch.Tensor()
+
+    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
+    classes = labels[:, 0].astype(int)  # labels = [class xywh]
+    weights = np.bincount(classes, minlength=nc)  # occurrences per class
+
+    # Prepend gridpoint count (for uCE training)
+    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
+    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start
+
+    weights[weights == 0] = 1  # replace empty bins with 1
+    weights = 1 / weights  # number of targets per class
+    weights /= weights.sum()  # normalize
+    return torch.from_numpy(weights).float()
+
+
+def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
+    # Produces image weights based on class_weights and image contents
+    # Usage: index = random.choices(range(n), weights=image_weights, k=1)  # weighted image sample
+    class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
+    return (class_weights.reshape(1, nc) * class_counts).sum(1)
+
+
+def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
+    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
+    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
+    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
+    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
+    return [
+        1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
+        35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+        64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+
+
+def xyxy2xywh(x):
+    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = (x[..., 0] + x[..., 2]) / 2  # x center
+    y[..., 1] = (x[..., 1] + x[..., 3]) / 2  # y center
+    y[..., 2] = x[..., 2] - x[..., 0]  # width
+    y[..., 3] = x[..., 3] - x[..., 1]  # height
+    return y
+
+
+def xywh2xyxy(x):
+    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
+    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
+    y[..., 2] = x[..., 0] + x[..., 2] / 2  # bottom right x
+    y[..., 3] = x[..., 1] + x[..., 3] / 2  # bottom right y
+    return y
+
+
+def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
+    # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw  # top left x
+    y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh  # top left y
+    y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw  # bottom right x
+    y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh  # bottom right y
+    return y
+
+
+def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
+    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
+    if clip:
+        clip_boxes(x, (h - eps, w - eps))  # warning: inplace clip
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w  # x center
+    y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h  # y center
+    y[..., 2] = (x[..., 2] - x[..., 0]) / w  # width
+    y[..., 3] = (x[..., 3] - x[..., 1]) / h  # height
+    return y
+
+
+def xyn2xy(x, w=640, h=640, padw=0, padh=0):
+    # Convert normalized segments into pixel segments, shape (n,2)
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[..., 0] = w * x[..., 0] + padw  # top left x
+    y[..., 1] = h * x[..., 1] + padh  # top left y
+    return y
+
+
+def segment2box(segment, width=640, height=640):
+    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
+    x, y = segment.T  # segment xy
+    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
+    x, y, = x[inside], y[inside]
+    return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy
+
+
+def segments2boxes(segments):
+    # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
+    boxes = []
+    for s in segments:
+        x, y = s.T  # segment xy
+        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
+    return xyxy2xywh(np.array(boxes))  # cls, xywh
+
+
+def resample_segments(segments, n=1000):
+    # Up-sample an (n,2) segment
+    for i, s in enumerate(segments):
+        s = np.concatenate((s, s[0:1, :]), axis=0)
+        x = np.linspace(0, len(s) - 1, n)
+        xp = np.arange(len(s))
+        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
+    return segments
+
+
+def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
+    # Rescale boxes (xyxy) from img1_shape to img0_shape
+    if ratio_pad is None:  # calculate from img0_shape
+        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
+        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
+    else:
+        gain = ratio_pad[0][0]
+        pad = ratio_pad[1]
+
+    boxes[..., [0, 2]] -= pad[0]  # x padding
+    boxes[..., [1, 3]] -= pad[1]  # y padding
+    boxes[..., :4] /= gain
+    clip_boxes(boxes, img0_shape)
+    return boxes
+
+
+def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
+    # Rescale coords (xyxy) from img1_shape to img0_shape
+    if ratio_pad is None:  # calculate from img0_shape
+        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
+        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
+    else:
+        gain = ratio_pad[0][0]
+        pad = ratio_pad[1]
+
+    segments[:, 0] -= pad[0]  # x padding
+    segments[:, 1] -= pad[1]  # y padding
+    segments /= gain
+    clip_segments(segments, img0_shape)
+    if normalize:
+        segments[:, 0] /= img0_shape[1]  # width
+        segments[:, 1] /= img0_shape[0]  # height
+    return segments
+
+
+def clip_boxes(boxes, shape):
+    # Clip boxes (xyxy) to image shape (height, width)
+    if isinstance(boxes, torch.Tensor):  # faster individually
+        boxes[..., 0].clamp_(0, shape[1])  # x1
+        boxes[..., 1].clamp_(0, shape[0])  # y1
+        boxes[..., 2].clamp_(0, shape[1])  # x2
+        boxes[..., 3].clamp_(0, shape[0])  # y2
+    else:  # np.array (faster grouped)
+        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
+        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
+
+
+def clip_segments(segments, shape):
+    # Clip segments (xy1,xy2,...) to image shape (height, width)
+    if isinstance(segments, torch.Tensor):  # faster individually
+        segments[:, 0].clamp_(0, shape[1])  # x
+        segments[:, 1].clamp_(0, shape[0])  # y
+    else:  # np.array (faster grouped)
+        segments[:, 0] = segments[:, 0].clip(0, shape[1])  # x
+        segments[:, 1] = segments[:, 1].clip(0, shape[0])  # y
+
+
+def non_max_suppression(
+        prediction,
+        conf_thres=0.25,
+        iou_thres=0.45,
+        classes=None,
+        agnostic=False,
+        multi_label=False,
+        labels=(),
+        max_det=300,
+        nm=0,  # number of masks
+):
+    """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
+
+    Returns:
+         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
+    """
+
+    # Checks
+    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
+    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
+    if isinstance(prediction, (list, tuple)):  # YOLOv5 model in validation model, output = (inference_out, loss_out)
+        prediction = prediction[0]  # select only inference output
+
+    device = prediction.device
+    mps = 'mps' in device.type  # Apple MPS
+    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
+        prediction = prediction.cpu()
+    bs = prediction.shape[0]  # batch size
+    nc = prediction.shape[2] - nm - 5  # number of classes
+    xc = prediction[..., 4] > conf_thres  # candidates
+
+    # Settings
+    # min_wh = 2  # (pixels) minimum box width and height
+    max_wh = 7680  # (pixels) maximum box width and height
+    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
+    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
+    redundant = True  # require redundant detections
+    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
+    merge = False  # use merge-NMS
+
+    t = time.time()
+    mi = 5 + nc  # mask start index
+    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
+    for xi, x in enumerate(prediction):  # image index, image inference
+        # Apply constraints
+        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
+        x = x[xc[xi]]  # confidence
+
+        # Cat apriori labels if autolabelling
+        if labels and len(labels[xi]):
+            lb = labels[xi]
+            v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
+            v[:, :4] = lb[:, 1:5]  # box
+            v[:, 4] = 1.0  # conf
+            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
+            x = torch.cat((x, v), 0)
+
+        # If none remain process next image
+        if not x.shape[0]:
+            continue
+
+        # Compute conf
+        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
+
+        # Box/Mask
+        box = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)
+        mask = x[:, mi:]  # zero columns if no masks
+
+        # Detections matrix nx6 (xyxy, conf, cls)
+        if multi_label:
+            i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
+            x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
+        else:  # best class only
+            conf, j = x[:, 5:mi].max(1, keepdim=True)
+            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
+
+        # Filter by class
+        if classes is not None:
+            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+        # Apply finite constraint
+        # if not torch.isfinite(x).all():
+        #     x = x[torch.isfinite(x).all(1)]
+
+        # Check shape
+        n = x.shape[0]  # number of boxes
+        if not n:  # no boxes
+            continue
+        x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes
+
+        # Batched NMS
+        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
+        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
+        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
+        i = i[:max_det]  # limit detections
+        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
+            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
+            weights = iou * scores[None]  # box weights
+            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
+            if redundant:
+                i = i[iou.sum(1) > 1]  # require redundancy
+
+        output[xi] = x[i]
+        if mps:
+            output[xi] = output[xi].to(device)
+        if (time.time() - t) > time_limit:
+            LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
+            break  # time limit exceeded
+
+    return output
+
+
+def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
+    # Strip optimizer from 'f' to finalize training, optionally save as 's'
+    x = torch.load(f, map_location=torch.device('cpu'))
+    if x.get('ema'):
+        x['model'] = x['ema']  # replace model with ema
+    for k in 'optimizer', 'best_fitness', 'ema', 'updates':  # keys
+        x[k] = None
+    x['epoch'] = -1
+    x['model'].half()  # to FP16
+    for p in x['model'].parameters():
+        p.requires_grad = False
+    torch.save(x, s or f)
+    mb = os.path.getsize(s or f) / 1E6  # filesize
+    LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
+
+
+def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
+    evolve_csv = save_dir / 'evolve.csv'
+    evolve_yaml = save_dir / 'hyp_evolve.yaml'
+    keys = tuple(keys) + tuple(hyp.keys())  # [results + hyps]
+    keys = tuple(x.strip() for x in keys)
+    vals = results + tuple(hyp.values())
+    n = len(keys)
+
+    # Download (optional)
+    if bucket:
+        url = f'gs://{bucket}/evolve.csv'
+        if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
+            subprocess.run(['gsutil', 'cp', f'{url}', f'{save_dir}'])  # download evolve.csv if larger than local
+
+    # Log to evolve.csv
+    s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n')  # add header
+    with open(evolve_csv, 'a') as f:
+        f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
+
+    # Save yaml
+    with open(evolve_yaml, 'w') as f:
+        data = pd.read_csv(evolve_csv, skipinitialspace=True)
+        data = data.rename(columns=lambda x: x.strip())  # strip keys
+        i = np.argmax(fitness(data.values[:, :4]))  #
+        generations = len(data)
+        f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
+                f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
+                '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
+        yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
+
+    # Print to screen
+    LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
+                ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
+                                                                                         for x in vals) + '\n\n')
+
+    if bucket:
+        subprocess.run(['gsutil', 'cp', f'{evolve_csv}', f'{evolve_yaml}', f'gs://{bucket}'])  # upload
+
+
+def apply_classifier(x, model, img, im0):
+    # Apply a second stage classifier to YOLO outputs
+    # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
+    im0 = [im0] if isinstance(im0, np.ndarray) else im0
+    for i, d in enumerate(x):  # per image
+        if d is not None and len(d):
+            d = d.clone()
+
+            # Reshape and pad cutouts
+            b = xyxy2xywh(d[:, :4])  # boxes
+            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
+            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
+            d[:, :4] = xywh2xyxy(b).long()
+
+            # Rescale boxes from img_size to im0 size
+            scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)
+
+            # Classes
+            pred_cls1 = d[:, 5].long()
+            ims = []
+            for a in d:
+                cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
+                im = cv2.resize(cutout, (224, 224))  # BGR
+
+                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
+                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
+                im /= 255  # 0 - 255 to 0.0 - 1.0
+                ims.append(im)
+
+            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
+            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections
+
+    return x
+
+
+def increment_path(path, exist_ok=False, sep='', mkdir=False):
+    # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
+    path = Path(path)  # os-agnostic
+    if path.exists() and not exist_ok:
+        path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
+
+        # Method 1
+        for n in range(2, 9999):
+            p = f'{path}{sep}{n}{suffix}'  # increment path
+            if not os.path.exists(p):  #
+                break
+        path = Path(p)
+
+        # Method 2 (deprecated)
+        # dirs = glob.glob(f"{path}{sep}*")  # similar paths
+        # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
+        # i = [int(m.groups()[0]) for m in matches if m]  # indices
+        # n = max(i) + 1 if i else 2  # increment number
+        # path = Path(f"{path}{sep}{n}{suffix}")  # increment path
+
+    if mkdir:
+        path.mkdir(parents=True, exist_ok=True)  # make directory
+
+    return path
+
+
+# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------------
+imshow_ = cv2.imshow  # copy to avoid recursion errors
+
+
+def imread(path, flags=cv2.IMREAD_COLOR):
+    return cv2.imdecode(np.fromfile(path, np.uint8), flags)
+
+
+def imwrite(path, im):
+    try:
+        cv2.imencode(Path(path).suffix, im)[1].tofile(path)
+        return True
+    except Exception:
+        return False
+
+
+def imshow(path, im):
+    imshow_(path.encode('unicode_escape').decode(), im)
+
+
+cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow  # redefine
+
+# Variables ------------------------------------------------------------------------------------------------------------
diff --git a/yolov5_model/utils/google_app_engine/Dockerfile b/yolov5_model/utils/google_app_engine/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..0155618f475104e9858b81470339558156c94e13
--- /dev/null
+++ b/yolov5_model/utils/google_app_engine/Dockerfile
@@ -0,0 +1,25 @@
+FROM gcr.io/google-appengine/python
+
+# Create a virtualenv for dependencies. This isolates these packages from
+# system-level packages.
+# Use -p python3 or -p python3.7 to select python version. Default is version 2.
+RUN virtualenv /env -p python3
+
+# Setting these environment variables are the same as running
+# source /env/bin/activate.
+ENV VIRTUAL_ENV /env
+ENV PATH /env/bin:$PATH
+
+RUN apt-get update && apt-get install -y python-opencv
+
+# Copy the application's requirements.txt and run pip to install all
+# dependencies into the virtualenv.
+ADD requirements.txt /app/requirements.txt
+RUN pip install -r /app/requirements.txt
+
+# Add the application source code.
+ADD . /app
+
+# Run a WSGI server to serve the application. gunicorn must be declared as
+# a dependency in requirements.txt.
+CMD gunicorn -b :$PORT main:app
diff --git a/yolov5_model/utils/google_app_engine/additional_requirements.txt b/yolov5_model/utils/google_app_engine/additional_requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d5b76758c876b142fb935bd9adaf80e0205b2ccd
--- /dev/null
+++ b/yolov5_model/utils/google_app_engine/additional_requirements.txt
@@ -0,0 +1,5 @@
+# add these requirements in your app on top of the existing ones
+pip==21.1
+Flask==1.0.2
+gunicorn==19.10.0
+werkzeug>=2.2.3 # not directly required, pinned by Snyk to avoid a vulnerability
diff --git a/yolov5_model/utils/google_app_engine/app.yaml b/yolov5_model/utils/google_app_engine/app.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5056b7c1186d6ad278957bbd6e976c3a0f169a30
--- /dev/null
+++ b/yolov5_model/utils/google_app_engine/app.yaml
@@ -0,0 +1,14 @@
+runtime: custom
+env: flex
+
+service: yolov5app
+
+liveness_check:
+  initial_delay_sec: 600
+
+manual_scaling:
+  instances: 1
+resources:
+  cpu: 1
+  memory_gb: 4
+  disk_size_gb: 20
diff --git a/yolov5_model/utils/loggers/__init__.py b/yolov5_model/utils/loggers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9de1f226233ce1c15ec30b853f39092c8524df3a
--- /dev/null
+++ b/yolov5_model/utils/loggers/__init__.py
@@ -0,0 +1,401 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Logging utils
+"""
+
+import os
+import warnings
+from pathlib import Path
+
+import pkg_resources as pkg
+import torch
+from torch.utils.tensorboard import SummaryWriter
+
+from utils.general import LOGGER, colorstr, cv2
+from utils.loggers.clearml.clearml_utils import ClearmlLogger
+from utils.loggers.wandb.wandb_utils import WandbLogger
+from utils.plots import plot_images, plot_labels, plot_results
+from utils.torch_utils import de_parallel
+
+LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet')  # *.csv, TensorBoard, Weights & Biases, ClearML
+RANK = int(os.getenv('RANK', -1))
+
+try:
+    import wandb
+
+    assert hasattr(wandb, '__version__')  # verify package import not local dir
+    if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
+        try:
+            wandb_login_success = wandb.login(timeout=30)
+        except wandb.errors.UsageError:  # known non-TTY terminal issue
+            wandb_login_success = False
+        if not wandb_login_success:
+            wandb = None
+except (ImportError, AssertionError):
+    wandb = None
+
+try:
+    import clearml
+
+    assert hasattr(clearml, '__version__')  # verify package import not local dir
+except (ImportError, AssertionError):
+    clearml = None
+
+try:
+    if RANK not in [0, -1]:
+        comet_ml = None
+    else:
+        import comet_ml
+
+        assert hasattr(comet_ml, '__version__')  # verify package import not local dir
+        from utils.loggers.comet import CometLogger
+
+except (ModuleNotFoundError, ImportError, AssertionError):
+    comet_ml = None
+
+
+class Loggers():
+    # YOLOv5 Loggers class
+    def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
+        self.save_dir = save_dir
+        self.weights = weights
+        self.opt = opt
+        self.hyp = hyp
+        self.plots = not opt.noplots  # plot results
+        self.logger = logger  # for printing results to console
+        self.include = include
+        self.keys = [
+            'train/box_loss',
+            'train/obj_loss',
+            'train/cls_loss',  # train loss
+            'metrics/precision',
+            'metrics/recall',
+            'metrics/mAP_0.5',
+            'metrics/mAP_0.5:0.95',  # metrics
+            'val/box_loss',
+            'val/obj_loss',
+            'val/cls_loss',  # val loss
+            'x/lr0',
+            'x/lr1',
+            'x/lr2']  # params
+        self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
+        for k in LOGGERS:
+            setattr(self, k, None)  # init empty logger dictionary
+        self.csv = True  # always log to csv
+
+        # Messages
+        if not clearml:
+            prefix = colorstr('ClearML: ')
+            s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML"
+            self.logger.info(s)
+        if not comet_ml:
+            prefix = colorstr('Comet: ')
+            s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
+            self.logger.info(s)
+        # TensorBoard
+        s = self.save_dir
+        if 'tb' in self.include and not self.opt.evolve:
+            prefix = colorstr('TensorBoard: ')
+            self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
+            self.tb = SummaryWriter(str(s))
+
+        # W&B
+        if wandb and 'wandb' in self.include:
+            self.opt.hyp = self.hyp  # add hyperparameters
+            self.wandb = WandbLogger(self.opt)
+        else:
+            self.wandb = None
+
+        # ClearML
+        if clearml and 'clearml' in self.include:
+            try:
+                self.clearml = ClearmlLogger(self.opt, self.hyp)
+            except Exception:
+                self.clearml = None
+                prefix = colorstr('ClearML: ')
+                LOGGER.warning(f'{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging.'
+                               f' See https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml#readme')
+
+        else:
+            self.clearml = None
+
+        # Comet
+        if comet_ml and 'comet' in self.include:
+            if isinstance(self.opt.resume, str) and self.opt.resume.startswith('comet://'):
+                run_id = self.opt.resume.split('/')[-1]
+                self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
+
+            else:
+                self.comet_logger = CometLogger(self.opt, self.hyp)
+
+        else:
+            self.comet_logger = None
+
+    @property
+    def remote_dataset(self):
+        # Get data_dict if custom dataset artifact link is provided
+        data_dict = None
+        if self.clearml:
+            data_dict = self.clearml.data_dict
+        if self.wandb:
+            data_dict = self.wandb.data_dict
+        if self.comet_logger:
+            data_dict = self.comet_logger.data_dict
+
+        return data_dict
+
+    def on_train_start(self):
+        if self.comet_logger:
+            self.comet_logger.on_train_start()
+
+    def on_pretrain_routine_start(self):
+        if self.comet_logger:
+            self.comet_logger.on_pretrain_routine_start()
+
+    def on_pretrain_routine_end(self, labels, names):
+        # Callback runs on pre-train routine end
+        if self.plots:
+            plot_labels(labels, names, self.save_dir)
+            paths = self.save_dir.glob('*labels*.jpg')  # training labels
+            if self.wandb:
+                self.wandb.log({'Labels': [wandb.Image(str(x), caption=x.name) for x in paths]})
+            # if self.clearml:
+            #    pass  # ClearML saves these images automatically using hooks
+            if self.comet_logger:
+                self.comet_logger.on_pretrain_routine_end(paths)
+
+    def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
+        log_dict = dict(zip(self.keys[:3], vals))
+        # Callback runs on train batch end
+        # ni: number integrated batches (since train start)
+        if self.plots:
+            if ni < 3:
+                f = self.save_dir / f'train_batch{ni}.jpg'  # filename
+                plot_images(imgs, targets, paths, f)
+                if ni == 0 and self.tb and not self.opt.sync_bn:
+                    log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
+            if ni == 10 and (self.wandb or self.clearml):
+                files = sorted(self.save_dir.glob('train*.jpg'))
+                if self.wandb:
+                    self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
+                if self.clearml:
+                    self.clearml.log_debug_samples(files, title='Mosaics')
+
+        if self.comet_logger:
+            self.comet_logger.on_train_batch_end(log_dict, step=ni)
+
+    def on_train_epoch_end(self, epoch):
+        # Callback runs on train epoch end
+        if self.wandb:
+            self.wandb.current_epoch = epoch + 1
+
+        if self.comet_logger:
+            self.comet_logger.on_train_epoch_end(epoch)
+
+    def on_val_start(self):
+        if self.comet_logger:
+            self.comet_logger.on_val_start()
+
+    def on_val_image_end(self, pred, predn, path, names, im):
+        # Callback runs on val image end
+        if self.wandb:
+            self.wandb.val_one_image(pred, predn, path, names, im)
+        if self.clearml:
+            self.clearml.log_image_with_boxes(path, pred, names, im)
+
+    def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
+        if self.comet_logger:
+            self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
+
+    def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
+        # Callback runs on val end
+        if self.wandb or self.clearml:
+            files = sorted(self.save_dir.glob('val*.jpg'))
+        if self.wandb:
+            self.wandb.log({'Validation': [wandb.Image(str(f), caption=f.name) for f in files]})
+        if self.clearml:
+            self.clearml.log_debug_samples(files, title='Validation')
+
+        if self.comet_logger:
+            self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+    def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
+        # Callback runs at the end of each fit (train+val) epoch
+        x = dict(zip(self.keys, vals))
+        if self.csv:
+            file = self.save_dir / 'results.csv'
+            n = len(x) + 1  # number of cols
+            s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n')  # add header
+            with open(file, 'a') as f:
+                f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
+
+        if self.tb:
+            for k, v in x.items():
+                self.tb.add_scalar(k, v, epoch)
+        elif self.clearml:  # log to ClearML if TensorBoard not used
+            for k, v in x.items():
+                title, series = k.split('/')
+                self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
+
+        if self.wandb:
+            if best_fitness == fi:
+                best_results = [epoch] + vals[3:7]
+                for i, name in enumerate(self.best_keys):
+                    self.wandb.wandb_run.summary[name] = best_results[i]  # log best results in the summary
+            self.wandb.log(x)
+            self.wandb.end_epoch()
+
+        if self.clearml:
+            self.clearml.current_epoch_logged_images = set()  # reset epoch image limit
+            self.clearml.current_epoch += 1
+
+        if self.comet_logger:
+            self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
+
+    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
+        # Callback runs on model save event
+        if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
+            if self.wandb:
+                self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
+            if self.clearml:
+                self.clearml.task.update_output_model(model_path=str(last),
+                                                      model_name='Latest Model',
+                                                      auto_delete_file=False)
+
+        if self.comet_logger:
+            self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
+
+    def on_train_end(self, last, best, epoch, results):
+        # Callback runs on training end, i.e. saving best model
+        if self.plots:
+            plot_results(file=self.save_dir / 'results.csv')  # save results.png
+        files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
+        files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()]  # filter
+        self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
+
+        if self.tb and not self.clearml:  # These images are already captured by ClearML by now, we don't want doubles
+            for f in files:
+                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
+
+        if self.wandb:
+            self.wandb.log(dict(zip(self.keys[3:10], results)))
+            self.wandb.log({'Results': [wandb.Image(str(f), caption=f.name) for f in files]})
+            # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
+            if not self.opt.evolve:
+                wandb.log_artifact(str(best if best.exists() else last),
+                                   type='model',
+                                   name=f'run_{self.wandb.wandb_run.id}_model',
+                                   aliases=['latest', 'best', 'stripped'])
+            self.wandb.finish_run()
+
+        if self.clearml and not self.opt.evolve:
+            self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
+                                                  name='Best Model',
+                                                  auto_delete_file=False)
+
+        if self.comet_logger:
+            final_results = dict(zip(self.keys[3:10], results))
+            self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
+
+    def on_params_update(self, params: dict):
+        # Update hyperparams or configs of the experiment
+        if self.wandb:
+            self.wandb.wandb_run.config.update(params, allow_val_change=True)
+        if self.comet_logger:
+            self.comet_logger.on_params_update(params)
+
+
+class GenericLogger:
+    """
+    YOLOv5 General purpose logger for non-task specific logging
+    Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
+    Arguments
+        opt:             Run arguments
+        console_logger:  Console logger
+        include:         loggers to include
+    """
+
+    def __init__(self, opt, console_logger, include=('tb', 'wandb')):
+        # init default loggers
+        self.save_dir = Path(opt.save_dir)
+        self.include = include
+        self.console_logger = console_logger
+        self.csv = self.save_dir / 'results.csv'  # CSV logger
+        if 'tb' in self.include:
+            prefix = colorstr('TensorBoard: ')
+            self.console_logger.info(
+                f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
+            self.tb = SummaryWriter(str(self.save_dir))
+
+        if wandb and 'wandb' in self.include:
+            self.wandb = wandb.init(project=web_project_name(str(opt.project)),
+                                    name=None if opt.name == 'exp' else opt.name,
+                                    config=opt)
+        else:
+            self.wandb = None
+
+    def log_metrics(self, metrics, epoch):
+        # Log metrics dictionary to all loggers
+        if self.csv:
+            keys, vals = list(metrics.keys()), list(metrics.values())
+            n = len(metrics) + 1  # number of cols
+            s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n')  # header
+            with open(self.csv, 'a') as f:
+                f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
+
+        if self.tb:
+            for k, v in metrics.items():
+                self.tb.add_scalar(k, v, epoch)
+
+        if self.wandb:
+            self.wandb.log(metrics, step=epoch)
+
+    def log_images(self, files, name='Images', epoch=0):
+        # Log images to all loggers
+        files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])]  # to Path
+        files = [f for f in files if f.exists()]  # filter by exists
+
+        if self.tb:
+            for f in files:
+                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
+
+        if self.wandb:
+            self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
+
+    def log_graph(self, model, imgsz=(640, 640)):
+        # Log model graph to all loggers
+        if self.tb:
+            log_tensorboard_graph(self.tb, model, imgsz)
+
+    def log_model(self, model_path, epoch=0, metadata={}):
+        # Log model to all loggers
+        if self.wandb:
+            art = wandb.Artifact(name=f'run_{wandb.run.id}_model', type='model', metadata=metadata)
+            art.add_file(str(model_path))
+            wandb.log_artifact(art)
+
+    def update_params(self, params):
+        # Update the parameters logged
+        if self.wandb:
+            wandb.run.config.update(params, allow_val_change=True)
+
+
+def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
+    # Log model graph to TensorBoard
+    try:
+        p = next(model.parameters())  # for device, type
+        imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz  # expand
+        im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p)  # input image (WARNING: must be zeros, not empty)
+        with warnings.catch_warnings():
+            warnings.simplefilter('ignore')  # suppress jit trace warning
+            tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
+    except Exception as e:
+        LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}')
+
+
+def web_project_name(project):
+    # Convert local project name to web project name
+    if not project.startswith('runs/train'):
+        return project
+    suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
+    return f'YOLOv5{suffix}'
diff --git a/yolov5_model/utils/loggers/__pycache__/__init__.cpython-39.pyc b/yolov5_model/utils/loggers/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..31fd61d045388db573c15ad39fc8f565edefe6af
Binary files /dev/null and b/yolov5_model/utils/loggers/__pycache__/__init__.cpython-39.pyc differ
diff --git a/yolov5_model/utils/loggers/clearml/README.md b/yolov5_model/utils/loggers/clearml/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..ca41c040193c1d8817a870404af09871b511f7ed
--- /dev/null
+++ b/yolov5_model/utils/loggers/clearml/README.md
@@ -0,0 +1,237 @@
+# ClearML Integration
+
+<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
+
+## About ClearML
+
+[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️.
+
+🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
+
+🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
+
+🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
+
+🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
+
+🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
+
+<br />
+And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
+<br />
+<br />
+
+![ClearML scalars dashboard](https://github.com/thepycoder/clearml_screenshots/raw/main/experiment_manager_with_compare.gif)
+
+<br />
+<br />
+
+## 🦾 Setting Things Up
+
+To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
+
+Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
+
+1. Install the `clearml` python package:
+
+   ```bash
+   pip install clearml
+   ```
+
+1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
+
+   ```bash
+   clearml-init
+   ```
+
+That's it! You're done 😎
+
+<br />
+
+## 🚀 Training YOLOv5 With ClearML
+
+To enable ClearML experiment tracking, simply install the ClearML pip package.
+
+```bash
+pip install clearml>=1.2.0
+```
+
+This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager.
+
+If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`.
+PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name!
+
+```bash
+python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
+```
+
+or with custom project and task name:
+
+```bash
+python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
+```
+
+This will capture:
+
+- Source code + uncommitted changes
+- Installed packages
+- (Hyper)parameters
+- Model files (use `--save-period n` to save a checkpoint every n epochs)
+- Console output
+- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
+- General info such as machine details, runtime, creation date etc.
+- All produced plots such as label correlogram and confusion matrix
+- Images with bounding boxes per epoch
+- Mosaic per epoch
+- Validation images per epoch
+- ...
+
+That's a lot right? 🤯
+Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
+
+There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
+
+<br />
+
+## 🔗 Dataset Version Management
+
+Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
+
+![ClearML Dataset Interface](https://github.com/thepycoder/clearml_screenshots/raw/main/clearml_data.gif)
+
+### Prepare Your Dataset
+
+The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
+
+```
+..
+|_ yolov5
+|_ datasets
+    |_ coco128
+        |_ images
+        |_ labels
+        |_ LICENSE
+        |_ README.txt
+```
+
+But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
+
+Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
+
+Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
+
+```
+..
+|_ yolov5
+|_ datasets
+    |_ coco128
+        |_ images
+        |_ labels
+        |_ coco128.yaml  # <---- HERE!
+        |_ LICENSE
+        |_ README.txt
+```
+
+### Upload Your Dataset
+
+To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command:
+
+```bash
+cd coco128
+clearml-data sync --project YOLOv5 --name coco128 --folder .
+```
+
+The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
+
+```bash
+# Optionally add --parent <parent_dataset_id> if you want to base
+# this version on another dataset version, so no duplicate files are uploaded!
+clearml-data create --name coco128 --project YOLOv5
+clearml-data add --files .
+clearml-data close
+```
+
+### Run Training Using A ClearML Dataset
+
+Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
+
+```bash
+python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
+```
+
+<br />
+
+## 👀 Hyperparameter Optimization
+
+Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
+
+Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
+
+To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
+
+You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
+
+```bash
+# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
+pip install optuna
+python utils/loggers/clearml/hpo.py
+```
+
+![HPO](https://github.com/thepycoder/clearml_screenshots/raw/main/hpo.png)
+
+## 🤯 Remote Execution (advanced)
+
+Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site, or you have some budget to use cloud GPUs.
+This is where the ClearML Agent comes into play. Check out what the agent can do here:
+
+- [YouTube video](https://youtu.be/MX3BrXnaULs)
+- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
+
+In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
+
+You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
+
+```bash
+clearml-agent daemon --queue <queues_to_listen_to> [--docker]
+```
+
+### Cloning, Editing And Enqueuing
+
+With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
+
+🪄 Clone the experiment by right-clicking it
+
+🎯 Edit the hyperparameters to what you wish them to be
+
+⏳ Enqueue the task to any of the queues by right-clicking it
+
+![Enqueue a task from the UI](https://github.com/thepycoder/clearml_screenshots/raw/main/enqueue.gif)
+
+### Executing A Task Remotely
+
+Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
+
+To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instantiated:
+
+```python
+# ...
+# Loggers
+data_dict = None
+if RANK in {-1, 0}:
+    loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
+    if loggers.clearml:
+        loggers.clearml.task.execute_remotely(queue="my_queue")  # <------ ADD THIS LINE
+        # Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
+        data_dict = loggers.clearml.data_dict
+# ...
+```
+
+When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
+
+### Autoscaling workers
+
+ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines, and you stop paying!
+
+Check out the autoscalers getting started video below.
+
+[![Watch the video](https://img.youtube.com/vi/j4XVMAaUt3E/0.jpg)](https://youtu.be/j4XVMAaUt3E)
diff --git a/yolov5_model/utils/loggers/clearml/__init__.py b/yolov5_model/utils/loggers/clearml/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5_model/utils/loggers/clearml/__pycache__/__init__.cpython-39.pyc b/yolov5_model/utils/loggers/clearml/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..06b5c5e55836547b96f8897175f881c5ac160dab
Binary files /dev/null and b/yolov5_model/utils/loggers/clearml/__pycache__/__init__.cpython-39.pyc differ
diff --git a/yolov5_model/utils/loggers/clearml/__pycache__/clearml_utils.cpython-39.pyc b/yolov5_model/utils/loggers/clearml/__pycache__/clearml_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f8f6eeb130840156ef55587d3a53f4f4262c9a72
Binary files /dev/null and b/yolov5_model/utils/loggers/clearml/__pycache__/clearml_utils.cpython-39.pyc differ
diff --git a/yolov5_model/utils/loggers/clearml/clearml_utils.py b/yolov5_model/utils/loggers/clearml/clearml_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..2764abe90da80a7b270bca9c0fd89b99ec25af3b
--- /dev/null
+++ b/yolov5_model/utils/loggers/clearml/clearml_utils.py
@@ -0,0 +1,164 @@
+"""Main Logger class for ClearML experiment tracking."""
+import glob
+import re
+from pathlib import Path
+
+import numpy as np
+import yaml
+
+from utils.plots import Annotator, colors
+
+try:
+    import clearml
+    from clearml import Dataset, Task
+
+    assert hasattr(clearml, '__version__')  # verify package import not local dir
+except (ImportError, AssertionError):
+    clearml = None
+
+
+def construct_dataset(clearml_info_string):
+    """Load in a clearml dataset and fill the internal data_dict with its contents.
+    """
+    dataset_id = clearml_info_string.replace('clearml://', '')
+    dataset = Dataset.get(dataset_id=dataset_id)
+    dataset_root_path = Path(dataset.get_local_copy())
+
+    # We'll search for the yaml file definition in the dataset
+    yaml_filenames = list(glob.glob(str(dataset_root_path / '*.yaml')) + glob.glob(str(dataset_root_path / '*.yml')))
+    if len(yaml_filenames) > 1:
+        raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
+                         'the dataset definition this way.')
+    elif len(yaml_filenames) == 0:
+        raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
+                         'inside the dataset root path.')
+    with open(yaml_filenames[0]) as f:
+        dataset_definition = yaml.safe_load(f)
+
+    assert set(dataset_definition.keys()).issuperset(
+        {'train', 'test', 'val', 'nc', 'names'}
+    ), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
+
+    data_dict = dict()
+    data_dict['train'] = str(
+        (dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
+    data_dict['test'] = str(
+        (dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
+    data_dict['val'] = str(
+        (dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
+    data_dict['nc'] = dataset_definition['nc']
+    data_dict['names'] = dataset_definition['names']
+
+    return data_dict
+
+
+class ClearmlLogger:
+    """Log training runs, datasets, models, and predictions to ClearML.
+
+    This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
+    this information includes hyperparameters, system configuration and metrics, model metrics, code information and
+    basic data metrics and analyses.
+
+    By providing additional command line arguments to train.py, datasets,
+    models and predictions can also be logged.
+    """
+
+    def __init__(self, opt, hyp):
+        """
+        - Initialize ClearML Task, this object will capture the experiment
+        - Upload dataset version to ClearML Data if opt.upload_dataset is True
+
+        arguments:
+        opt (namespace) -- Commandline arguments for this run
+        hyp (dict) -- Hyperparameters for this run
+
+        """
+        self.current_epoch = 0
+        # Keep tracked of amount of logged images to enforce a limit
+        self.current_epoch_logged_images = set()
+        # Maximum number of images to log to clearML per epoch
+        self.max_imgs_to_log_per_epoch = 16
+        # Get the interval of epochs when bounding box images should be logged
+        self.bbox_interval = opt.bbox_interval
+        self.clearml = clearml
+        self.task = None
+        self.data_dict = None
+        if self.clearml:
+            self.task = Task.init(
+                project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
+                task_name=opt.name if opt.name != 'exp' else 'Training',
+                tags=['YOLOv5'],
+                output_uri=True,
+                reuse_last_task_id=opt.exist_ok,
+                auto_connect_frameworks={'pytorch': False}
+                # We disconnect pytorch auto-detection, because we added manual model save points in the code
+            )
+            # ClearML's hooks will already grab all general parameters
+            # Only the hyperparameters coming from the yaml config file
+            # will have to be added manually!
+            self.task.connect(hyp, name='Hyperparameters')
+            self.task.connect(opt, name='Args')
+
+            # Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent
+            self.task.set_base_docker('ultralytics/yolov5:latest',
+                                      docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"',
+                                      docker_setup_bash_script='pip install clearml')
+
+            # Get ClearML Dataset Version if requested
+            if opt.data.startswith('clearml://'):
+                # data_dict should have the following keys:
+                # names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
+                self.data_dict = construct_dataset(opt.data)
+                # Set data to data_dict because wandb will crash without this information and opt is the best way
+                # to give it to them
+                opt.data = self.data_dict
+
+    def log_debug_samples(self, files, title='Debug Samples'):
+        """
+        Log files (images) as debug samples in the ClearML task.
+
+        arguments:
+        files (List(PosixPath)) a list of file paths in PosixPath format
+        title (str) A title that groups together images with the same values
+        """
+        for f in files:
+            if f.exists():
+                it = re.search(r'_batch(\d+)', f.name)
+                iteration = int(it.groups()[0]) if it else 0
+                self.task.get_logger().report_image(title=title,
+                                                    series=f.name.replace(it.group(), ''),
+                                                    local_path=str(f),
+                                                    iteration=iteration)
+
+    def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
+        """
+        Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
+
+        arguments:
+        image_path (PosixPath) the path the original image file
+        boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
+        class_names (dict): dict containing mapping of class int to class name
+        image (Tensor): A torch tensor containing the actual image data
+        """
+        if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
+            # Log every bbox_interval times and deduplicate for any intermittend extra eval runs
+            if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
+                im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
+                annotator = Annotator(im=im, pil=True)
+                for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
+                    color = colors(i)
+
+                    class_name = class_names[int(class_nr)]
+                    confidence_percentage = round(float(conf) * 100, 2)
+                    label = f'{class_name}: {confidence_percentage}%'
+
+                    if conf > conf_threshold:
+                        annotator.rectangle(box.cpu().numpy(), outline=color)
+                        annotator.box_label(box.cpu().numpy(), label=label, color=color)
+
+                annotated_image = annotator.result()
+                self.task.get_logger().report_image(title='Bounding Boxes',
+                                                    series=image_path.name,
+                                                    iteration=self.current_epoch,
+                                                    image=annotated_image)
+                self.current_epoch_logged_images.add(image_path)
diff --git a/yolov5_model/utils/loggers/clearml/hpo.py b/yolov5_model/utils/loggers/clearml/hpo.py
new file mode 100644
index 0000000000000000000000000000000000000000..ee518b0fbfc89ee811b51bbf85341eee4f685be1
--- /dev/null
+++ b/yolov5_model/utils/loggers/clearml/hpo.py
@@ -0,0 +1,84 @@
+from clearml import Task
+# Connecting ClearML with the current process,
+# from here on everything is logged automatically
+from clearml.automation import HyperParameterOptimizer, UniformParameterRange
+from clearml.automation.optuna import OptimizerOptuna
+
+task = Task.init(project_name='Hyper-Parameter Optimization',
+                 task_name='YOLOv5',
+                 task_type=Task.TaskTypes.optimizer,
+                 reuse_last_task_id=False)
+
+# Example use case:
+optimizer = HyperParameterOptimizer(
+    # This is the experiment we want to optimize
+    base_task_id='<your_template_task_id>',
+    # here we define the hyper-parameters to optimize
+    # Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
+    # For Example, here we see in the base experiment a section Named: "General"
+    # under it a parameter named "batch_size", this becomes "General/batch_size"
+    # If you have `argparse` for example, then arguments will appear under the "Args" section,
+    # and you should instead pass "Args/batch_size"
+    hyper_parameters=[
+        UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
+        UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
+        UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
+        UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
+        UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
+        UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
+        UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
+        UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
+        UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
+        UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
+        UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
+        UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
+        UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
+        UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
+        UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
+        UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
+        UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
+        UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
+        UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
+        UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
+        UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
+        UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
+        UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
+        UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
+        UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
+        UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
+        UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
+        UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
+    # this is the objective metric we want to maximize/minimize
+    objective_metric_title='metrics',
+    objective_metric_series='mAP_0.5',
+    # now we decide if we want to maximize it or minimize it (accuracy we maximize)
+    objective_metric_sign='max',
+    # let us limit the number of concurrent experiments,
+    # this in turn will make sure we do dont bombard the scheduler with experiments.
+    # if we have an auto-scaler connected, this, by proxy, will limit the number of machine
+    max_number_of_concurrent_tasks=1,
+    # this is the optimizer class (actually doing the optimization)
+    # Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
+    optimizer_class=OptimizerOptuna,
+    # If specified only the top K performing Tasks will be kept, the others will be automatically archived
+    save_top_k_tasks_only=5,  # 5,
+    compute_time_limit=None,
+    total_max_jobs=20,
+    min_iteration_per_job=None,
+    max_iteration_per_job=None,
+)
+
+# report every 10 seconds, this is way too often, but we are testing here
+optimizer.set_report_period(10 / 60)
+# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
+# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
+# set the time limit for the optimization process (2 hours)
+optimizer.set_time_limit(in_minutes=120.0)
+# Start the optimization process in the local environment
+optimizer.start_locally()
+# wait until process is done (notice we are controlling the optimization process in the background)
+optimizer.wait()
+# make sure background optimization stopped
+optimizer.stop()
+
+print('We are done, good bye')
diff --git a/yolov5_model/utils/loggers/comet/README.md b/yolov5_model/utils/loggers/comet/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..47e6a45654b88f637e6db6cf6abb7ce328811644
--- /dev/null
+++ b/yolov5_model/utils/loggers/comet/README.md
@@ -0,0 +1,258 @@
+<img src="https://cdn.comet.ml/img/notebook_logo.png">
+
+# YOLOv5 with Comet
+
+This guide will cover how to use YOLOv5 with [Comet](https://bit.ly/yolov5-readme-comet2)
+
+# About Comet
+
+Comet builds tools that help data scientists, engineers, and team leaders accelerate and optimize machine learning and deep learning models.
+
+Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)!
+Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!
+
+# Getting Started
+
+## Install Comet
+
+```shell
+pip install comet_ml
+```
+
+## Configure Comet Credentials
+
+There are two ways to configure Comet with YOLOv5.
+
+You can either set your credentials through environment variables
+
+**Environment Variables**
+
+```shell
+export COMET_API_KEY=<Your Comet API Key>
+export COMET_PROJECT_NAME=<Your Comet Project Name> # This will default to 'yolov5'
+```
+
+Or create a `.comet.config` file in your working directory and set your credentials there.
+
+**Comet Configuration File**
+
+```
+[comet]
+api_key=<Your Comet API Key>
+project_name=<Your Comet Project Name> # This will default to 'yolov5'
+```
+
+## Run the Training Script
+
+```shell
+# Train YOLOv5s on COCO128 for 5 epochs
+python train.py --img 640 --batch 16 --epochs 5 --data coco128.yaml --weights yolov5s.pt
+```
+
+That's it! Comet will automatically log your hyperparameters, command line arguments, training and validation metrics. You can visualize and analyze your runs in the Comet UI
+
+<img width="1920" alt="yolo-ui" src="https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png">
+
+# Try out an Example!
+
+Check out an example of a [completed run here](https://www.comet.com/examples/comet-example-yolov5/a0e29e0e9b984e4a822db2a62d0cb357?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
+
+Or better yet, try it out yourself in this Colab Notebook
+
+[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)
+
+# Log automatically
+
+By default, Comet will log the following items
+
+## Metrics
+
+- Box Loss, Object Loss, Classification Loss for the training and validation data
+- mAP_0.5, mAP_0.5:0.95 metrics for the validation data.
+- Precision and Recall for the validation data
+
+## Parameters
+
+- Model Hyperparameters
+- All parameters passed through the command line options
+
+## Visualizations
+
+- Confusion Matrix of the model predictions on the validation data
+- Plots for the PR and F1 curves across all classes
+- Correlogram of the Class Labels
+
+# Configure Comet Logging
+
+Comet can be configured to log additional data either through command line flags passed to the training script
+or through environment variables.
+
+```shell
+export COMET_MODE=online # Set whether to run Comet in 'online' or 'offline' mode. Defaults to online
+export COMET_MODEL_NAME=<your model name> #Set the name for the saved model. Defaults to yolov5
+export COMET_LOG_CONFUSION_MATRIX=false # Set to disable logging a Comet Confusion Matrix. Defaults to true
+export COMET_MAX_IMAGE_UPLOADS=<number of allowed images to upload to Comet> # Controls how many total image predictions to log to Comet. Defaults to 100.
+export COMET_LOG_PER_CLASS_METRICS=true # Set to log evaluation metrics for each detected class at the end of training. Defaults to false
+export COMET_DEFAULT_CHECKPOINT_FILENAME=<your checkpoint filename> # Set this if you would like to resume training from a different checkpoint. Defaults to 'last.pt'
+export COMET_LOG_BATCH_LEVEL_METRICS=true # Set this if you would like to log training metrics at the batch level. Defaults to false.
+export COMET_LOG_PREDICTIONS=true # Set this to false to disable logging model predictions
+```
+
+## Logging Checkpoints with Comet
+
+Logging Models to Comet is disabled by default. To enable it, pass the `save-period` argument to the training script. This will save the
+logged checkpoints to Comet based on the interval value provided by `save-period`
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--save-period 1
+```
+
+## Logging Model Predictions
+
+By default, model predictions (images, ground truth labels and bounding boxes) will be logged to Comet.
+
+You can control the frequency of logged predictions and the associated images by passing the `bbox_interval` command line argument. Predictions can be visualized using Comet's Object Detection Custom Panel. This frequency corresponds to every Nth batch of data per epoch. In the example below, we are logging every 2nd batch of data for each epoch.
+
+**Note:** The YOLOv5 validation dataloader will default to a batch size of 32, so you will have to set the logging frequency accordingly.
+
+Here is an [example project using the Panel](https://www.comet.com/examples/comet-example-yolov5?shareable=YcwMiJaZSXfcEXpGOHDD12vA1&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--bbox_interval 2
+```
+
+### Controlling the number of Prediction Images logged to Comet
+
+When logging predictions from YOLOv5, Comet will log the images associated with each set of predictions. By default a maximum of 100 validation images are logged. You can increase or decrease this number using the `COMET_MAX_IMAGE_UPLOADS` environment variable.
+
+```shell
+env COMET_MAX_IMAGE_UPLOADS=200 python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--bbox_interval 1
+```
+
+### Logging Class Level Metrics
+
+Use the `COMET_LOG_PER_CLASS_METRICS` environment variable to log mAP, precision, recall, f1 for each class.
+
+```shell
+env COMET_LOG_PER_CLASS_METRICS=true python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt
+```
+
+## Uploading a Dataset to Comet Artifacts
+
+If you would like to store your data using [Comet Artifacts](https://www.comet.com/docs/v2/guides/data-management/using-artifacts/#learn-more?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github), you can do so using the `upload_dataset` flag.
+
+The dataset be organized in the way described in the [YOLOv5 documentation](https://docs.ultralytics.com/tutorials/train-custom-datasets/#3-organize-directories). The dataset config `yaml` file must follow the same format as that of the `coco128.yaml` file.
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data coco128.yaml \
+--weights yolov5s.pt \
+--upload_dataset
+```
+
+You can find the uploaded dataset in the Artifacts tab in your Comet Workspace
+<img width="1073" alt="artifact-1" src="https://user-images.githubusercontent.com/7529846/186929193-162718bf-ec7b-4eb9-8c3b-86b3763ef8ea.png">
+
+You can preview the data directly in the Comet UI.
+<img width="1082" alt="artifact-2" src="https://user-images.githubusercontent.com/7529846/186929215-432c36a9-c109-4eb0-944b-84c2786590d6.png">
+
+Artifacts are versioned and also support adding metadata about the dataset. Comet will automatically log the metadata from your dataset `yaml` file
+<img width="963" alt="artifact-3" src="https://user-images.githubusercontent.com/7529846/186929256-9d44d6eb-1a19-42de-889a-bcbca3018f2e.png">
+
+### Using a saved Artifact
+
+If you would like to use a dataset from Comet Artifacts, set the `path` variable in your dataset `yaml` file to point to the following Artifact resource URL.
+
+```
+# contents of artifact.yaml file
+path: "comet://<workspace name>/<artifact name>:<artifact version or alias>"
+```
+
+Then pass this file to your training script in the following way
+
+```shell
+python train.py \
+--img 640 \
+--batch 16 \
+--epochs 5 \
+--data artifact.yaml \
+--weights yolov5s.pt
+```
+
+Artifacts also allow you to track the lineage of data as it flows through your Experimentation workflow. Here you can see a graph that shows you all the experiments that have used your uploaded dataset.
+<img width="1391" alt="artifact-4" src="https://user-images.githubusercontent.com/7529846/186929264-4c4014fa-fe51-4f3c-a5c5-f6d24649b1b4.png">
+
+## Resuming a Training Run
+
+If your training run is interrupted for any reason, e.g. disrupted internet connection, you can resume the run using the `resume` flag and the Comet Run Path.
+
+The Run Path has the following format `comet://<your workspace name>/<your project name>/<experiment id>`.
+
+This will restore the run to its state before the interruption, which includes restoring the  model from a checkpoint, restoring all hyperparameters and training arguments and downloading Comet dataset Artifacts if they were used in the original run. The resumed run will continue logging to the existing Experiment in the Comet UI
+
+```shell
+python train.py \
+--resume "comet://<your run path>"
+```
+
+## Hyperparameter Search with the Comet Optimizer
+
+YOLOv5 is also integrated with Comet's Optimizer, making is simple to visualize hyperparameter sweeps in the Comet UI.
+
+### Configuring an Optimizer Sweep
+
+To configure the Comet Optimizer, you will have to create a JSON file with the information about the sweep. An example file has been provided in `utils/loggers/comet/optimizer_config.json`
+
+```shell
+python utils/loggers/comet/hpo.py \
+  --comet_optimizer_config "utils/loggers/comet/optimizer_config.json"
+```
+
+The `hpo.py` script accepts the same arguments as `train.py`. If you wish to pass additional arguments to your sweep simply add them after
+the script.
+
+```shell
+python utils/loggers/comet/hpo.py \
+  --comet_optimizer_config "utils/loggers/comet/optimizer_config.json" \
+  --save-period 1 \
+  --bbox_interval 1
+```
+
+### Running a Sweep in Parallel
+
+```shell
+comet optimizer -j <set number of workers> utils/loggers/comet/hpo.py \
+  utils/loggers/comet/optimizer_config.json"
+```
+
+### Visualizing Results
+
+Comet provides a number of ways to visualize the results of your sweep. Take a look at a [project with a completed sweep here](https://www.comet.com/examples/comet-example-yolov5/view/PrlArHGuuhDTKC1UuBmTtOSXD/panels?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
+
+<img width="1626" alt="hyperparameter-yolo" src="https://user-images.githubusercontent.com/7529846/186914869-7dc1de14-583f-4323-967b-c9a66a29e495.png">
diff --git a/yolov5_model/utils/loggers/comet/__init__.py b/yolov5_model/utils/loggers/comet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d4599841c9fc4df3e9ad4bf847f8bd13c3a9175d
--- /dev/null
+++ b/yolov5_model/utils/loggers/comet/__init__.py
@@ -0,0 +1,508 @@
+import glob
+import json
+import logging
+import os
+import sys
+from pathlib import Path
+
+logger = logging.getLogger(__name__)
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+try:
+    import comet_ml
+
+    # Project Configuration
+    config = comet_ml.config.get_config()
+    COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5')
+except (ModuleNotFoundError, ImportError):
+    comet_ml = None
+    COMET_PROJECT_NAME = None
+
+import PIL
+import torch
+import torchvision.transforms as T
+import yaml
+
+from utils.dataloaders import img2label_paths
+from utils.general import check_dataset, scale_boxes, xywh2xyxy
+from utils.metrics import box_iou
+
+COMET_PREFIX = 'comet://'
+
+COMET_MODE = os.getenv('COMET_MODE', 'online')
+
+# Model Saving Settings
+COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5')
+
+# Dataset Artifact Settings
+COMET_UPLOAD_DATASET = os.getenv('COMET_UPLOAD_DATASET', 'false').lower() == 'true'
+
+# Evaluation Settings
+COMET_LOG_CONFUSION_MATRIX = os.getenv('COMET_LOG_CONFUSION_MATRIX', 'true').lower() == 'true'
+COMET_LOG_PREDICTIONS = os.getenv('COMET_LOG_PREDICTIONS', 'true').lower() == 'true'
+COMET_MAX_IMAGE_UPLOADS = int(os.getenv('COMET_MAX_IMAGE_UPLOADS', 100))
+
+# Confusion Matrix Settings
+CONF_THRES = float(os.getenv('CONF_THRES', 0.001))
+IOU_THRES = float(os.getenv('IOU_THRES', 0.6))
+
+# Batch Logging Settings
+COMET_LOG_BATCH_METRICS = os.getenv('COMET_LOG_BATCH_METRICS', 'false').lower() == 'true'
+COMET_BATCH_LOGGING_INTERVAL = os.getenv('COMET_BATCH_LOGGING_INTERVAL', 1)
+COMET_PREDICTION_LOGGING_INTERVAL = os.getenv('COMET_PREDICTION_LOGGING_INTERVAL', 1)
+COMET_LOG_PER_CLASS_METRICS = os.getenv('COMET_LOG_PER_CLASS_METRICS', 'false').lower() == 'true'
+
+RANK = int(os.getenv('RANK', -1))
+
+to_pil = T.ToPILImage()
+
+
+class CometLogger:
+    """Log metrics, parameters, source code, models and much more
+    with Comet
+    """
+
+    def __init__(self, opt, hyp, run_id=None, job_type='Training', **experiment_kwargs) -> None:
+        self.job_type = job_type
+        self.opt = opt
+        self.hyp = hyp
+
+        # Comet Flags
+        self.comet_mode = COMET_MODE
+
+        self.save_model = opt.save_period > -1
+        self.model_name = COMET_MODEL_NAME
+
+        # Batch Logging Settings
+        self.log_batch_metrics = COMET_LOG_BATCH_METRICS
+        self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
+
+        # Dataset Artifact Settings
+        self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET
+        self.resume = self.opt.resume
+
+        # Default parameters to pass to Experiment objects
+        self.default_experiment_kwargs = {
+            'log_code': False,
+            'log_env_gpu': True,
+            'log_env_cpu': True,
+            'project_name': COMET_PROJECT_NAME,}
+        self.default_experiment_kwargs.update(experiment_kwargs)
+        self.experiment = self._get_experiment(self.comet_mode, run_id)
+
+        self.data_dict = self.check_dataset(self.opt.data)
+        self.class_names = self.data_dict['names']
+        self.num_classes = self.data_dict['nc']
+
+        self.logged_images_count = 0
+        self.max_images = COMET_MAX_IMAGE_UPLOADS
+
+        if run_id is None:
+            self.experiment.log_other('Created from', 'YOLOv5')
+            if not isinstance(self.experiment, comet_ml.OfflineExperiment):
+                workspace, project_name, experiment_id = self.experiment.url.split('/')[-3:]
+                self.experiment.log_other(
+                    'Run Path',
+                    f'{workspace}/{project_name}/{experiment_id}',
+                )
+            self.log_parameters(vars(opt))
+            self.log_parameters(self.opt.hyp)
+            self.log_asset_data(
+                self.opt.hyp,
+                name='hyperparameters.json',
+                metadata={'type': 'hyp-config-file'},
+            )
+            self.log_asset(
+                f'{self.opt.save_dir}/opt.yaml',
+                metadata={'type': 'opt-config-file'},
+            )
+
+        self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
+
+        if hasattr(self.opt, 'conf_thres'):
+            self.conf_thres = self.opt.conf_thres
+        else:
+            self.conf_thres = CONF_THRES
+        if hasattr(self.opt, 'iou_thres'):
+            self.iou_thres = self.opt.iou_thres
+        else:
+            self.iou_thres = IOU_THRES
+
+        self.log_parameters({'val_iou_threshold': self.iou_thres, 'val_conf_threshold': self.conf_thres})
+
+        self.comet_log_predictions = COMET_LOG_PREDICTIONS
+        if self.opt.bbox_interval == -1:
+            self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
+        else:
+            self.comet_log_prediction_interval = self.opt.bbox_interval
+
+        if self.comet_log_predictions:
+            self.metadata_dict = {}
+            self.logged_image_names = []
+
+        self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
+
+        self.experiment.log_others({
+            'comet_mode': COMET_MODE,
+            'comet_max_image_uploads': COMET_MAX_IMAGE_UPLOADS,
+            'comet_log_per_class_metrics': COMET_LOG_PER_CLASS_METRICS,
+            'comet_log_batch_metrics': COMET_LOG_BATCH_METRICS,
+            'comet_log_confusion_matrix': COMET_LOG_CONFUSION_MATRIX,
+            'comet_model_name': COMET_MODEL_NAME,})
+
+        # Check if running the Experiment with the Comet Optimizer
+        if hasattr(self.opt, 'comet_optimizer_id'):
+            self.experiment.log_other('optimizer_id', self.opt.comet_optimizer_id)
+            self.experiment.log_other('optimizer_objective', self.opt.comet_optimizer_objective)
+            self.experiment.log_other('optimizer_metric', self.opt.comet_optimizer_metric)
+            self.experiment.log_other('optimizer_parameters', json.dumps(self.hyp))
+
+    def _get_experiment(self, mode, experiment_id=None):
+        if mode == 'offline':
+            if experiment_id is not None:
+                return comet_ml.ExistingOfflineExperiment(
+                    previous_experiment=experiment_id,
+                    **self.default_experiment_kwargs,
+                )
+
+            return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,)
+
+        else:
+            try:
+                if experiment_id is not None:
+                    return comet_ml.ExistingExperiment(
+                        previous_experiment=experiment_id,
+                        **self.default_experiment_kwargs,
+                    )
+
+                return comet_ml.Experiment(**self.default_experiment_kwargs)
+
+            except ValueError:
+                logger.warning('COMET WARNING: '
+                               'Comet credentials have not been set. '
+                               'Comet will default to offline logging. '
+                               'Please set your credentials to enable online logging.')
+                return self._get_experiment('offline', experiment_id)
+
+        return
+
+    def log_metrics(self, log_dict, **kwargs):
+        self.experiment.log_metrics(log_dict, **kwargs)
+
+    def log_parameters(self, log_dict, **kwargs):
+        self.experiment.log_parameters(log_dict, **kwargs)
+
+    def log_asset(self, asset_path, **kwargs):
+        self.experiment.log_asset(asset_path, **kwargs)
+
+    def log_asset_data(self, asset, **kwargs):
+        self.experiment.log_asset_data(asset, **kwargs)
+
+    def log_image(self, img, **kwargs):
+        self.experiment.log_image(img, **kwargs)
+
+    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+        if not self.save_model:
+            return
+
+        model_metadata = {
+            'fitness_score': fitness_score[-1],
+            'epochs_trained': epoch + 1,
+            'save_period': opt.save_period,
+            'total_epochs': opt.epochs,}
+
+        model_files = glob.glob(f'{path}/*.pt')
+        for model_path in model_files:
+            name = Path(model_path).name
+
+            self.experiment.log_model(
+                self.model_name,
+                file_or_folder=model_path,
+                file_name=name,
+                metadata=model_metadata,
+                overwrite=True,
+            )
+
+    def check_dataset(self, data_file):
+        with open(data_file) as f:
+            data_config = yaml.safe_load(f)
+
+        if data_config['path'].startswith(COMET_PREFIX):
+            path = data_config['path'].replace(COMET_PREFIX, '')
+            data_dict = self.download_dataset_artifact(path)
+
+            return data_dict
+
+        self.log_asset(self.opt.data, metadata={'type': 'data-config-file'})
+
+        return check_dataset(data_file)
+
+    def log_predictions(self, image, labelsn, path, shape, predn):
+        if self.logged_images_count >= self.max_images:
+            return
+        detections = predn[predn[:, 4] > self.conf_thres]
+        iou = box_iou(labelsn[:, 1:], detections[:, :4])
+        mask, _ = torch.where(iou > self.iou_thres)
+        if len(mask) == 0:
+            return
+
+        filtered_detections = detections[mask]
+        filtered_labels = labelsn[mask]
+
+        image_id = path.split('/')[-1].split('.')[0]
+        image_name = f'{image_id}_curr_epoch_{self.experiment.curr_epoch}'
+        if image_name not in self.logged_image_names:
+            native_scale_image = PIL.Image.open(path)
+            self.log_image(native_scale_image, name=image_name)
+            self.logged_image_names.append(image_name)
+
+        metadata = []
+        for cls, *xyxy in filtered_labels.tolist():
+            metadata.append({
+                'label': f'{self.class_names[int(cls)]}-gt',
+                'score': 100,
+                'box': {
+                    'x': xyxy[0],
+                    'y': xyxy[1],
+                    'x2': xyxy[2],
+                    'y2': xyxy[3]},})
+        for *xyxy, conf, cls in filtered_detections.tolist():
+            metadata.append({
+                'label': f'{self.class_names[int(cls)]}',
+                'score': conf * 100,
+                'box': {
+                    'x': xyxy[0],
+                    'y': xyxy[1],
+                    'x2': xyxy[2],
+                    'y2': xyxy[3]},})
+
+        self.metadata_dict[image_name] = metadata
+        self.logged_images_count += 1
+
+        return
+
+    def preprocess_prediction(self, image, labels, shape, pred):
+        nl, _ = labels.shape[0], pred.shape[0]
+
+        # Predictions
+        if self.opt.single_cls:
+            pred[:, 5] = 0
+
+        predn = pred.clone()
+        scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
+
+        labelsn = None
+        if nl:
+            tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+            scale_boxes(image.shape[1:], tbox, shape[0], shape[1])  # native-space labels
+            labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+            scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])  # native-space pred
+
+        return predn, labelsn
+
+    def add_assets_to_artifact(self, artifact, path, asset_path, split):
+        img_paths = sorted(glob.glob(f'{asset_path}/*'))
+        label_paths = img2label_paths(img_paths)
+
+        for image_file, label_file in zip(img_paths, label_paths):
+            image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
+
+            try:
+                artifact.add(image_file, logical_path=image_logical_path, metadata={'split': split})
+                artifact.add(label_file, logical_path=label_logical_path, metadata={'split': split})
+            except ValueError as e:
+                logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.')
+                logger.error(f'COMET ERROR: {e}')
+                continue
+
+        return artifact
+
+    def upload_dataset_artifact(self):
+        dataset_name = self.data_dict.get('dataset_name', 'yolov5-dataset')
+        path = str((ROOT / Path(self.data_dict['path'])).resolve())
+
+        metadata = self.data_dict.copy()
+        for key in ['train', 'val', 'test']:
+            split_path = metadata.get(key)
+            if split_path is not None:
+                metadata[key] = split_path.replace(path, '')
+
+        artifact = comet_ml.Artifact(name=dataset_name, artifact_type='dataset', metadata=metadata)
+        for key in metadata.keys():
+            if key in ['train', 'val', 'test']:
+                if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
+                    continue
+
+                asset_path = self.data_dict.get(key)
+                if asset_path is not None:
+                    artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
+
+        self.experiment.log_artifact(artifact)
+
+        return
+
+    def download_dataset_artifact(self, artifact_path):
+        logged_artifact = self.experiment.get_artifact(artifact_path)
+        artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
+        logged_artifact.download(artifact_save_dir)
+
+        metadata = logged_artifact.metadata
+        data_dict = metadata.copy()
+        data_dict['path'] = artifact_save_dir
+
+        metadata_names = metadata.get('names')
+        if type(metadata_names) == dict:
+            data_dict['names'] = {int(k): v for k, v in metadata.get('names').items()}
+        elif type(metadata_names) == list:
+            data_dict['names'] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
+        else:
+            raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
+
+        data_dict = self.update_data_paths(data_dict)
+        return data_dict
+
+    def update_data_paths(self, data_dict):
+        path = data_dict.get('path', '')
+
+        for split in ['train', 'val', 'test']:
+            if data_dict.get(split):
+                split_path = data_dict.get(split)
+                data_dict[split] = (f'{path}/{split_path}' if isinstance(split, str) else [
+                    f'{path}/{x}' for x in split_path])
+
+        return data_dict
+
+    def on_pretrain_routine_end(self, paths):
+        if self.opt.resume:
+            return
+
+        for path in paths:
+            self.log_asset(str(path))
+
+        if self.upload_dataset:
+            if not self.resume:
+                self.upload_dataset_artifact()
+
+        return
+
+    def on_train_start(self):
+        self.log_parameters(self.hyp)
+
+    def on_train_epoch_start(self):
+        return
+
+    def on_train_epoch_end(self, epoch):
+        self.experiment.curr_epoch = epoch
+
+        return
+
+    def on_train_batch_start(self):
+        return
+
+    def on_train_batch_end(self, log_dict, step):
+        self.experiment.curr_step = step
+        if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
+            self.log_metrics(log_dict, step=step)
+
+        return
+
+    def on_train_end(self, files, save_dir, last, best, epoch, results):
+        if self.comet_log_predictions:
+            curr_epoch = self.experiment.curr_epoch
+            self.experiment.log_asset_data(self.metadata_dict, 'image-metadata.json', epoch=curr_epoch)
+
+        for f in files:
+            self.log_asset(f, metadata={'epoch': epoch})
+        self.log_asset(f'{save_dir}/results.csv', metadata={'epoch': epoch})
+
+        if not self.opt.evolve:
+            model_path = str(best if best.exists() else last)
+            name = Path(model_path).name
+            if self.save_model:
+                self.experiment.log_model(
+                    self.model_name,
+                    file_or_folder=model_path,
+                    file_name=name,
+                    overwrite=True,
+                )
+
+        # Check if running Experiment with Comet Optimizer
+        if hasattr(self.opt, 'comet_optimizer_id'):
+            metric = results.get(self.opt.comet_optimizer_metric)
+            self.experiment.log_other('optimizer_metric_value', metric)
+
+        self.finish_run()
+
+    def on_val_start(self):
+        return
+
+    def on_val_batch_start(self):
+        return
+
+    def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
+        if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
+            return
+
+        for si, pred in enumerate(outputs):
+            if len(pred) == 0:
+                continue
+
+            image = images[si]
+            labels = targets[targets[:, 0] == si, 1:]
+            shape = shapes[si]
+            path = paths[si]
+            predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
+            if labelsn is not None:
+                self.log_predictions(image, labelsn, path, shape, predn)
+
+        return
+
+    def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
+        if self.comet_log_per_class_metrics:
+            if self.num_classes > 1:
+                for i, c in enumerate(ap_class):
+                    class_name = self.class_names[c]
+                    self.experiment.log_metrics(
+                        {
+                            'mAP@.5': ap50[i],
+                            'mAP@.5:.95': ap[i],
+                            'precision': p[i],
+                            'recall': r[i],
+                            'f1': f1[i],
+                            'true_positives': tp[i],
+                            'false_positives': fp[i],
+                            'support': nt[c]},
+                        prefix=class_name)
+
+        if self.comet_log_confusion_matrix:
+            epoch = self.experiment.curr_epoch
+            class_names = list(self.class_names.values())
+            class_names.append('background')
+            num_classes = len(class_names)
+
+            self.experiment.log_confusion_matrix(
+                matrix=confusion_matrix.matrix,
+                max_categories=num_classes,
+                labels=class_names,
+                epoch=epoch,
+                column_label='Actual Category',
+                row_label='Predicted Category',
+                file_name=f'confusion-matrix-epoch-{epoch}.json',
+            )
+
+    def on_fit_epoch_end(self, result, epoch):
+        self.log_metrics(result, epoch=epoch)
+
+    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
+        if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
+            self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
+
+    def on_params_update(self, params):
+        self.log_parameters(params)
+
+    def finish_run(self):
+        self.experiment.end()
diff --git a/yolov5_model/utils/loggers/comet/__pycache__/__init__.cpython-39.pyc b/yolov5_model/utils/loggers/comet/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4f8b75a070a7d14bbd1fc26e60cbf2355d73ac02
Binary files /dev/null and b/yolov5_model/utils/loggers/comet/__pycache__/__init__.cpython-39.pyc differ
diff --git a/yolov5_model/utils/loggers/comet/__pycache__/comet_utils.cpython-39.pyc b/yolov5_model/utils/loggers/comet/__pycache__/comet_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..46cd8d44e708d5d4821750026a3c712bc55b3b82
Binary files /dev/null and b/yolov5_model/utils/loggers/comet/__pycache__/comet_utils.cpython-39.pyc differ
diff --git a/yolov5_model/utils/loggers/comet/comet_utils.py b/yolov5_model/utils/loggers/comet/comet_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..27600761ad2843a6ab66aa22ad06782bb4b7eea7
--- /dev/null
+++ b/yolov5_model/utils/loggers/comet/comet_utils.py
@@ -0,0 +1,150 @@
+import logging
+import os
+from urllib.parse import urlparse
+
+try:
+    import comet_ml
+except (ModuleNotFoundError, ImportError):
+    comet_ml = None
+
+import yaml
+
+logger = logging.getLogger(__name__)
+
+COMET_PREFIX = 'comet://'
+COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5')
+COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv('COMET_DEFAULT_CHECKPOINT_FILENAME', 'last.pt')
+
+
+def download_model_checkpoint(opt, experiment):
+    model_dir = f'{opt.project}/{experiment.name}'
+    os.makedirs(model_dir, exist_ok=True)
+
+    model_name = COMET_MODEL_NAME
+    model_asset_list = experiment.get_model_asset_list(model_name)
+
+    if len(model_asset_list) == 0:
+        logger.error(f'COMET ERROR: No checkpoints found for model name : {model_name}')
+        return
+
+    model_asset_list = sorted(
+        model_asset_list,
+        key=lambda x: x['step'],
+        reverse=True,
+    )
+    logged_checkpoint_map = {asset['fileName']: asset['assetId'] for asset in model_asset_list}
+
+    resource_url = urlparse(opt.weights)
+    checkpoint_filename = resource_url.query
+
+    if checkpoint_filename:
+        asset_id = logged_checkpoint_map.get(checkpoint_filename)
+    else:
+        asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
+        checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
+
+    if asset_id is None:
+        logger.error(f'COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment')
+        return
+
+    try:
+        logger.info(f'COMET INFO: Downloading checkpoint {checkpoint_filename}')
+        asset_filename = checkpoint_filename
+
+        model_binary = experiment.get_asset(asset_id, return_type='binary', stream=False)
+        model_download_path = f'{model_dir}/{asset_filename}'
+        with open(model_download_path, 'wb') as f:
+            f.write(model_binary)
+
+        opt.weights = model_download_path
+
+    except Exception as e:
+        logger.warning('COMET WARNING: Unable to download checkpoint from Comet')
+        logger.exception(e)
+
+
+def set_opt_parameters(opt, experiment):
+    """Update the opts Namespace with parameters
+    from Comet's ExistingExperiment when resuming a run
+
+    Args:
+        opt (argparse.Namespace): Namespace of command line options
+        experiment (comet_ml.APIExperiment): Comet API Experiment object
+    """
+    asset_list = experiment.get_asset_list()
+    resume_string = opt.resume
+
+    for asset in asset_list:
+        if asset['fileName'] == 'opt.yaml':
+            asset_id = asset['assetId']
+            asset_binary = experiment.get_asset(asset_id, return_type='binary', stream=False)
+            opt_dict = yaml.safe_load(asset_binary)
+            for key, value in opt_dict.items():
+                setattr(opt, key, value)
+            opt.resume = resume_string
+
+    # Save hyperparameters to YAML file
+    # Necessary to pass checks in training script
+    save_dir = f'{opt.project}/{experiment.name}'
+    os.makedirs(save_dir, exist_ok=True)
+
+    hyp_yaml_path = f'{save_dir}/hyp.yaml'
+    with open(hyp_yaml_path, 'w') as f:
+        yaml.dump(opt.hyp, f)
+    opt.hyp = hyp_yaml_path
+
+
+def check_comet_weights(opt):
+    """Downloads model weights from Comet and updates the
+    weights path to point to saved weights location
+
+    Args:
+        opt (argparse.Namespace): Command Line arguments passed
+            to YOLOv5 training script
+
+    Returns:
+        None/bool: Return True if weights are successfully downloaded
+            else return None
+    """
+    if comet_ml is None:
+        return
+
+    if isinstance(opt.weights, str):
+        if opt.weights.startswith(COMET_PREFIX):
+            api = comet_ml.API()
+            resource = urlparse(opt.weights)
+            experiment_path = f'{resource.netloc}{resource.path}'
+            experiment = api.get(experiment_path)
+            download_model_checkpoint(opt, experiment)
+            return True
+
+    return None
+
+
+def check_comet_resume(opt):
+    """Restores run parameters to its original state based on the model checkpoint
+    and logged Experiment parameters.
+
+    Args:
+        opt (argparse.Namespace): Command Line arguments passed
+            to YOLOv5 training script
+
+    Returns:
+        None/bool: Return True if the run is restored successfully
+            else return None
+    """
+    if comet_ml is None:
+        return
+
+    if isinstance(opt.resume, str):
+        if opt.resume.startswith(COMET_PREFIX):
+            api = comet_ml.API()
+            resource = urlparse(opt.resume)
+            experiment_path = f'{resource.netloc}{resource.path}'
+            experiment = api.get(experiment_path)
+            set_opt_parameters(opt, experiment)
+            download_model_checkpoint(opt, experiment)
+
+            return True
+
+    return None
diff --git a/yolov5_model/utils/loggers/comet/hpo.py b/yolov5_model/utils/loggers/comet/hpo.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc49115c13581554bebe1ddddaf3d5e10caaae07
--- /dev/null
+++ b/yolov5_model/utils/loggers/comet/hpo.py
@@ -0,0 +1,118 @@
+import argparse
+import json
+import logging
+import os
+import sys
+from pathlib import Path
+
+import comet_ml
+
+logger = logging.getLogger(__name__)
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+from train import train
+from utils.callbacks import Callbacks
+from utils.general import increment_path
+from utils.torch_utils import select_device
+
+# Project Configuration
+config = comet_ml.config.get_config()
+COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5')
+
+
+def get_args(known=False):
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
+    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
+    parser.add_argument('--epochs', type=int, default=300, help='total training epochs')
+    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+    parser.add_argument('--rect', action='store_true', help='rectangular training')
+    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+    parser.add_argument('--noplots', action='store_true', help='save no plot files')
+    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
+    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
+    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--quad', action='store_true', help='quad dataloader')
+    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
+    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
+
+    # Weights & Biases arguments
+    parser.add_argument('--entity', default=None, help='W&B: Entity')
+    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
+    parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
+    parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
+
+    # Comet Arguments
+    parser.add_argument('--comet_optimizer_config', type=str, help='Comet: Path to a Comet Optimizer Config File.')
+    parser.add_argument('--comet_optimizer_id', type=str, help='Comet: ID of the Comet Optimizer sweep.')
+    parser.add_argument('--comet_optimizer_objective', type=str, help="Comet: Set to 'minimize' or 'maximize'.")
+    parser.add_argument('--comet_optimizer_metric', type=str, help='Comet: Metric to Optimize.')
+    parser.add_argument('--comet_optimizer_workers',
+                        type=int,
+                        default=1,
+                        help='Comet: Number of Parallel Workers to use with the Comet Optimizer.')
+
+    return parser.parse_known_args()[0] if known else parser.parse_args()
+
+
+def run(parameters, opt):
+    hyp_dict = {k: v for k, v in parameters.items() if k not in ['epochs', 'batch_size']}
+
+    opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
+    opt.batch_size = parameters.get('batch_size')
+    opt.epochs = parameters.get('epochs')
+
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    train(hyp_dict, opt, device, callbacks=Callbacks())
+
+
+if __name__ == '__main__':
+    opt = get_args(known=True)
+
+    opt.weights = str(opt.weights)
+    opt.cfg = str(opt.cfg)
+    opt.data = str(opt.data)
+    opt.project = str(opt.project)
+
+    optimizer_id = os.getenv('COMET_OPTIMIZER_ID')
+    if optimizer_id is None:
+        with open(opt.comet_optimizer_config) as f:
+            optimizer_config = json.load(f)
+        optimizer = comet_ml.Optimizer(optimizer_config)
+    else:
+        optimizer = comet_ml.Optimizer(optimizer_id)
+
+    opt.comet_optimizer_id = optimizer.id
+    status = optimizer.status()
+
+    opt.comet_optimizer_objective = status['spec']['objective']
+    opt.comet_optimizer_metric = status['spec']['metric']
+
+    logger.info('COMET INFO: Starting Hyperparameter Sweep')
+    for parameter in optimizer.get_parameters():
+        run(parameter['parameters'], opt)
diff --git a/yolov5_model/utils/loggers/comet/optimizer_config.json b/yolov5_model/utils/loggers/comet/optimizer_config.json
new file mode 100644
index 0000000000000000000000000000000000000000..83ddddab6f2084b4bdf84dca1e61696de200d1b8
--- /dev/null
+++ b/yolov5_model/utils/loggers/comet/optimizer_config.json
@@ -0,0 +1,209 @@
+{
+  "algorithm": "random",
+  "parameters": {
+    "anchor_t": {
+      "type": "discrete",
+      "values": [
+        2,
+        8
+      ]
+    },
+    "batch_size": {
+      "type": "discrete",
+      "values": [
+        16,
+        32,
+        64
+      ]
+    },
+    "box": {
+      "type": "discrete",
+      "values": [
+        0.02,
+        0.2
+      ]
+    },
+    "cls": {
+      "type": "discrete",
+      "values": [
+        0.2
+      ]
+    },
+    "cls_pw": {
+      "type": "discrete",
+      "values": [
+        0.5
+      ]
+    },
+    "copy_paste": {
+      "type": "discrete",
+      "values": [
+        1
+      ]
+    },
+    "degrees": {
+      "type": "discrete",
+      "values": [
+        0,
+        45
+      ]
+    },
+    "epochs": {
+      "type": "discrete",
+      "values": [
+        5
+      ]
+    },
+    "fl_gamma": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "fliplr": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "flipud": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "hsv_h": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "hsv_s": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "hsv_v": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "iou_t": {
+      "type": "discrete",
+      "values": [
+        0.7
+      ]
+    },
+    "lr0": {
+      "type": "discrete",
+      "values": [
+        1e-05,
+        0.1
+      ]
+    },
+    "lrf": {
+      "type": "discrete",
+      "values": [
+        0.01,
+        1
+      ]
+    },
+    "mixup": {
+      "type": "discrete",
+      "values": [
+        1
+      ]
+    },
+    "momentum": {
+      "type": "discrete",
+      "values": [
+        0.6
+      ]
+    },
+    "mosaic": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "obj": {
+      "type": "discrete",
+      "values": [
+        0.2
+      ]
+    },
+    "obj_pw": {
+      "type": "discrete",
+      "values": [
+        0.5
+      ]
+    },
+    "optimizer": {
+      "type": "categorical",
+      "values": [
+        "SGD",
+        "Adam",
+        "AdamW"
+      ]
+    },
+    "perspective": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "scale": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "shear": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "translate": {
+      "type": "discrete",
+      "values": [
+        0
+      ]
+    },
+    "warmup_bias_lr": {
+      "type": "discrete",
+      "values": [
+        0,
+        0.2
+      ]
+    },
+    "warmup_epochs": {
+      "type": "discrete",
+      "values": [
+        5
+      ]
+    },
+    "warmup_momentum": {
+      "type": "discrete",
+      "values": [
+        0,
+        0.95
+      ]
+    },
+    "weight_decay": {
+      "type": "discrete",
+      "values": [
+        0,
+        0.001
+      ]
+    }
+  },
+  "spec": {
+    "maxCombo": 0,
+    "metric": "metrics/mAP_0.5",
+    "objective": "maximize"
+  },
+  "trials": 1
+}
diff --git a/yolov5_model/utils/loggers/wandb/__init__.py b/yolov5_model/utils/loggers/wandb/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5_model/utils/loggers/wandb/__pycache__/__init__.cpython-39.pyc b/yolov5_model/utils/loggers/wandb/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7f4c98540407270e21287562939715a4fc764cf2
Binary files /dev/null and b/yolov5_model/utils/loggers/wandb/__pycache__/__init__.cpython-39.pyc differ
diff --git a/yolov5_model/utils/loggers/wandb/__pycache__/wandb_utils.cpython-39.pyc b/yolov5_model/utils/loggers/wandb/__pycache__/wandb_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..04520c7611b305df2f8e15a998718db3a4a02480
Binary files /dev/null and b/yolov5_model/utils/loggers/wandb/__pycache__/wandb_utils.cpython-39.pyc differ
diff --git a/yolov5_model/utils/loggers/wandb/wandb_utils.py b/yolov5_model/utils/loggers/wandb/wandb_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..c8ab3819738111557909b858073a1af0bff47463
--- /dev/null
+++ b/yolov5_model/utils/loggers/wandb/wandb_utils.py
@@ -0,0 +1,193 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# WARNING ⚠️ wandb is deprecated and will be removed in future release.
+# See supported integrations at https://github.com/ultralytics/yolov5#integrations
+
+import logging
+import os
+import sys
+from contextlib import contextmanager
+from pathlib import Path
+
+from utils.general import LOGGER, colorstr
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+RANK = int(os.getenv('RANK', -1))
+DEPRECATION_WARNING = f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. " \
+                      f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.'
+
+try:
+    import wandb
+
+    assert hasattr(wandb, '__version__')  # verify package import not local dir
+    LOGGER.warning(DEPRECATION_WARNING)
+except (ImportError, AssertionError):
+    wandb = None
+
+
+class WandbLogger():
+    """Log training runs, datasets, models, and predictions to Weights & Biases.
+
+    This logger sends information to W&B at wandb.ai. By default, this information
+    includes hyperparameters, system configuration and metrics, model metrics,
+    and basic data metrics and analyses.
+
+    By providing additional command line arguments to train.py, datasets,
+    models and predictions can also be logged.
+
+    For more on how this logger is used, see the Weights & Biases documentation:
+    https://docs.wandb.com/guides/integrations/yolov5
+    """
+
+    def __init__(self, opt, run_id=None, job_type='Training'):
+        """
+        - Initialize WandbLogger instance
+        - Upload dataset if opt.upload_dataset is True
+        - Setup training processes if job_type is 'Training'
+
+        arguments:
+        opt (namespace) -- Commandline arguments for this run
+        run_id (str) -- Run ID of W&B run to be resumed
+        job_type (str) -- To set the job_type for this run
+
+       """
+        # Pre-training routine --
+        self.job_type = job_type
+        self.wandb, self.wandb_run = wandb, wandb.run if wandb else None
+        self.val_artifact, self.train_artifact = None, None
+        self.train_artifact_path, self.val_artifact_path = None, None
+        self.result_artifact = None
+        self.val_table, self.result_table = None, None
+        self.max_imgs_to_log = 16
+        self.data_dict = None
+        if self.wandb:
+            self.wandb_run = wandb.init(config=opt,
+                                        resume='allow',
+                                        project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
+                                        entity=opt.entity,
+                                        name=opt.name if opt.name != 'exp' else None,
+                                        job_type=job_type,
+                                        id=run_id,
+                                        allow_val_change=True) if not wandb.run else wandb.run
+
+        if self.wandb_run:
+            if self.job_type == 'Training':
+                if isinstance(opt.data, dict):
+                    # This means another dataset manager has already processed the dataset info (e.g. ClearML)
+                    # and they will have stored the already processed dict in opt.data
+                    self.data_dict = opt.data
+                self.setup_training(opt)
+
+    def setup_training(self, opt):
+        """
+        Setup the necessary processes for training YOLO models:
+          - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
+          - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
+          - Setup log_dict, initialize bbox_interval
+
+        arguments:
+        opt (namespace) -- commandline arguments for this run
+
+        """
+        self.log_dict, self.current_epoch = {}, 0
+        self.bbox_interval = opt.bbox_interval
+        if isinstance(opt.resume, str):
+            model_dir, _ = self.download_model_artifact(opt)
+            if model_dir:
+                self.weights = Path(model_dir) / 'last.pt'
+                config = self.wandb_run.config
+                opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
+                    self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
+                    config.hyp, config.imgsz
+
+        if opt.bbox_interval == -1:
+            self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
+            if opt.evolve or opt.noplots:
+                self.bbox_interval = opt.bbox_interval = opt.epochs + 1  # disable bbox_interval
+
+    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+        """
+        Log the model checkpoint as W&B artifact
+
+        arguments:
+        path (Path)   -- Path of directory containing the checkpoints
+        opt (namespace) -- Command line arguments for this run
+        epoch (int)  -- Current epoch number
+        fitness_score (float) -- fitness score for current epoch
+        best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
+        """
+        model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
+                                        type='model',
+                                        metadata={
+                                            'original_url': str(path),
+                                            'epochs_trained': epoch + 1,
+                                            'save period': opt.save_period,
+                                            'project': opt.project,
+                                            'total_epochs': opt.epochs,
+                                            'fitness_score': fitness_score})
+        model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
+        wandb.log_artifact(model_artifact,
+                           aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
+        LOGGER.info(f'Saving model artifact on epoch {epoch + 1}')
+
+    def val_one_image(self, pred, predn, path, names, im):
+        pass
+
+    def log(self, log_dict):
+        """
+        save the metrics to the logging dictionary
+
+        arguments:
+        log_dict (Dict) -- metrics/media to be logged in current step
+        """
+        if self.wandb_run:
+            for key, value in log_dict.items():
+                self.log_dict[key] = value
+
+    def end_epoch(self):
+        """
+        commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
+
+        arguments:
+        best_result (boolean): Boolean representing if the result of this evaluation is best or not
+        """
+        if self.wandb_run:
+            with all_logging_disabled():
+                try:
+                    wandb.log(self.log_dict)
+                except BaseException as e:
+                    LOGGER.info(
+                        f'An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}'
+                    )
+                    self.wandb_run.finish()
+                    self.wandb_run = None
+                self.log_dict = {}
+
+    def finish_run(self):
+        """
+        Log metrics if any and finish the current W&B run
+        """
+        if self.wandb_run:
+            if self.log_dict:
+                with all_logging_disabled():
+                    wandb.log(self.log_dict)
+            wandb.run.finish()
+            LOGGER.warning(DEPRECATION_WARNING)
+
+
+@contextmanager
+def all_logging_disabled(highest_level=logging.CRITICAL):
+    """ source - https://gist.github.com/simon-weber/7853144
+    A context manager that will prevent any logging messages triggered during the body from being processed.
+    :param highest_level: the maximum logging level in use.
+      This would only need to be changed if a custom level greater than CRITICAL is defined.
+    """
+    previous_level = logging.root.manager.disable
+    logging.disable(highest_level)
+    try:
+        yield
+    finally:
+        logging.disable(previous_level)
diff --git a/yolov5_model/utils/loss.py b/yolov5_model/utils/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b9c3d9f80181d1ad5b54d2700f32ba042368c31
--- /dev/null
+++ b/yolov5_model/utils/loss.py
@@ -0,0 +1,234 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Loss functions
+"""
+
+import torch
+import torch.nn as nn
+
+from utils.metrics import bbox_iou
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+    # return positive, negative label smoothing BCE targets
+    return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+    # BCEwithLogitLoss() with reduced missing label effects.
+    def __init__(self, alpha=0.05):
+        super().__init__()
+        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
+        self.alpha = alpha
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+        pred = torch.sigmoid(pred)  # prob from logits
+        dx = pred - true  # reduce only missing label effects
+        # dx = (pred - true).abs()  # reduce missing label and false label effects
+        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+        loss *= alpha_factor
+        return loss.mean()
+
+
+class FocalLoss(nn.Module):
+    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+        # p_t = torch.exp(-loss)
+        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability
+
+        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = (1.0 - p_t) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == 'mean':
+            return loss.mean()
+        elif self.reduction == 'sum':
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class QFocalLoss(nn.Module):
+    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == 'mean':
+            return loss.mean()
+        elif self.reduction == 'sum':
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class ComputeLoss:
+    sort_obj_iou = False
+
+    # Compute losses
+    def __init__(self, model, autobalance=False):
+        device = next(model.parameters()).device  # get model device
+        h = model.hyp  # hyperparameters
+
+        # Define criteria
+        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets
+
+        # Focal loss
+        g = h['fl_gamma']  # focal loss gamma
+        if g > 0:
+            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+        m = de_parallel(model).model[-1]  # Detect() module
+        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
+        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
+        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+        self.na = m.na  # number of anchors
+        self.nc = m.nc  # number of classes
+        self.nl = m.nl  # number of layers
+        self.anchors = m.anchors
+        self.device = device
+
+    def __call__(self, p, targets):  # predictions, targets
+        lcls = torch.zeros(1, device=self.device)  # class loss
+        lbox = torch.zeros(1, device=self.device)  # box loss
+        lobj = torch.zeros(1, device=self.device)  # object loss
+        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets
+
+        # Losses
+        for i, pi in enumerate(p):  # layer index, layer predictions
+            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
+            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj
+
+            n = b.shape[0]  # number of targets
+            if n:
+                # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1)  # faster, requires torch 1.8.0
+                pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1)  # target-subset of predictions
+
+                # Regression
+                pxy = pxy.sigmoid() * 2 - 0.5
+                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+                pbox = torch.cat((pxy, pwh), 1)  # predicted box
+                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
+                lbox += (1.0 - iou).mean()  # iou loss
+
+                # Objectness
+                iou = iou.detach().clamp(0).type(tobj.dtype)
+                if self.sort_obj_iou:
+                    j = iou.argsort()
+                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
+                if self.gr < 1:
+                    iou = (1.0 - self.gr) + self.gr * iou
+                tobj[b, a, gj, gi] = iou  # iou ratio
+
+                # Classification
+                if self.nc > 1:  # cls loss (only if multiple classes)
+                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
+                    t[range(n), tcls[i]] = self.cp
+                    lcls += self.BCEcls(pcls, t)  # BCE
+
+                # Append targets to text file
+                # with open('targets.txt', 'a') as file:
+                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+            obji = self.BCEobj(pi[..., 4], tobj)
+            lobj += obji * self.balance[i]  # obj loss
+            if self.autobalance:
+                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+        if self.autobalance:
+            self.balance = [x / self.balance[self.ssi] for x in self.balance]
+        lbox *= self.hyp['box']
+        lobj *= self.hyp['obj']
+        lcls *= self.hyp['cls']
+        bs = tobj.shape[0]  # batch size
+
+        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
+
+    def build_targets(self, p, targets):
+        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+        na, nt = self.na, targets.shape[0]  # number of anchors, targets
+        tcls, tbox, indices, anch = [], [], [], []
+        gain = torch.ones(7, device=self.device)  # normalized to gridspace gain
+        ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
+        targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2)  # append anchor indices
+
+        g = 0.5  # bias
+        off = torch.tensor(
+            [
+                [0, 0],
+                [1, 0],
+                [0, 1],
+                [-1, 0],
+                [0, -1],  # j,k,l,m
+                # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
+            ],
+            device=self.device).float() * g  # offsets
+
+        for i in range(self.nl):
+            anchors, shape = self.anchors[i], p[i].shape
+            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain
+
+            # Match targets to anchors
+            t = targets * gain  # shape(3,n,7)
+            if nt:
+                # Matches
+                r = t[..., 4:6] / anchors[:, None]  # wh ratio
+                j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']  # compare
+                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+                t = t[j]  # filter
+
+                # Offsets
+                gxy = t[:, 2:4]  # grid xy
+                gxi = gain[[2, 3]] - gxy  # inverse
+                j, k = ((gxy % 1 < g) & (gxy > 1)).T
+                l, m = ((gxi % 1 < g) & (gxi > 1)).T
+                j = torch.stack((torch.ones_like(j), j, k, l, m))
+                t = t.repeat((5, 1, 1))[j]
+                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+            else:
+                t = targets[0]
+                offsets = 0
+
+            # Define
+            bc, gxy, gwh, a = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors
+            a, (b, c) = a.long().view(-1), bc.long().T  # anchors, image, class
+            gij = (gxy - offsets).long()
+            gi, gj = gij.T  # grid indices
+
+            # Append
+            indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid
+            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
+            anch.append(anchors[a])  # anchors
+            tcls.append(c)  # class
+
+        return tcls, tbox, indices, anch
diff --git a/yolov5_model/utils/metrics.py b/yolov5_model/utils/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..95f364c23f3492cbb966507f9610c9201754f1f0
--- /dev/null
+++ b/yolov5_model/utils/metrics.py
@@ -0,0 +1,360 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Model validation metrics
+"""
+
+import math
+import warnings
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+
+from utils import TryExcept, threaded
+
+
+def fitness(x):
+    # Model fitness as a weighted combination of metrics
+    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+    return (x[:, :4] * w).sum(1)
+
+
+def smooth(y, f=0.05):
+    # Box filter of fraction f
+    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
+    p = np.ones(nf // 2)  # ones padding
+    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
+    return np.convolve(yp, np.ones(nf) / nf, mode='valid')  # y-smoothed
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=''):
+    """ Compute the average precision, given the recall and precision curves.
+    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+    # Arguments
+        tp:  True positives (nparray, nx1 or nx10).
+        conf:  Objectness value from 0-1 (nparray).
+        pred_cls:  Predicted object classes (nparray).
+        target_cls:  True object classes (nparray).
+        plot:  Plot precision-recall curve at mAP@0.5
+        save_dir:  Plot save directory
+    # Returns
+        The average precision as computed in py-faster-rcnn.
+    """
+
+    # Sort by objectness
+    i = np.argsort(-conf)
+    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+    # Find unique classes
+    unique_classes, nt = np.unique(target_cls, return_counts=True)
+    nc = unique_classes.shape[0]  # number of classes, number of detections
+
+    # Create Precision-Recall curve and compute AP for each class
+    px, py = np.linspace(0, 1, 1000), []  # for plotting
+    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
+    for ci, c in enumerate(unique_classes):
+        i = pred_cls == c
+        n_l = nt[ci]  # number of labels
+        n_p = i.sum()  # number of predictions
+        if n_p == 0 or n_l == 0:
+            continue
+
+        # Accumulate FPs and TPs
+        fpc = (1 - tp[i]).cumsum(0)
+        tpc = tp[i].cumsum(0)
+
+        # Recall
+        recall = tpc / (n_l + eps)  # recall curve
+        r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases
+
+        # Precision
+        precision = tpc / (tpc + fpc)  # precision curve
+        p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score
+
+        # AP from recall-precision curve
+        for j in range(tp.shape[1]):
+            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+            if plot and j == 0:
+                py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5
+
+    # Compute F1 (harmonic mean of precision and recall)
+    f1 = 2 * p * r / (p + r + eps)
+    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
+    names = dict(enumerate(names))  # to dict
+    if plot:
+        plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
+        plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
+        plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
+        plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
+
+    i = smooth(f1.mean(0), 0.1).argmax()  # max F1 index
+    p, r, f1 = p[:, i], r[:, i], f1[:, i]
+    tp = (r * nt).round()  # true positives
+    fp = (tp / (p + eps) - tp).round()  # false positives
+    return tp, fp, p, r, f1, ap, unique_classes.astype(int)
+
+
+def compute_ap(recall, precision):
+    """ Compute the average precision, given the recall and precision curves
+    # Arguments
+        recall:    The recall curve (list)
+        precision: The precision curve (list)
+    # Returns
+        Average precision, precision curve, recall curve
+    """
+
+    # Append sentinel values to beginning and end
+    mrec = np.concatenate(([0.0], recall, [1.0]))
+    mpre = np.concatenate(([1.0], precision, [0.0]))
+
+    # Compute the precision envelope
+    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+    # Integrate area under curve
+    method = 'interp'  # methods: 'continuous', 'interp'
+    if method == 'interp':
+        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
+        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
+    else:  # 'continuous'
+        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
+        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve
+
+    return ap, mpre, mrec
+
+
+class ConfusionMatrix:
+    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
+    def __init__(self, nc, conf=0.25, iou_thres=0.45):
+        self.matrix = np.zeros((nc + 1, nc + 1))
+        self.nc = nc  # number of classes
+        self.conf = conf
+        self.iou_thres = iou_thres
+
+    def process_batch(self, detections, labels):
+        """
+        Return intersection-over-union (Jaccard index) of boxes.
+        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+        Arguments:
+            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+            labels (Array[M, 5]), class, x1, y1, x2, y2
+        Returns:
+            None, updates confusion matrix accordingly
+        """
+        if detections is None:
+            gt_classes = labels.int()
+            for gc in gt_classes:
+                self.matrix[self.nc, gc] += 1  # background FN
+            return
+
+        detections = detections[detections[:, 4] > self.conf]
+        gt_classes = labels[:, 0].int()
+        detection_classes = detections[:, 5].int()
+        iou = box_iou(labels[:, 1:], detections[:, :4])
+
+        x = torch.where(iou > self.iou_thres)
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+        else:
+            matches = np.zeros((0, 3))
+
+        n = matches.shape[0] > 0
+        m0, m1, _ = matches.transpose().astype(int)
+        for i, gc in enumerate(gt_classes):
+            j = m0 == i
+            if n and sum(j) == 1:
+                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
+            else:
+                self.matrix[self.nc, gc] += 1  # true background
+
+        if n:
+            for i, dc in enumerate(detection_classes):
+                if not any(m1 == i):
+                    self.matrix[dc, self.nc] += 1  # predicted background
+
+    def tp_fp(self):
+        tp = self.matrix.diagonal()  # true positives
+        fp = self.matrix.sum(1) - tp  # false positives
+        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
+        return tp[:-1], fp[:-1]  # remove background class
+
+    @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
+    def plot(self, normalize=True, save_dir='', names=()):
+        import seaborn as sn
+
+        array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1)  # normalize columns
+        array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)
+
+        fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
+        nc, nn = self.nc, len(names)  # number of classes, names
+        sn.set(font_scale=1.0 if nc < 50 else 0.8)  # for label size
+        labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
+        ticklabels = (names + ['background']) if labels else 'auto'
+        with warnings.catch_warnings():
+            warnings.simplefilter('ignore')  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
+            sn.heatmap(array,
+                       ax=ax,
+                       annot=nc < 30,
+                       annot_kws={
+                           'size': 8},
+                       cmap='Blues',
+                       fmt='.2f',
+                       square=True,
+                       vmin=0.0,
+                       xticklabels=ticklabels,
+                       yticklabels=ticklabels).set_facecolor((1, 1, 1))
+        ax.set_xlabel('True')
+        ax.set_ylabel('Predicted')
+        ax.set_title('Confusion Matrix')
+        fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
+        plt.close(fig)
+
+    def print(self):
+        for i in range(self.nc + 1):
+            print(' '.join(map(str, self.matrix[i])))
+
+
+def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
+    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
+
+    # Get the coordinates of bounding boxes
+    if xywh:  # transform from xywh to xyxy
+        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
+        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
+        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
+        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
+    else:  # x1, y1, x2, y2 = box1
+        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
+        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
+        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
+        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
+
+    # Intersection area
+    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
+            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
+
+    # Union Area
+    union = w1 * h1 + w2 * h2 - inter + eps
+
+    # IoU
+    iou = inter / union
+    if CIoU or DIoU or GIoU:
+        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
+        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
+        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
+            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
+            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
+                with torch.no_grad():
+                    alpha = v / (v - iou + (1 + eps))
+                return iou - (rho2 / c2 + v * alpha)  # CIoU
+            return iou - rho2 / c2  # DIoU
+        c_area = cw * ch + eps  # convex area
+        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
+    return iou  # IoU
+
+
+def box_iou(box1, box2, eps=1e-7):
+    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+    """
+    Return intersection-over-union (Jaccard index) of boxes.
+    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+    Arguments:
+        box1 (Tensor[N, 4])
+        box2 (Tensor[M, 4])
+    Returns:
+        iou (Tensor[N, M]): the NxM matrix containing the pairwise
+            IoU values for every element in boxes1 and boxes2
+    """
+
+    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
+    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
+
+    # IoU = inter / (area1 + area2 - inter)
+    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
+
+
+def bbox_ioa(box1, box2, eps=1e-7):
+    """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
+    box1:       np.array of shape(4)
+    box2:       np.array of shape(nx4)
+    returns:    np.array of shape(n)
+    """
+
+    # Get the coordinates of bounding boxes
+    b1_x1, b1_y1, b1_x2, b1_y2 = box1
+    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
+
+    # Intersection area
+    inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
+                 (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
+
+    # box2 area
+    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
+
+    # Intersection over box2 area
+    return inter_area / box2_area
+
+
+def wh_iou(wh1, wh2, eps=1e-7):
+    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
+    wh1 = wh1[:, None]  # [N,1,2]
+    wh2 = wh2[None]  # [1,M,2]
+    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
+    return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps)  # iou = inter / (area1 + area2 - inter)
+
+
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+
+@threaded
+def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
+    # Precision-recall curve
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+    py = np.stack(py, axis=1)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py.T):
+            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
+    else:
+        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)
+
+    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+    ax.set_xlabel('Recall')
+    ax.set_ylabel('Precision')
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
+    ax.set_title('Precision-Recall Curve')
+    fig.savefig(save_dir, dpi=250)
+    plt.close(fig)
+
+
+@threaded
+def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
+    # Metric-confidence curve
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py):
+            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
+    else:
+        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)
+
+    y = smooth(py.mean(0), 0.05)
+    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
+    ax.set_xlabel(xlabel)
+    ax.set_ylabel(ylabel)
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
+    ax.set_title(f'{ylabel}-Confidence Curve')
+    fig.savefig(save_dir, dpi=250)
+    plt.close(fig)
diff --git a/yolov5_model/utils/plots.py b/yolov5_model/utils/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..24c618c80b590656d0b54c1d5400e3a80ab505b7
--- /dev/null
+++ b/yolov5_model/utils/plots.py
@@ -0,0 +1,560 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Plotting utils
+"""
+
+import contextlib
+import math
+import os
+from copy import copy
+from pathlib import Path
+from urllib.error import URLError
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sn
+import torch
+from PIL import Image, ImageDraw, ImageFont
+
+from utils import TryExcept, threaded
+from utils.general import (CONFIG_DIR, FONT, LOGGER, check_font, check_requirements, clip_boxes, increment_path,
+                           is_ascii, xywh2xyxy, xyxy2xywh)
+from utils.metrics import fitness
+from utils.segment.general import scale_image
+
+# Settings
+RANK = int(os.getenv('RANK', -1))
+matplotlib.rc('font', **{'size': 11})
+matplotlib.use('Agg')  # for writing to files only
+
+
+class Colors:
+    # Ultralytics color palette https://ultralytics.com/
+    def __init__(self):
+        # hex = matplotlib.colors.TABLEAU_COLORS.values()
+        hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
+                '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
+        self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
+        self.n = len(self.palette)
+
+    def __call__(self, i, bgr=False):
+        c = self.palette[int(i) % self.n]
+        return (c[2], c[1], c[0]) if bgr else c
+
+    @staticmethod
+    def hex2rgb(h):  # rgb order (PIL)
+        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+
+colors = Colors()  # create instance for 'from utils.plots import colors'
+
+
+def check_pil_font(font=FONT, size=10):
+    # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
+    font = Path(font)
+    font = font if font.exists() else (CONFIG_DIR / font.name)
+    try:
+        return ImageFont.truetype(str(font) if font.exists() else font.name, size)
+    except Exception:  # download if missing
+        try:
+            check_font(font)
+            return ImageFont.truetype(str(font), size)
+        except TypeError:
+            check_requirements('Pillow>=8.4.0')  # known issue https://github.com/ultralytics/yolov5/issues/5374
+        except URLError:  # not online
+            return ImageFont.load_default()
+
+
+class Annotator:
+    # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
+    def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
+        assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
+        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
+        self.pil = pil or non_ascii
+        if self.pil:  # use PIL
+            self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
+            self.draw = ImageDraw.Draw(self.im)
+            self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
+                                       size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
+        else:  # use cv2
+            self.im = im
+        self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width
+
+    def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
+        # Add one xyxy box to image with label
+        if self.pil or not is_ascii(label):
+            self.draw.rectangle(box, width=self.lw, outline=color)  # box
+            if label:
+                w, h = self.font.getsize(label)  # text width, height (WARNING: deprecated) in 9.2.0
+                # _, _, w, h = self.font.getbbox(label)  # text width, height (New)
+                outside = box[1] - h >= 0  # label fits outside box
+                self.draw.rectangle(
+                    (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
+                     box[1] + 1 if outside else box[1] + h + 1),
+                    fill=color,
+                )
+                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
+                self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
+        else:  # cv2
+            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
+            cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
+            if label:
+                tf = max(self.lw - 1, 1)  # font thickness
+                w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
+                outside = p1[1] - h >= 3
+                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
+                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
+                cv2.putText(self.im,
+                            label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
+                            0,
+                            self.lw / 3,
+                            txt_color,
+                            thickness=tf,
+                            lineType=cv2.LINE_AA)
+
+    def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
+        """Plot masks at once.
+        Args:
+            masks (tensor): predicted masks on cuda, shape: [n, h, w]
+            colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
+            im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
+            alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
+        """
+        if self.pil:
+            # convert to numpy first
+            self.im = np.asarray(self.im).copy()
+        if len(masks) == 0:
+            self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
+        colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
+        colors = colors[:, None, None]  # shape(n,1,1,3)
+        masks = masks.unsqueeze(3)  # shape(n,h,w,1)
+        masks_color = masks * (colors * alpha)  # shape(n,h,w,3)
+
+        inv_alph_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
+        mcs = (masks_color * inv_alph_masks).sum(0) * 2  # mask color summand shape(n,h,w,3)
+
+        im_gpu = im_gpu.flip(dims=[0])  # flip channel
+        im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
+        im_gpu = im_gpu * inv_alph_masks[-1] + mcs
+        im_mask = (im_gpu * 255).byte().cpu().numpy()
+        self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
+        if self.pil:
+            # convert im back to PIL and update draw
+            self.fromarray(self.im)
+
+    def rectangle(self, xy, fill=None, outline=None, width=1):
+        # Add rectangle to image (PIL-only)
+        self.draw.rectangle(xy, fill, outline, width)
+
+    def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
+        # Add text to image (PIL-only)
+        if anchor == 'bottom':  # start y from font bottom
+            w, h = self.font.getsize(text)  # text width, height
+            xy[1] += 1 - h
+        self.draw.text(xy, text, fill=txt_color, font=self.font)
+
+    def fromarray(self, im):
+        # Update self.im from a numpy array
+        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
+        self.draw = ImageDraw.Draw(self.im)
+
+    def result(self):
+        # Return annotated image as array
+        return np.asarray(self.im)
+
+
+def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
+    """
+    x:              Features to be visualized
+    module_type:    Module type
+    stage:          Module stage within model
+    n:              Maximum number of feature maps to plot
+    save_dir:       Directory to save results
+    """
+    if 'Detect' not in module_type:
+        batch, channels, height, width = x.shape  # batch, channels, height, width
+        if height > 1 and width > 1:
+            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename
+
+            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
+            n = min(n, channels)  # number of plots
+            fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
+            ax = ax.ravel()
+            plt.subplots_adjust(wspace=0.05, hspace=0.05)
+            for i in range(n):
+                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
+                ax[i].axis('off')
+
+            LOGGER.info(f'Saving {f}... ({n}/{channels})')
+            plt.savefig(f, dpi=300, bbox_inches='tight')
+            plt.close()
+            np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy())  # npy save
+
+
+def hist2d(x, y, n=100):
+    # 2d histogram used in labels.png and evolve.png
+    xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+    hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+    xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+    yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+    return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+    from scipy.signal import butter, filtfilt
+
+    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+    def butter_lowpass(cutoff, fs, order):
+        nyq = 0.5 * fs
+        normal_cutoff = cutoff / nyq
+        return butter(order, normal_cutoff, btype='low', analog=False)
+
+    b, a = butter_lowpass(cutoff, fs, order=order)
+    return filtfilt(b, a, data)  # forward-backward filter
+
+
+def output_to_target(output, max_det=300):
+    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
+    targets = []
+    for i, o in enumerate(output):
+        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
+        j = torch.full((conf.shape[0], 1), i)
+        targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
+    return torch.cat(targets, 0).numpy()
+
+
+@threaded
+def plot_images(images, targets, paths=None, fname='images.jpg', names=None):
+    # Plot image grid with labels
+    if isinstance(images, torch.Tensor):
+        images = images.cpu().float().numpy()
+    if isinstance(targets, torch.Tensor):
+        targets = targets.cpu().numpy()
+
+    max_size = 1920  # max image size
+    max_subplots = 16  # max image subplots, i.e. 4x4
+    bs, _, h, w = images.shape  # batch size, _, height, width
+    bs = min(bs, max_subplots)  # limit plot images
+    ns = np.ceil(bs ** 0.5)  # number of subplots (square)
+    if np.max(images[0]) <= 1:
+        images *= 255  # de-normalise (optional)
+
+    # Build Image
+    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
+    for i, im in enumerate(images):
+        if i == max_subplots:  # if last batch has fewer images than we expect
+            break
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        im = im.transpose(1, 2, 0)
+        mosaic[y:y + h, x:x + w, :] = im
+
+    # Resize (optional)
+    scale = max_size / ns / max(h, w)
+    if scale < 1:
+        h = math.ceil(scale * h)
+        w = math.ceil(scale * w)
+        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+    # Annotate
+    fs = int((h + w) * ns * 0.01)  # font size
+    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+    for i in range(i + 1):
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
+        if paths:
+            annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
+        if len(targets) > 0:
+            ti = targets[targets[:, 0] == i]  # image targets
+            boxes = xywh2xyxy(ti[:, 2:6]).T
+            classes = ti[:, 1].astype('int')
+            labels = ti.shape[1] == 6  # labels if no conf column
+            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
+
+            if boxes.shape[1]:
+                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
+                    boxes[[0, 2]] *= w  # scale to pixels
+                    boxes[[1, 3]] *= h
+                elif scale < 1:  # absolute coords need scale if image scales
+                    boxes *= scale
+            boxes[[0, 2]] += x
+            boxes[[1, 3]] += y
+            for j, box in enumerate(boxes.T.tolist()):
+                cls = classes[j]
+                color = colors(cls)
+                cls = names[cls] if names else cls
+                if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                    label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+                    annotator.box_label(box, label, color=color)
+    annotator.im.save(fname)  # save
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
+    # Plot LR simulating training for full epochs
+    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
+    y = []
+    for _ in range(epochs):
+        scheduler.step()
+        y.append(optimizer.param_groups[0]['lr'])
+    plt.plot(y, '.-', label='LR')
+    plt.xlabel('epoch')
+    plt.ylabel('LR')
+    plt.grid()
+    plt.xlim(0, epochs)
+    plt.ylim(0)
+    plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
+    plt.close()
+
+
+def plot_val_txt():  # from utils.plots import *; plot_val()
+    # Plot val.txt histograms
+    x = np.loadtxt('val.txt', dtype=np.float32)
+    box = xyxy2xywh(x[:, :4])
+    cx, cy = box[:, 0], box[:, 1]
+
+    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+    ax.set_aspect('equal')
+    plt.savefig('hist2d.png', dpi=300)
+
+    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+    ax[0].hist(cx, bins=600)
+    ax[1].hist(cy, bins=600)
+    plt.savefig('hist1d.png', dpi=200)
+
+
+def plot_targets_txt():  # from utils.plots import *; plot_targets_txt()
+    # Plot targets.txt histograms
+    x = np.loadtxt('targets.txt', dtype=np.float32).T
+    s = ['x targets', 'y targets', 'width targets', 'height targets']
+    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+    ax = ax.ravel()
+    for i in range(4):
+        ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
+        ax[i].legend()
+        ax[i].set_title(s[i])
+    plt.savefig('targets.jpg', dpi=200)
+
+
+def plot_val_study(file='', dir='', x=None):  # from utils.plots import *; plot_val_study()
+    # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
+    save_dir = Path(file).parent if file else Path(dir)
+    plot2 = False  # plot additional results
+    if plot2:
+        ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
+
+    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+    # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
+    for f in sorted(save_dir.glob('study*.txt')):
+        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+        x = np.arange(y.shape[1]) if x is None else np.array(x)
+        if plot2:
+            s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
+            for i in range(7):
+                ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
+                ax[i].set_title(s[i])
+
+        j = y[3].argmax() + 1
+        ax2.plot(y[5, 1:j],
+                 y[3, 1:j] * 1E2,
+                 '.-',
+                 linewidth=2,
+                 markersize=8,
+                 label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
+
+    ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+             'k.-',
+             linewidth=2,
+             markersize=8,
+             alpha=.25,
+             label='EfficientDet')
+
+    ax2.grid(alpha=0.2)
+    ax2.set_yticks(np.arange(20, 60, 5))
+    ax2.set_xlim(0, 57)
+    ax2.set_ylim(25, 55)
+    ax2.set_xlabel('GPU Speed (ms/img)')
+    ax2.set_ylabel('COCO AP val')
+    ax2.legend(loc='lower right')
+    f = save_dir / 'study.png'
+    print(f'Saving {f}...')
+    plt.savefig(f, dpi=300)
+
+
+@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
+def plot_labels(labels, names=(), save_dir=Path('')):
+    # plot dataset labels
+    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
+    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
+    nc = int(c.max() + 1)  # number of classes
+    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
+
+    # seaborn correlogram
+    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
+    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
+    plt.close()
+
+    # matplotlib labels
+    matplotlib.use('svg')  # faster
+    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
+    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+    with contextlib.suppress(Exception):  # color histogram bars by class
+        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
+    ax[0].set_ylabel('instances')
+    if 0 < len(names) < 30:
+        ax[0].set_xticks(range(len(names)))
+        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
+    else:
+        ax[0].set_xlabel('classes')
+    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
+    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
+
+    # rectangles
+    labels[:, 1:3] = 0.5  # center
+    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
+    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
+    for cls, *box in labels[:1000]:
+        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
+    ax[1].imshow(img)
+    ax[1].axis('off')
+
+    for a in [0, 1, 2, 3]:
+        for s in ['top', 'right', 'left', 'bottom']:
+            ax[a].spines[s].set_visible(False)
+
+    plt.savefig(save_dir / 'labels.jpg', dpi=200)
+    matplotlib.use('Agg')
+    plt.close()
+
+
+def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path('images.jpg')):
+    # Show classification image grid with labels (optional) and predictions (optional)
+    from utils.augmentations import denormalize
+
+    names = names or [f'class{i}' for i in range(1000)]
+    blocks = torch.chunk(denormalize(im.clone()).cpu().float(), len(im),
+                         dim=0)  # select batch index 0, block by channels
+    n = min(len(blocks), nmax)  # number of plots
+    m = min(8, round(n ** 0.5))  # 8 x 8 default
+    fig, ax = plt.subplots(math.ceil(n / m), m)  # 8 rows x n/8 cols
+    ax = ax.ravel() if m > 1 else [ax]
+    # plt.subplots_adjust(wspace=0.05, hspace=0.05)
+    for i in range(n):
+        ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
+        ax[i].axis('off')
+        if labels is not None:
+            s = names[labels[i]] + (f'—{names[pred[i]]}' if pred is not None else '')
+            ax[i].set_title(s, fontsize=8, verticalalignment='top')
+    plt.savefig(f, dpi=300, bbox_inches='tight')
+    plt.close()
+    if verbose:
+        LOGGER.info(f'Saving {f}')
+        if labels is not None:
+            LOGGER.info('True:     ' + ' '.join(f'{names[i]:3s}' for i in labels[:nmax]))
+        if pred is not None:
+            LOGGER.info('Predicted:' + ' '.join(f'{names[i]:3s}' for i in pred[:nmax]))
+    return f
+
+
+def plot_evolve(evolve_csv='path/to/evolve.csv'):  # from utils.plots import *; plot_evolve()
+    # Plot evolve.csv hyp evolution results
+    evolve_csv = Path(evolve_csv)
+    data = pd.read_csv(evolve_csv)
+    keys = [x.strip() for x in data.columns]
+    x = data.values
+    f = fitness(x)
+    j = np.argmax(f)  # max fitness index
+    plt.figure(figsize=(10, 12), tight_layout=True)
+    matplotlib.rc('font', **{'size': 8})
+    print(f'Best results from row {j} of {evolve_csv}:')
+    for i, k in enumerate(keys[7:]):
+        v = x[:, 7 + i]
+        mu = v[j]  # best single result
+        plt.subplot(6, 5, i + 1)
+        plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
+        plt.plot(mu, f.max(), 'k+', markersize=15)
+        plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9})  # limit to 40 characters
+        if i % 5 != 0:
+            plt.yticks([])
+        print(f'{k:>15}: {mu:.3g}')
+    f = evolve_csv.with_suffix('.png')  # filename
+    plt.savefig(f, dpi=200)
+    plt.close()
+    print(f'Saved {f}')
+
+
+def plot_results(file='path/to/results.csv', dir=''):
+    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+    save_dir = Path(file).parent if file else Path(dir)
+    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
+    ax = ax.ravel()
+    files = list(save_dir.glob('results*.csv'))
+    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
+    for f in files:
+        try:
+            data = pd.read_csv(f)
+            s = [x.strip() for x in data.columns]
+            x = data.values[:, 0]
+            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
+                y = data.values[:, j].astype('float')
+                # y[y == 0] = np.nan  # don't show zero values
+                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
+                ax[i].set_title(s[j], fontsize=12)
+                # if j in [8, 9, 10]:  # share train and val loss y axes
+                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+        except Exception as e:
+            LOGGER.info(f'Warning: Plotting error for {f}: {e}')
+    ax[1].legend()
+    fig.savefig(save_dir / 'results.png', dpi=200)
+    plt.close()
+
+
+def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
+    # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
+    ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
+    s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
+    files = list(Path(save_dir).glob('frames*.txt'))
+    for fi, f in enumerate(files):
+        try:
+            results = np.loadtxt(f, ndmin=2).T[:, 90:-30]  # clip first and last rows
+            n = results.shape[1]  # number of rows
+            x = np.arange(start, min(stop, n) if stop else n)
+            results = results[:, x]
+            t = (results[0] - results[0].min())  # set t0=0s
+            results[0] = x
+            for i, a in enumerate(ax):
+                if i < len(results):
+                    label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
+                    a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
+                    a.set_title(s[i])
+                    a.set_xlabel('time (s)')
+                    # if fi == len(files) - 1:
+                    #     a.set_ylim(bottom=0)
+                    for side in ['top', 'right']:
+                        a.spines[side].set_visible(False)
+                else:
+                    a.remove()
+        except Exception as e:
+            print(f'Warning: Plotting error for {f}; {e}')
+    ax[1].legend()
+    plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
+
+
+def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
+    # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
+    xyxy = torch.tensor(xyxy).view(-1, 4)
+    b = xyxy2xywh(xyxy)  # boxes
+    if square:
+        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
+    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
+    xyxy = xywh2xyxy(b).long()
+    clip_boxes(xyxy, im.shape)
+    crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
+    if save:
+        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
+        f = str(increment_path(file).with_suffix('.jpg'))
+        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
+        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
+    return crop
diff --git a/yolov5_model/utils/segment/__init__.py b/yolov5_model/utils/segment/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/yolov5_model/utils/segment/__pycache__/__init__.cpython-39.pyc b/yolov5_model/utils/segment/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f2d740a2dfa261d51f5bdd1b18b2dd6be894b4b1
Binary files /dev/null and b/yolov5_model/utils/segment/__pycache__/__init__.cpython-39.pyc differ
diff --git a/yolov5_model/utils/segment/__pycache__/general.cpython-39.pyc b/yolov5_model/utils/segment/__pycache__/general.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8c7a90bd1ece94819b255b8e304046c5f2edad59
Binary files /dev/null and b/yolov5_model/utils/segment/__pycache__/general.cpython-39.pyc differ
diff --git a/yolov5_model/utils/segment/augmentations.py b/yolov5_model/utils/segment/augmentations.py
new file mode 100644
index 0000000000000000000000000000000000000000..169addedf0f58cf37e774e6a85eddff6eebc30be
--- /dev/null
+++ b/yolov5_model/utils/segment/augmentations.py
@@ -0,0 +1,104 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Image augmentation functions
+"""
+
+import math
+import random
+
+import cv2
+import numpy as np
+
+from ..augmentations import box_candidates
+from ..general import resample_segments, segment2box
+
+
+def mixup(im, labels, segments, im2, labels2, segments2):
+    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
+    im = (im * r + im2 * (1 - r)).astype(np.uint8)
+    labels = np.concatenate((labels, labels2), 0)
+    segments = np.concatenate((segments, segments2), 0)
+    return im, labels, segments
+
+
+def random_perspective(im,
+                       targets=(),
+                       segments=(),
+                       degrees=10,
+                       translate=.1,
+                       scale=.1,
+                       shear=10,
+                       perspective=0.0,
+                       border=(0, 0)):
+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+    # targets = [cls, xyxy]
+
+    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
+    width = im.shape[1] + border[1] * 2
+
+    # Center
+    C = np.eye(3)
+    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
+    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)
+
+    # Perspective
+    P = np.eye(3)
+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
+
+    # Rotation and Scale
+    R = np.eye(3)
+    a = random.uniform(-degrees, degrees)
+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
+    s = random.uniform(1 - scale, 1 + scale)
+    # s = 2 ** random.uniform(-scale, scale)
+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+    # Shear
+    S = np.eye(3)
+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
+
+    # Translation
+    T = np.eye(3)
+    T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width)  # x translation (pixels)
+    T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height)  # y translation (pixels)
+
+    # Combined rotation matrix
+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
+        if perspective:
+            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+        else:  # affine
+            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+    # Visualize
+    # import matplotlib.pyplot as plt
+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+    # ax[0].imshow(im[:, :, ::-1])  # base
+    # ax[1].imshow(im2[:, :, ::-1])  # warped
+
+    # Transform label coordinates
+    n = len(targets)
+    new_segments = []
+    if n:
+        new = np.zeros((n, 4))
+        segments = resample_segments(segments)  # upsample
+        for i, segment in enumerate(segments):
+            xy = np.ones((len(segment), 3))
+            xy[:, :2] = segment
+            xy = xy @ M.T  # transform
+            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2])  # perspective rescale or affine
+
+            # clip
+            new[i] = segment2box(xy, width, height)
+            new_segments.append(xy)
+
+        # filter candidates
+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
+        targets = targets[i]
+        targets[:, 1:5] = new[i]
+        new_segments = np.array(new_segments)[i]
+
+    return im, targets, new_segments
diff --git a/yolov5_model/utils/segment/dataloaders.py b/yolov5_model/utils/segment/dataloaders.py
new file mode 100644
index 0000000000000000000000000000000000000000..097a5d5cb058bed4ba4661217702ea4751ff7ff4
--- /dev/null
+++ b/yolov5_model/utils/segment/dataloaders.py
@@ -0,0 +1,332 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Dataloaders
+"""
+
+import os
+import random
+
+import cv2
+import numpy as np
+import torch
+from torch.utils.data import DataLoader, distributed
+
+from ..augmentations import augment_hsv, copy_paste, letterbox
+from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker
+from ..general import LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
+from ..torch_utils import torch_distributed_zero_first
+from .augmentations import mixup, random_perspective
+
+RANK = int(os.getenv('RANK', -1))
+
+
+def create_dataloader(path,
+                      imgsz,
+                      batch_size,
+                      stride,
+                      single_cls=False,
+                      hyp=None,
+                      augment=False,
+                      cache=False,
+                      pad=0.0,
+                      rect=False,
+                      rank=-1,
+                      workers=8,
+                      image_weights=False,
+                      quad=False,
+                      prefix='',
+                      shuffle=False,
+                      mask_downsample_ratio=1,
+                      overlap_mask=False,
+                      seed=0):
+    if rect and shuffle:
+        LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabelsAndMasks(
+            path,
+            imgsz,
+            batch_size,
+            augment=augment,  # augmentation
+            hyp=hyp,  # hyperparameters
+            rect=rect,  # rectangular batches
+            cache_images=cache,
+            single_cls=single_cls,
+            stride=int(stride),
+            pad=pad,
+            image_weights=image_weights,
+            prefix=prefix,
+            downsample_ratio=mask_downsample_ratio,
+            overlap=overlap_mask)
+
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()  # number of CUDA devices
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    generator = torch.Generator()
+    generator.manual_seed(6148914691236517205 + seed + RANK)
+    return loader(
+        dataset,
+        batch_size=batch_size,
+        shuffle=shuffle and sampler is None,
+        num_workers=nw,
+        sampler=sampler,
+        pin_memory=True,
+        collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
+        worker_init_fn=seed_worker,
+        generator=generator,
+    ), dataset
+
+
+class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels):  # for training/testing
+
+    def __init__(
+        self,
+        path,
+        img_size=640,
+        batch_size=16,
+        augment=False,
+        hyp=None,
+        rect=False,
+        image_weights=False,
+        cache_images=False,
+        single_cls=False,
+        stride=32,
+        pad=0,
+        min_items=0,
+        prefix='',
+        downsample_ratio=1,
+        overlap=False,
+    ):
+        super().__init__(path, img_size, batch_size, augment, hyp, rect, image_weights, cache_images, single_cls,
+                         stride, pad, min_items, prefix)
+        self.downsample_ratio = downsample_ratio
+        self.overlap = overlap
+
+    def __getitem__(self, index):
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp['mosaic']
+        masks = []
+        if mosaic:
+            # Load mosaic
+            img, labels, segments = self.load_mosaic(index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp['mixup']:
+                img, labels, segments = mixup(img, labels, segments, *self.load_mosaic(random.randint(0, self.n - 1)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = self.load_image(index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            # [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
+            segments = self.segments[index].copy()
+            if len(segments):
+                for i_s in range(len(segments)):
+                    segments[i_s] = xyn2xy(
+                        segments[i_s],
+                        ratio[0] * w,
+                        ratio[1] * h,
+                        padw=pad[0],
+                        padh=pad[1],
+                    )
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+            if self.augment:
+                img, labels, segments = random_perspective(img,
+                                                           labels,
+                                                           segments=segments,
+                                                           degrees=hyp['degrees'],
+                                                           translate=hyp['translate'],
+                                                           scale=hyp['scale'],
+                                                           shear=hyp['shear'],
+                                                           perspective=hyp['perspective'])
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
+            if self.overlap:
+                masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
+                                                           segments,
+                                                           downsample_ratio=self.downsample_ratio)
+                masks = masks[None]  # (640, 640) -> (1, 640, 640)
+                labels = labels[sorted_idx]
+            else:
+                masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
+
+        masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
+                                                                        self.downsample_ratio, img.shape[1] //
+                                                                        self.downsample_ratio))
+        # TODO: albumentations support
+        if self.augment:
+            # Albumentations
+            # there are some augmentation that won't change boxes and masks,
+            # so just be it for now.
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+            # Flip up-down
+            if random.random() < hyp['flipud']:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+                    masks = torch.flip(masks, dims=[1])
+
+            # Flip left-right
+            if random.random() < hyp['fliplr']:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+                    masks = torch.flip(masks, dims=[2])
+
+            # Cutouts  # labels = cutout(img, labels, p=0.5)
+
+        labels_out = torch.zeros((nl, 6))
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks)
+
+    def load_mosaic(self, index):
+        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+        labels4, segments4 = [], []
+        s = self.img_size
+        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+
+        # 3 additional image indices
+        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img4
+            if i == 0:  # top left
+                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+            elif i == 1:  # top right
+                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+            elif i == 2:  # bottom left
+                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+            elif i == 3:  # bottom right
+                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+            padw = x1a - x1b
+            padh = y1a - y1b
+
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+            labels4.append(labels)
+            segments4.extend(segments)
+
+        # Concat/clip labels
+        labels4 = np.concatenate(labels4, 0)
+        for x in (labels4[:, 1:], *segments4):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img4, labels4 = replicate(img4, labels4)  # replicate
+
+        # Augment
+        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
+        img4, labels4, segments4 = random_perspective(img4,
+                                                      labels4,
+                                                      segments4,
+                                                      degrees=self.hyp['degrees'],
+                                                      translate=self.hyp['translate'],
+                                                      scale=self.hyp['scale'],
+                                                      shear=self.hyp['shear'],
+                                                      perspective=self.hyp['perspective'],
+                                                      border=self.mosaic_border)  # border to remove
+        return img4, labels4, segments4
+
+    @staticmethod
+    def collate_fn(batch):
+        img, label, path, shapes, masks = zip(*batch)  # transposed
+        batched_masks = torch.cat(masks, 0)
+        for i, l in enumerate(label):
+            l[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks
+
+
+def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
+    """
+    Args:
+        img_size (tuple): The image size.
+        polygons (np.ndarray): [N, M], N is the number of polygons,
+            M is the number of points(Be divided by 2).
+    """
+    mask = np.zeros(img_size, dtype=np.uint8)
+    polygons = np.asarray(polygons)
+    polygons = polygons.astype(np.int32)
+    shape = polygons.shape
+    polygons = polygons.reshape(shape[0], -1, 2)
+    cv2.fillPoly(mask, polygons, color=color)
+    nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
+    # NOTE: fillPoly firstly then resize is trying the keep the same way
+    # of loss calculation when mask-ratio=1.
+    mask = cv2.resize(mask, (nw, nh))
+    return mask
+
+
+def polygons2masks(img_size, polygons, color, downsample_ratio=1):
+    """
+    Args:
+        img_size (tuple): The image size.
+        polygons (list[np.ndarray]): each polygon is [N, M],
+            N is the number of polygons,
+            M is the number of points(Be divided by 2).
+    """
+    masks = []
+    for si in range(len(polygons)):
+        mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
+        masks.append(mask)
+    return np.array(masks)
+
+
+def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
+    """Return a (640, 640) overlap mask."""
+    masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
+                     dtype=np.int32 if len(segments) > 255 else np.uint8)
+    areas = []
+    ms = []
+    for si in range(len(segments)):
+        mask = polygon2mask(
+            img_size,
+            [segments[si].reshape(-1)],
+            downsample_ratio=downsample_ratio,
+            color=1,
+        )
+        ms.append(mask)
+        areas.append(mask.sum())
+    areas = np.asarray(areas)
+    index = np.argsort(-areas)
+    ms = np.array(ms)[index]
+    for i in range(len(segments)):
+        mask = ms[i] * (i + 1)
+        masks = masks + mask
+        masks = np.clip(masks, a_min=0, a_max=i + 1)
+    return masks, index
diff --git a/yolov5_model/utils/segment/general.py b/yolov5_model/utils/segment/general.py
new file mode 100644
index 0000000000000000000000000000000000000000..9da8945386650423c237cafb6b519de7f56f1a3a
--- /dev/null
+++ b/yolov5_model/utils/segment/general.py
@@ -0,0 +1,160 @@
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+
+def crop_mask(masks, boxes):
+    """
+    "Crop" predicted masks by zeroing out everything not in the predicted bbox.
+    Vectorized by Chong (thanks Chong).
+
+    Args:
+        - masks should be a size [h, w, n] tensor of masks
+        - boxes should be a size [n, 4] tensor of bbox coords in relative point form
+    """
+
+    n, h, w = masks.shape
+    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(1,1,n)
+    r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,w,1)
+    c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(h,1,1)
+
+    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
+
+
+def process_mask_upsample(protos, masks_in, bboxes, shape):
+    """
+    Crop after upsample.
+    protos: [mask_dim, mask_h, mask_w]
+    masks_in: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape: input_image_size, (h, w)
+
+    return: h, w, n
+    """
+
+    c, mh, mw = protos.shape  # CHW
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+    masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
+    masks = crop_mask(masks, bboxes)  # CHW
+    return masks.gt_(0.5)
+
+
+def process_mask(protos, masks_in, bboxes, shape, upsample=False):
+    """
+    Crop before upsample.
+    proto_out: [mask_dim, mask_h, mask_w]
+    out_masks: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape:input_image_size, (h, w)
+
+    return: h, w, n
+    """
+
+    c, mh, mw = protos.shape  # CHW
+    ih, iw = shape
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)  # CHW
+
+    downsampled_bboxes = bboxes.clone()
+    downsampled_bboxes[:, 0] *= mw / iw
+    downsampled_bboxes[:, 2] *= mw / iw
+    downsampled_bboxes[:, 3] *= mh / ih
+    downsampled_bboxes[:, 1] *= mh / ih
+
+    masks = crop_mask(masks, downsampled_bboxes)  # CHW
+    if upsample:
+        masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
+    return masks.gt_(0.5)
+
+
+def process_mask_native(protos, masks_in, bboxes, shape):
+    """
+    Crop after upsample.
+    protos: [mask_dim, mask_h, mask_w]
+    masks_in: [n, mask_dim], n is number of masks after nms
+    bboxes: [n, 4], n is number of masks after nms
+    shape: input_image_size, (h, w)
+
+    return: h, w, n
+    """
+    c, mh, mw = protos.shape  # CHW
+    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
+    gain = min(mh / shape[0], mw / shape[1])  # gain  = old / new
+    pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2  # wh padding
+    top, left = int(pad[1]), int(pad[0])  # y, x
+    bottom, right = int(mh - pad[1]), int(mw - pad[0])
+    masks = masks[:, top:bottom, left:right]
+
+    masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
+    masks = crop_mask(masks, bboxes)  # CHW
+    return masks.gt_(0.5)
+
+
+def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
+    """
+    img1_shape: model input shape, [h, w]
+    img0_shape: origin pic shape, [h, w, 3]
+    masks: [h, w, num]
+    """
+    # Rescale coordinates (xyxy) from im1_shape to im0_shape
+    if ratio_pad is None:  # calculate from im0_shape
+        gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
+        pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
+    else:
+        pad = ratio_pad[1]
+    top, left = int(pad[1]), int(pad[0])  # y, x
+    bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
+
+    if len(masks.shape) < 2:
+        raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
+    masks = masks[top:bottom, left:right]
+    # masks = masks.permute(2, 0, 1).contiguous()
+    # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
+    # masks = masks.permute(1, 2, 0).contiguous()
+    masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
+
+    if len(masks.shape) == 2:
+        masks = masks[:, :, None]
+    return masks
+
+
+def mask_iou(mask1, mask2, eps=1e-7):
+    """
+    mask1: [N, n] m1 means number of predicted objects
+    mask2: [M, n] m2 means number of gt objects
+    Note: n means image_w x image_h
+
+    return: masks iou, [N, M]
+    """
+    intersection = torch.matmul(mask1, mask2.t()).clamp(0)
+    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
+    return intersection / (union + eps)
+
+
+def masks_iou(mask1, mask2, eps=1e-7):
+    """
+    mask1: [N, n] m1 means number of predicted objects
+    mask2: [N, n] m2 means number of gt objects
+    Note: n means image_w x image_h
+
+    return: masks iou, (N, )
+    """
+    intersection = (mask1 * mask2).sum(1).clamp(0)  # (N, )
+    union = (mask1.sum(1) + mask2.sum(1))[None] - intersection  # (area1 + area2) - intersection
+    return intersection / (union + eps)
+
+
+def masks2segments(masks, strategy='largest'):
+    # Convert masks(n,160,160) into segments(n,xy)
+    segments = []
+    for x in masks.int().cpu().numpy().astype('uint8'):
+        c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
+        if c:
+            if strategy == 'concat':  # concatenate all segments
+                c = np.concatenate([x.reshape(-1, 2) for x in c])
+            elif strategy == 'largest':  # select largest segment
+                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
+        else:
+            c = np.zeros((0, 2))  # no segments found
+        segments.append(c.astype('float32'))
+    return segments
diff --git a/yolov5_model/utils/segment/loss.py b/yolov5_model/utils/segment/loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..2a8a4c680f6fc15b7dfd6ff5019db9d48bbefac6
--- /dev/null
+++ b/yolov5_model/utils/segment/loss.py
@@ -0,0 +1,186 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ..general import xywh2xyxy
+from ..loss import FocalLoss, smooth_BCE
+from ..metrics import bbox_iou
+from ..torch_utils import de_parallel
+from .general import crop_mask
+
+
+class ComputeLoss:
+    # Compute losses
+    def __init__(self, model, autobalance=False, overlap=False):
+        self.sort_obj_iou = False
+        self.overlap = overlap
+        device = next(model.parameters()).device  # get model device
+        h = model.hyp  # hyperparameters
+        self.device = device
+
+        # Define criteria
+        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets
+
+        # Focal loss
+        g = h['fl_gamma']  # focal loss gamma
+        if g > 0:
+            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+        m = de_parallel(model).model[-1]  # Detect() module
+        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
+        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
+        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+        self.na = m.na  # number of anchors
+        self.nc = m.nc  # number of classes
+        self.nl = m.nl  # number of layers
+        self.nm = m.nm  # number of masks
+        self.anchors = m.anchors
+        self.device = device
+
+    def __call__(self, preds, targets, masks):  # predictions, targets, model
+        p, proto = preds
+        bs, nm, mask_h, mask_w = proto.shape  # batch size, number of masks, mask height, mask width
+        lcls = torch.zeros(1, device=self.device)
+        lbox = torch.zeros(1, device=self.device)
+        lobj = torch.zeros(1, device=self.device)
+        lseg = torch.zeros(1, device=self.device)
+        tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets)  # targets
+
+        # Losses
+        for i, pi in enumerate(p):  # layer index, layer predictions
+            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
+            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj
+
+            n = b.shape[0]  # number of targets
+            if n:
+                pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1)  # subset of predictions
+
+                # Box regression
+                pxy = pxy.sigmoid() * 2 - 0.5
+                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
+                pbox = torch.cat((pxy, pwh), 1)  # predicted box
+                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
+                lbox += (1.0 - iou).mean()  # iou loss
+
+                # Objectness
+                iou = iou.detach().clamp(0).type(tobj.dtype)
+                if self.sort_obj_iou:
+                    j = iou.argsort()
+                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
+                if self.gr < 1:
+                    iou = (1.0 - self.gr) + self.gr * iou
+                tobj[b, a, gj, gi] = iou  # iou ratio
+
+                # Classification
+                if self.nc > 1:  # cls loss (only if multiple classes)
+                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
+                    t[range(n), tcls[i]] = self.cp
+                    lcls += self.BCEcls(pcls, t)  # BCE
+
+                # Mask regression
+                if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
+                    masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
+                marea = xywhn[i][:, 2:].prod(1)  # mask width, height normalized
+                mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
+                for bi in b.unique():
+                    j = b == bi  # matching index
+                    if self.overlap:
+                        mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
+                    else:
+                        mask_gti = masks[tidxs[i]][j]
+                    lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
+
+            obji = self.BCEobj(pi[..., 4], tobj)
+            lobj += obji * self.balance[i]  # obj loss
+            if self.autobalance:
+                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+        if self.autobalance:
+            self.balance = [x / self.balance[self.ssi] for x in self.balance]
+        lbox *= self.hyp['box']
+        lobj *= self.hyp['obj']
+        lcls *= self.hyp['cls']
+        lseg *= self.hyp['box'] / bs
+
+        loss = lbox + lobj + lcls + lseg
+        return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
+
+    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
+        # Mask loss for one image
+        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n,32) @ (32,80,80) -> (n,80,80)
+        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
+        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
+
+    def build_targets(self, p, targets):
+        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+        na, nt = self.na, targets.shape[0]  # number of anchors, targets
+        tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
+        gain = torch.ones(8, device=self.device)  # normalized to gridspace gain
+        ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
+        if self.overlap:
+            batch = p[0].shape[0]
+            ti = []
+            for i in range(batch):
+                num = (targets[:, 0] == i).sum()  # find number of targets of each image
+                ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1)  # (na, num)
+            ti = torch.cat(ti, 1)  # (na, nt)
+        else:
+            ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
+        targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2)  # append anchor indices
+
+        g = 0.5  # bias
+        off = torch.tensor(
+            [
+                [0, 0],
+                [1, 0],
+                [0, 1],
+                [-1, 0],
+                [0, -1],  # j,k,l,m
+                # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
+            ],
+            device=self.device).float() * g  # offsets
+
+        for i in range(self.nl):
+            anchors, shape = self.anchors[i], p[i].shape
+            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain
+
+            # Match targets to anchors
+            t = targets * gain  # shape(3,n,7)
+            if nt:
+                # Matches
+                r = t[..., 4:6] / anchors[:, None]  # wh ratio
+                j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']  # compare
+                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+                t = t[j]  # filter
+
+                # Offsets
+                gxy = t[:, 2:4]  # grid xy
+                gxi = gain[[2, 3]] - gxy  # inverse
+                j, k = ((gxy % 1 < g) & (gxy > 1)).T
+                l, m = ((gxi % 1 < g) & (gxi > 1)).T
+                j = torch.stack((torch.ones_like(j), j, k, l, m))
+                t = t.repeat((5, 1, 1))[j]
+                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+            else:
+                t = targets[0]
+                offsets = 0
+
+            # Define
+            bc, gxy, gwh, at = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors
+            (a, tidx), (b, c) = at.long().T, bc.long().T  # anchors, image, class
+            gij = (gxy - offsets).long()
+            gi, gj = gij.T  # grid indices
+
+            # Append
+            indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid
+            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
+            anch.append(anchors[a])  # anchors
+            tcls.append(c)  # class
+            tidxs.append(tidx)
+            xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6])  # xywh normalized
+
+        return tcls, tbox, indices, anch, tidxs, xywhn
diff --git a/yolov5_model/utils/segment/metrics.py b/yolov5_model/utils/segment/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..c9f137e38ead20b9e44dbe58d3e69cf616b99c9e
--- /dev/null
+++ b/yolov5_model/utils/segment/metrics.py
@@ -0,0 +1,210 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Model validation metrics
+"""
+
+import numpy as np
+
+from ..metrics import ap_per_class
+
+
+def fitness(x):
+    # Model fitness as a weighted combination of metrics
+    w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
+    return (x[:, :8] * w).sum(1)
+
+
+def ap_per_class_box_and_mask(
+        tp_m,
+        tp_b,
+        conf,
+        pred_cls,
+        target_cls,
+        plot=False,
+        save_dir='.',
+        names=(),
+):
+    """
+    Args:
+        tp_b: tp of boxes.
+        tp_m: tp of masks.
+        other arguments see `func: ap_per_class`.
+    """
+    results_boxes = ap_per_class(tp_b,
+                                 conf,
+                                 pred_cls,
+                                 target_cls,
+                                 plot=plot,
+                                 save_dir=save_dir,
+                                 names=names,
+                                 prefix='Box')[2:]
+    results_masks = ap_per_class(tp_m,
+                                 conf,
+                                 pred_cls,
+                                 target_cls,
+                                 plot=plot,
+                                 save_dir=save_dir,
+                                 names=names,
+                                 prefix='Mask')[2:]
+
+    results = {
+        'boxes': {
+            'p': results_boxes[0],
+            'r': results_boxes[1],
+            'ap': results_boxes[3],
+            'f1': results_boxes[2],
+            'ap_class': results_boxes[4]},
+        'masks': {
+            'p': results_masks[0],
+            'r': results_masks[1],
+            'ap': results_masks[3],
+            'f1': results_masks[2],
+            'ap_class': results_masks[4]}}
+    return results
+
+
+class Metric:
+
+    def __init__(self) -> None:
+        self.p = []  # (nc, )
+        self.r = []  # (nc, )
+        self.f1 = []  # (nc, )
+        self.all_ap = []  # (nc, 10)
+        self.ap_class_index = []  # (nc, )
+
+    @property
+    def ap50(self):
+        """AP@0.5 of all classes.
+        Return:
+            (nc, ) or [].
+        """
+        return self.all_ap[:, 0] if len(self.all_ap) else []
+
+    @property
+    def ap(self):
+        """AP@0.5:0.95
+        Return:
+            (nc, ) or [].
+        """
+        return self.all_ap.mean(1) if len(self.all_ap) else []
+
+    @property
+    def mp(self):
+        """mean precision of all classes.
+        Return:
+            float.
+        """
+        return self.p.mean() if len(self.p) else 0.0
+
+    @property
+    def mr(self):
+        """mean recall of all classes.
+        Return:
+            float.
+        """
+        return self.r.mean() if len(self.r) else 0.0
+
+    @property
+    def map50(self):
+        """Mean AP@0.5 of all classes.
+        Return:
+            float.
+        """
+        return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
+
+    @property
+    def map(self):
+        """Mean AP@0.5:0.95 of all classes.
+        Return:
+            float.
+        """
+        return self.all_ap.mean() if len(self.all_ap) else 0.0
+
+    def mean_results(self):
+        """Mean of results, return mp, mr, map50, map"""
+        return (self.mp, self.mr, self.map50, self.map)
+
+    def class_result(self, i):
+        """class-aware result, return p[i], r[i], ap50[i], ap[i]"""
+        return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
+
+    def get_maps(self, nc):
+        maps = np.zeros(nc) + self.map
+        for i, c in enumerate(self.ap_class_index):
+            maps[c] = self.ap[i]
+        return maps
+
+    def update(self, results):
+        """
+        Args:
+            results: tuple(p, r, ap, f1, ap_class)
+        """
+        p, r, all_ap, f1, ap_class_index = results
+        self.p = p
+        self.r = r
+        self.all_ap = all_ap
+        self.f1 = f1
+        self.ap_class_index = ap_class_index
+
+
+class Metrics:
+    """Metric for boxes and masks."""
+
+    def __init__(self) -> None:
+        self.metric_box = Metric()
+        self.metric_mask = Metric()
+
+    def update(self, results):
+        """
+        Args:
+            results: Dict{'boxes': Dict{}, 'masks': Dict{}}
+        """
+        self.metric_box.update(list(results['boxes'].values()))
+        self.metric_mask.update(list(results['masks'].values()))
+
+    def mean_results(self):
+        return self.metric_box.mean_results() + self.metric_mask.mean_results()
+
+    def class_result(self, i):
+        return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
+
+    def get_maps(self, nc):
+        return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
+
+    @property
+    def ap_class_index(self):
+        # boxes and masks have the same ap_class_index
+        return self.metric_box.ap_class_index
+
+
+KEYS = [
+    'train/box_loss',
+    'train/seg_loss',  # train loss
+    'train/obj_loss',
+    'train/cls_loss',
+    'metrics/precision(B)',
+    'metrics/recall(B)',
+    'metrics/mAP_0.5(B)',
+    'metrics/mAP_0.5:0.95(B)',  # metrics
+    'metrics/precision(M)',
+    'metrics/recall(M)',
+    'metrics/mAP_0.5(M)',
+    'metrics/mAP_0.5:0.95(M)',  # metrics
+    'val/box_loss',
+    'val/seg_loss',  # val loss
+    'val/obj_loss',
+    'val/cls_loss',
+    'x/lr0',
+    'x/lr1',
+    'x/lr2',]
+
+BEST_KEYS = [
+    'best/epoch',
+    'best/precision(B)',
+    'best/recall(B)',
+    'best/mAP_0.5(B)',
+    'best/mAP_0.5:0.95(B)',
+    'best/precision(M)',
+    'best/recall(M)',
+    'best/mAP_0.5(M)',
+    'best/mAP_0.5:0.95(M)',]
diff --git a/yolov5_model/utils/segment/plots.py b/yolov5_model/utils/segment/plots.py
new file mode 100644
index 0000000000000000000000000000000000000000..3ba097624fcdcc72139b5b574e419aa927598afa
--- /dev/null
+++ b/yolov5_model/utils/segment/plots.py
@@ -0,0 +1,143 @@
+import contextlib
+import math
+from pathlib import Path
+
+import cv2
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import torch
+
+from .. import threaded
+from ..general import xywh2xyxy
+from ..plots import Annotator, colors
+
+
+@threaded
+def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg', names=None):
+    # Plot image grid with labels
+    if isinstance(images, torch.Tensor):
+        images = images.cpu().float().numpy()
+    if isinstance(targets, torch.Tensor):
+        targets = targets.cpu().numpy()
+    if isinstance(masks, torch.Tensor):
+        masks = masks.cpu().numpy().astype(int)
+
+    max_size = 1920  # max image size
+    max_subplots = 16  # max image subplots, i.e. 4x4
+    bs, _, h, w = images.shape  # batch size, _, height, width
+    bs = min(bs, max_subplots)  # limit plot images
+    ns = np.ceil(bs ** 0.5)  # number of subplots (square)
+    if np.max(images[0]) <= 1:
+        images *= 255  # de-normalise (optional)
+
+    # Build Image
+    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
+    for i, im in enumerate(images):
+        if i == max_subplots:  # if last batch has fewer images than we expect
+            break
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        im = im.transpose(1, 2, 0)
+        mosaic[y:y + h, x:x + w, :] = im
+
+    # Resize (optional)
+    scale = max_size / ns / max(h, w)
+    if scale < 1:
+        h = math.ceil(scale * h)
+        w = math.ceil(scale * w)
+        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+    # Annotate
+    fs = int((h + w) * ns * 0.01)  # font size
+    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+    for i in range(i + 1):
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
+        if paths:
+            annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
+        if len(targets) > 0:
+            idx = targets[:, 0] == i
+            ti = targets[idx]  # image targets
+
+            boxes = xywh2xyxy(ti[:, 2:6]).T
+            classes = ti[:, 1].astype('int')
+            labels = ti.shape[1] == 6  # labels if no conf column
+            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
+
+            if boxes.shape[1]:
+                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
+                    boxes[[0, 2]] *= w  # scale to pixels
+                    boxes[[1, 3]] *= h
+                elif scale < 1:  # absolute coords need scale if image scales
+                    boxes *= scale
+            boxes[[0, 2]] += x
+            boxes[[1, 3]] += y
+            for j, box in enumerate(boxes.T.tolist()):
+                cls = classes[j]
+                color = colors(cls)
+                cls = names[cls] if names else cls
+                if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                    label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+                    annotator.box_label(box, label, color=color)
+
+            # Plot masks
+            if len(masks):
+                if masks.max() > 1.0:  # mean that masks are overlap
+                    image_masks = masks[[i]]  # (1, 640, 640)
+                    nl = len(ti)
+                    index = np.arange(nl).reshape(nl, 1, 1) + 1
+                    image_masks = np.repeat(image_masks, nl, axis=0)
+                    image_masks = np.where(image_masks == index, 1.0, 0.0)
+                else:
+                    image_masks = masks[idx]
+
+                im = np.asarray(annotator.im).copy()
+                for j, box in enumerate(boxes.T.tolist()):
+                    if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                        color = colors(classes[j])
+                        mh, mw = image_masks[j].shape
+                        if mh != h or mw != w:
+                            mask = image_masks[j].astype(np.uint8)
+                            mask = cv2.resize(mask, (w, h))
+                            mask = mask.astype(bool)
+                        else:
+                            mask = image_masks[j].astype(bool)
+                        with contextlib.suppress(Exception):
+                            im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
+                annotator.fromarray(im)
+    annotator.im.save(fname)  # save
+
+
+def plot_results_with_masks(file='path/to/results.csv', dir='', best=True):
+    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+    save_dir = Path(file).parent if file else Path(dir)
+    fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
+    ax = ax.ravel()
+    files = list(save_dir.glob('results*.csv'))
+    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
+    for f in files:
+        try:
+            data = pd.read_csv(f)
+            index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
+                              0.1 * data.values[:, 11])
+            s = [x.strip() for x in data.columns]
+            x = data.values[:, 0]
+            for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
+                y = data.values[:, j]
+                # y[y == 0] = np.nan  # don't show zero values
+                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=2)
+                if best:
+                    # best
+                    ax[i].scatter(index, y[index], color='r', label=f'best:{index}', marker='*', linewidth=3)
+                    ax[i].set_title(s[j] + f'\n{round(y[index], 5)}')
+                else:
+                    # last
+                    ax[i].scatter(x[-1], y[-1], color='r', label='last', marker='*', linewidth=3)
+                    ax[i].set_title(s[j] + f'\n{round(y[-1], 5)}')
+                # if j in [8, 9, 10]:  # share train and val loss y axes
+                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+        except Exception as e:
+            print(f'Warning: Plotting error for {f}: {e}')
+    ax[1].legend()
+    fig.savefig(save_dir / 'results.png', dpi=200)
+    plt.close()
diff --git a/yolov5_model/utils/torch_utils.py b/yolov5_model/utils/torch_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b67b3fa7a0654852913e2e06263d221d2e80427
--- /dev/null
+++ b/yolov5_model/utils/torch_utils.py
@@ -0,0 +1,432 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+PyTorch utils
+"""
+
+import math
+import os
+import platform
+import subprocess
+import time
+import warnings
+from contextlib import contextmanager
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn.parallel import DistributedDataParallel as DDP
+
+from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+
+try:
+    import thop  # for FLOPs computation
+except ImportError:
+    thop = None
+
+# Suppress PyTorch warnings
+warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
+warnings.filterwarnings('ignore', category=UserWarning)
+
+
+def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
+    # Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
+    def decorate(fn):
+        return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
+
+    return decorate
+
+
+def smartCrossEntropyLoss(label_smoothing=0.0):
+    # Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0
+    if check_version(torch.__version__, '1.10.0'):
+        return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
+    if label_smoothing > 0:
+        LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0')
+    return nn.CrossEntropyLoss()
+
+
+def smart_DDP(model):
+    # Model DDP creation with checks
+    assert not check_version(torch.__version__, '1.12.0', pinned=True), \
+        'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
+        'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
+    if check_version(torch.__version__, '1.11.0'):
+        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
+    else:
+        return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
+
+
+def reshape_classifier_output(model, n=1000):
+    # Update a TorchVision classification model to class count 'n' if required
+    from models.common import Classify
+    name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1]  # last module
+    if isinstance(m, Classify):  # YOLOv5 Classify() head
+        if m.linear.out_features != n:
+            m.linear = nn.Linear(m.linear.in_features, n)
+    elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
+        if m.out_features != n:
+            setattr(model, name, nn.Linear(m.in_features, n))
+    elif isinstance(m, nn.Sequential):
+        types = [type(x) for x in m]
+        if nn.Linear in types:
+            i = types.index(nn.Linear)  # nn.Linear index
+            if m[i].out_features != n:
+                m[i] = nn.Linear(m[i].in_features, n)
+        elif nn.Conv2d in types:
+            i = types.index(nn.Conv2d)  # nn.Conv2d index
+            if m[i].out_channels != n:
+                m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+    # Decorator to make all processes in distributed training wait for each local_master to do something
+    if local_rank not in [-1, 0]:
+        dist.barrier(device_ids=[local_rank])
+    yield
+    if local_rank == 0:
+        dist.barrier(device_ids=[0])
+
+
+def device_count():
+    # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
+    assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
+    try:
+        cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""'  # Windows
+        return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
+    except Exception:
+        return 0
+
+
+def select_device(device='', batch_size=0, newline=True):
+    # device = None or 'cpu' or 0 or '0' or '0,1,2,3'
+    s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
+    device = str(device).strip().lower().replace('cuda:', '').replace('none', '')  # to string, 'cuda:0' to '0'
+    cpu = device == 'cpu'
+    mps = device == 'mps'  # Apple Metal Performance Shaders (MPS)
+    if cpu or mps:
+        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
+    elif device:  # non-cpu device requested
+        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable - must be before assert is_available()
+        assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
+            f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
+
+    if not cpu and not mps and torch.cuda.is_available():  # prefer GPU if available
+        devices = device.split(',') if device else '0'  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
+        n = len(devices)  # device count
+        if n > 1 and batch_size > 0:  # check batch_size is divisible by device_count
+            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
+        space = ' ' * (len(s) + 1)
+        for i, d in enumerate(devices):
+            p = torch.cuda.get_device_properties(i)
+            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n"  # bytes to MB
+        arg = 'cuda:0'
+    elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available():  # prefer MPS if available
+        s += 'MPS\n'
+        arg = 'mps'
+    else:  # revert to CPU
+        s += 'CPU\n'
+        arg = 'cpu'
+
+    if not newline:
+        s = s.rstrip()
+    LOGGER.info(s)
+    return torch.device(arg)
+
+
+def time_sync():
+    # PyTorch-accurate time
+    if torch.cuda.is_available():
+        torch.cuda.synchronize()
+    return time.time()
+
+
+def profile(input, ops, n=10, device=None):
+    """ YOLOv5 speed/memory/FLOPs profiler
+    Usage:
+        input = torch.randn(16, 3, 640, 640)
+        m1 = lambda x: x * torch.sigmoid(x)
+        m2 = nn.SiLU()
+        profile(input, [m1, m2], n=100)  # profile over 100 iterations
+    """
+    results = []
+    if not isinstance(device, torch.device):
+        device = select_device(device)
+    print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
+          f"{'input':>24s}{'output':>24s}")
+
+    for x in input if isinstance(input, list) else [input]:
+        x = x.to(device)
+        x.requires_grad = True
+        for m in ops if isinstance(ops, list) else [ops]:
+            m = m.to(device) if hasattr(m, 'to') else m  # device
+            m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
+            tf, tb, t = 0, 0, [0, 0, 0]  # dt forward, backward
+            try:
+                flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # GFLOPs
+            except Exception:
+                flops = 0
+
+            try:
+                for _ in range(n):
+                    t[0] = time_sync()
+                    y = m(x)
+                    t[1] = time_sync()
+                    try:
+                        _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
+                        t[2] = time_sync()
+                    except Exception:  # no backward method
+                        # print(e)  # for debug
+                        t[2] = float('nan')
+                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
+                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
+                mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
+                s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y))  # shapes
+                p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0  # parameters
+                print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
+                results.append([p, flops, mem, tf, tb, s_in, s_out])
+            except Exception as e:
+                print(e)
+                results.append(None)
+            torch.cuda.empty_cache()
+    return results
+
+
+def is_parallel(model):
+    # Returns True if model is of type DP or DDP
+    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def de_parallel(model):
+    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
+    return model.module if is_parallel(model) else model
+
+
+def initialize_weights(model):
+    for m in model.modules():
+        t = type(m)
+        if t is nn.Conv2d:
+            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+        elif t is nn.BatchNorm2d:
+            m.eps = 1e-3
+            m.momentum = 0.03
+        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+            m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+    # Finds layer indices matching module class 'mclass'
+    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+    # Return global model sparsity
+    a, b = 0, 0
+    for p in model.parameters():
+        a += p.numel()
+        b += (p == 0).sum()
+    return b / a
+
+
+def prune(model, amount=0.3):
+    # Prune model to requested global sparsity
+    import torch.nn.utils.prune as prune
+    for name, m in model.named_modules():
+        if isinstance(m, nn.Conv2d):
+            prune.l1_unstructured(m, name='weight', amount=amount)  # prune
+            prune.remove(m, 'weight')  # make permanent
+    LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity')
+
+
+def fuse_conv_and_bn(conv, bn):
+    # Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+    fusedconv = nn.Conv2d(conv.in_channels,
+                          conv.out_channels,
+                          kernel_size=conv.kernel_size,
+                          stride=conv.stride,
+                          padding=conv.padding,
+                          dilation=conv.dilation,
+                          groups=conv.groups,
+                          bias=True).requires_grad_(False).to(conv.weight.device)
+
+    # Prepare filters
+    w_conv = conv.weight.clone().view(conv.out_channels, -1)
+    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
+
+    # Prepare spatial bias
+    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+    return fusedconv
+
+
+def model_info(model, verbose=False, imgsz=640):
+    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
+    n_p = sum(x.numel() for x in model.parameters())  # number parameters
+    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
+    if verbose:
+        print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
+        for i, (name, p) in enumerate(model.named_parameters()):
+            name = name.replace('module_list.', '')
+            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
+                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
+
+    try:  # FLOPs
+        p = next(model.parameters())
+        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
+        im = torch.empty((1, p.shape[1], stride, stride), device=p.device)  # input image in BCHW format
+        flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2  # stride GFLOPs
+        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
+        fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs'  # 640x640 GFLOPs
+    except Exception:
+        fs = ''
+
+    name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
+    LOGGER.info(f'{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}')
+
+
+def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
+    # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
+    if ratio == 1.0:
+        return img
+    h, w = img.shape[2:]
+    s = (int(h * ratio), int(w * ratio))  # new size
+    img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
+    if not same_shape:  # pad/crop img
+        h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
+    return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+    # Copy attributes from b to a, options to only include [...] and to exclude [...]
+    for k, v in b.__dict__.items():
+        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
+            continue
+        else:
+            setattr(a, k, v)
+
+
+def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5):
+    # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
+    g = [], [], []  # optimizer parameter groups
+    bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
+    for v in model.modules():
+        for p_name, p in v.named_parameters(recurse=0):
+            if p_name == 'bias':  # bias (no decay)
+                g[2].append(p)
+            elif p_name == 'weight' and isinstance(v, bn):  # weight (no decay)
+                g[1].append(p)
+            else:
+                g[0].append(p)  # weight (with decay)
+
+    if name == 'Adam':
+        optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999))  # adjust beta1 to momentum
+    elif name == 'AdamW':
+        optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
+    elif name == 'RMSProp':
+        optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
+    elif name == 'SGD':
+        optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
+    else:
+        raise NotImplementedError(f'Optimizer {name} not implemented.')
+
+    optimizer.add_param_group({'params': g[0], 'weight_decay': decay})  # add g0 with weight_decay
+    optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0})  # add g1 (BatchNorm2d weights)
+    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
+                f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias')
+    return optimizer
+
+
+def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs):
+    # YOLOv5 torch.hub.load() wrapper with smart error/issue handling
+    if check_version(torch.__version__, '1.9.1'):
+        kwargs['skip_validation'] = True  # validation causes GitHub API rate limit errors
+    if check_version(torch.__version__, '1.12.0'):
+        kwargs['trust_repo'] = True  # argument required starting in torch 0.12
+    try:
+        return torch.hub.load(repo, model, **kwargs)
+    except Exception:
+        return torch.hub.load(repo, model, force_reload=True, **kwargs)
+
+
+def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True):
+    # Resume training from a partially trained checkpoint
+    best_fitness = 0.0
+    start_epoch = ckpt['epoch'] + 1
+    if ckpt['optimizer'] is not None:
+        optimizer.load_state_dict(ckpt['optimizer'])  # optimizer
+        best_fitness = ckpt['best_fitness']
+    if ema and ckpt.get('ema'):
+        ema.ema.load_state_dict(ckpt['ema'].float().state_dict())  # EMA
+        ema.updates = ckpt['updates']
+    if resume:
+        assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \
+                                f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
+        LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs')
+    if epochs < start_epoch:
+        LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
+        epochs += ckpt['epoch']  # finetune additional epochs
+    return best_fitness, start_epoch, epochs
+
+
+class EarlyStopping:
+    # YOLOv5 simple early stopper
+    def __init__(self, patience=30):
+        self.best_fitness = 0.0  # i.e. mAP
+        self.best_epoch = 0
+        self.patience = patience or float('inf')  # epochs to wait after fitness stops improving to stop
+        self.possible_stop = False  # possible stop may occur next epoch
+
+    def __call__(self, epoch, fitness):
+        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
+            self.best_epoch = epoch
+            self.best_fitness = fitness
+        delta = epoch - self.best_epoch  # epochs without improvement
+        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
+        stop = delta >= self.patience  # stop training if patience exceeded
+        if stop:
+            LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
+                        f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
+                        f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
+                        f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
+        return stop
+
+
+class ModelEMA:
+    """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
+    Keeps a moving average of everything in the model state_dict (parameters and buffers)
+    For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+    """
+
+    def __init__(self, model, decay=0.9999, tau=2000, updates=0):
+        # Create EMA
+        self.ema = deepcopy(de_parallel(model)).eval()  # FP32 EMA
+        self.updates = updates  # number of EMA updates
+        self.decay = lambda x: decay * (1 - math.exp(-x / tau))  # decay exponential ramp (to help early epochs)
+        for p in self.ema.parameters():
+            p.requires_grad_(False)
+
+    def update(self, model):
+        # Update EMA parameters
+        self.updates += 1
+        d = self.decay(self.updates)
+
+        msd = de_parallel(model).state_dict()  # model state_dict
+        for k, v in self.ema.state_dict().items():
+            if v.dtype.is_floating_point:  # true for FP16 and FP32
+                v *= d
+                v += (1 - d) * msd[k].detach()
+        # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
+
+    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
+        # Update EMA attributes
+        copy_attr(self.ema, model, include, exclude)
diff --git a/yolov5_model/utils/triton.py b/yolov5_model/utils/triton.py
new file mode 100644
index 0000000000000000000000000000000000000000..25928021477e56479a0c2443927aacb28e0808ae
--- /dev/null
+++ b/yolov5_model/utils/triton.py
@@ -0,0 +1,85 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+""" Utils to interact with the Triton Inference Server
+"""
+
+import typing
+from urllib.parse import urlparse
+
+import torch
+
+
+class TritonRemoteModel:
+    """ A wrapper over a model served by the Triton Inference Server. It can
+    be configured to communicate over GRPC or HTTP. It accepts Torch Tensors
+    as input and returns them as outputs.
+    """
+
+    def __init__(self, url: str):
+        """
+        Keyword arguments:
+        url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000
+        """
+
+        parsed_url = urlparse(url)
+        if parsed_url.scheme == 'grpc':
+            from tritonclient.grpc import InferenceServerClient, InferInput
+
+            self.client = InferenceServerClient(parsed_url.netloc)  # Triton GRPC client
+            model_repository = self.client.get_model_repository_index()
+            self.model_name = model_repository.models[0].name
+            self.metadata = self.client.get_model_metadata(self.model_name, as_json=True)
+
+            def create_input_placeholders() -> typing.List[InferInput]:
+                return [
+                    InferInput(i['name'], [int(s) for s in i['shape']], i['datatype']) for i in self.metadata['inputs']]
+
+        else:
+            from tritonclient.http import InferenceServerClient, InferInput
+
+            self.client = InferenceServerClient(parsed_url.netloc)  # Triton HTTP client
+            model_repository = self.client.get_model_repository_index()
+            self.model_name = model_repository[0]['name']
+            self.metadata = self.client.get_model_metadata(self.model_name)
+
+            def create_input_placeholders() -> typing.List[InferInput]:
+                return [
+                    InferInput(i['name'], [int(s) for s in i['shape']], i['datatype']) for i in self.metadata['inputs']]
+
+        self._create_input_placeholders_fn = create_input_placeholders
+
+    @property
+    def runtime(self):
+        """Returns the model runtime"""
+        return self.metadata.get('backend', self.metadata.get('platform'))
+
+    def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]:
+        """ Invokes the model. Parameters can be provided via args or kwargs.
+        args, if provided, are assumed to match the order of inputs of the model.
+        kwargs are matched with the model input names.
+        """
+        inputs = self._create_inputs(*args, **kwargs)
+        response = self.client.infer(model_name=self.model_name, inputs=inputs)
+        result = []
+        for output in self.metadata['outputs']:
+            tensor = torch.as_tensor(response.as_numpy(output['name']))
+            result.append(tensor)
+        return result[0] if len(result) == 1 else result
+
+    def _create_inputs(self, *args, **kwargs):
+        args_len, kwargs_len = len(args), len(kwargs)
+        if not args_len and not kwargs_len:
+            raise RuntimeError('No inputs provided.')
+        if args_len and kwargs_len:
+            raise RuntimeError('Cannot specify args and kwargs at the same time')
+
+        placeholders = self._create_input_placeholders_fn()
+        if args_len:
+            if args_len != len(placeholders):
+                raise RuntimeError(f'Expected {len(placeholders)} inputs, got {args_len}.')
+            for input, value in zip(placeholders, args):
+                input.set_data_from_numpy(value.cpu().numpy())
+        else:
+            for input in placeholders:
+                value = kwargs[input.name]
+                input.set_data_from_numpy(value.cpu().numpy())
+        return placeholders
diff --git a/yolov5_model/val.py b/yolov5_model/val.py
new file mode 100644
index 0000000000000000000000000000000000000000..d4073b42fe781ab3d3fa95d4d9d54159dc3e7f25
--- /dev/null
+++ b/yolov5_model/val.py
@@ -0,0 +1,409 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Validate a trained YOLOv5 detection model on a detection dataset
+
+Usage:
+    $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
+
+Usage - formats:
+    $ python val.py --weights yolov5s.pt                 # PyTorch
+                              yolov5s.torchscript        # TorchScript
+                              yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                              yolov5s_openvino_model     # OpenVINO
+                              yolov5s.engine             # TensorRT
+                              yolov5s.mlmodel            # CoreML (macOS-only)
+                              yolov5s_saved_model        # TensorFlow SavedModel
+                              yolov5s.pb                 # TensorFlow GraphDef
+                              yolov5s.tflite             # TensorFlow Lite
+                              yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                              yolov5s_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import json
+import os
+import subprocess
+import sys
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
+                           check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
+                           print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, smart_inference_mode
+
+
+def save_one_txt(predn, save_conf, shape, file):
+    # Save one txt result
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, 'a') as f:
+            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map):
+    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    for p, b in zip(predn.tolist(), box.tolist()):
+        jdict.append({
+            'image_id': image_id,
+            'category_id': class_map[int(p[5])],
+            'bbox': [round(x, 3) for x in b],
+            'score': round(p[4], 5)})
+
+
+def process_batch(detections, labels, iouv):
+    """
+    Return correct prediction matrix
+    Arguments:
+        detections (array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (array[N, 10]), for 10 IoU levels
+    """
+    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+    iou = box_iou(labels[:, 1:], detections[:, :4])
+    correct_class = labels[:, 0:1] == detections[:, 5]
+    for i in range(len(iouv)):
+        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                # matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+            correct[matches[:, 1].astype(int), i] = True
+    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+@smart_inference_mode()
+def run(
+        data,
+        weights=None,  # model.pt path(s)
+        batch_size=32,  # batch size
+        imgsz=640,  # inference size (pixels)
+        conf_thres=0.001,  # confidence threshold
+        iou_thres=0.6,  # NMS IoU threshold
+        max_det=300,  # maximum detections per image
+        task='val',  # train, val, test, speed or study
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        workers=8,  # max dataloader workers (per RANK in DDP mode)
+        single_cls=False,  # treat as single-class dataset
+        augment=False,  # augmented inference
+        verbose=False,  # verbose output
+        save_txt=False,  # save results to *.txt
+        save_hybrid=False,  # save label+prediction hybrid results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_json=False,  # save a COCO-JSON results file
+        project=ROOT / 'runs/val',  # save to project/name
+        name='exp',  # save to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=True,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        model=None,
+        dataloader=None,
+        save_dir=Path(''),
+        plots=True,
+        callbacks=Callbacks(),
+        compute_loss=None,
+):
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != 'cpu'  # half precision only supported on CUDA
+        model.half() if half else model.float()
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    cuda = device.type != 'cpu'
+    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt')  # COCO dataset
+    nc = 1 if single_cls else int(data['nc'])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        if pt and not single_cls:  # check --weights are trained on --data
+            ncm = model.model.nc
+            assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+                              f'classes). Pass correct combination of --weights and --data that are trained together.'
+        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
+        pad, rect = (0.0, False) if task == 'speed' else (0.5, pt)  # square inference for benchmarks
+        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
+        dataloader = create_dataloader(data[task],
+                                       imgsz,
+                                       batch_size,
+                                       stride,
+                                       single_cls,
+                                       pad=pad,
+                                       rect=rect,
+                                       workers=workers,
+                                       prefix=colorstr(f'{task}: '))[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = model.names if hasattr(model, 'names') else model.module.names  # get class names
+    if isinstance(names, (list, tuple)):  # old format
+        names = dict(enumerate(names))
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
+    tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+    dt = Profile(), Profile(), Profile()  # profiling times
+    loss = torch.zeros(3, device=device)
+    jdict, stats, ap, ap_class = [], [], [], []
+    callbacks.run('on_val_start')
+    pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT)  # progress bar
+    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+        callbacks.run('on_val_batch_start')
+        with dt[0]:
+            if cuda:
+                im = im.to(device, non_blocking=True)
+                targets = targets.to(device)
+            im = im.half() if half else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            nb, _, height, width = im.shape  # batch size, channels, height, width
+
+        # Inference
+        with dt[1]:
+            preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss(train_out, targets)[1]  # box, obj, cls
+
+        # NMS
+        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        with dt[2]:
+            preds = non_max_suppression(preds,
+                                        conf_thres,
+                                        iou_thres,
+                                        labels=lb,
+                                        multi_label=True,
+                                        agnostic=single_cls,
+                                        max_det=max_det)
+
+        # Metrics
+        for si, pred in enumerate(preds):
+            labels = targets[targets[:, 0] == si, 1:]
+            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
+            path, shape = Path(paths[si]), shapes[si][0]
+            correct = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            seen += 1
+
+            if npr == 0:
+                if nl:
+                    stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
+                    if plots:
+                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+                continue
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct = process_batch(predn, labelsn, iouv)
+                if plots:
+                    confusion_matrix.process_batch(predn, labelsn)
+            stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0]))  # (correct, conf, pcls, tcls)
+
+            # Save/log
+            if save_txt:
+                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+            if save_json:
+                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
+            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)  # labels
+            plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names)  # pred
+
+        callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
+
+    # Compute metrics
+    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
+        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+    nt = np.bincount(stats[3].astype(int), minlength=nc)  # number of targets per class
+
+    # Print results
+    pf = '%22s' + '%11i' * 2 + '%11.3g' * 4  # print format
+    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+    if nt.sum() == 0:
+        LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(ap_class):
+            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+    # Print speeds
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+        callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
+        anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json'))  # annotations
+        pred_json = str(save_dir / f'{w}_predictions.json')  # predictions
+        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+        with open(pred_json, 'w') as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            check_requirements('pycocotools>=2.0.6')
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            eval = COCOeval(anno, pred, 'bbox')
+            if is_coco:
+                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # image IDs to evaluate
+            eval.evaluate()
+            eval.accumulate()
+            eval.summarize()
+            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
+        except Exception as e:
+            LOGGER.info(f'pycocotools unable to run: {e}')
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    maps = np.zeros(nc) + map
+    for i, c in enumerate(ap_class):
+        maps[c] = ap[i]
+    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
+    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+    parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    opt.save_json |= opt.data.endswith('coco.yaml')
+    opt.save_txt |= opt.save_hybrid
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(exclude=('tensorboard', 'thop'))
+
+    if opt.task in ('train', 'val', 'test'):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+        if opt.save_hybrid:
+            LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = torch.cuda.is_available() and opt.device != 'cpu'  # FP16 for fastest results
+        if opt.task == 'speed':  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == 'study':  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt='%10.4g')  # save
+            subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
+            plot_val_study(x=x)  # plot
+        else:
+            raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)
diff --git a/yolov5_model/wandb/debug-internal.log b/yolov5_model/wandb/debug-internal.log
new file mode 120000
index 0000000000000000000000000000000000000000..8466053e5e96bcaa1e5b3addb25399f360878345
--- /dev/null
+++ b/yolov5_model/wandb/debug-internal.log
@@ -0,0 +1 @@
+run-20230223_162312-1o0qidel/logs/debug-internal.log
\ No newline at end of file
diff --git a/yolov5_model/wandb/debug.log b/yolov5_model/wandb/debug.log
new file mode 120000
index 0000000000000000000000000000000000000000..c98745b2d0478549f80848a8081a75b6aeb7f7ff
--- /dev/null
+++ b/yolov5_model/wandb/debug.log
@@ -0,0 +1 @@
+run-20230223_162312-1o0qidel/logs/debug.log
\ No newline at end of file
diff --git a/yolov5_model/wandb/latest-run b/yolov5_model/wandb/latest-run
new file mode 120000
index 0000000000000000000000000000000000000000..6af46cdc866a44d75a38192caeb19ce759aa22b6
--- /dev/null
+++ b/yolov5_model/wandb/latest-run
@@ -0,0 +1 @@
+run-20230223_162312-1o0qidel
\ No newline at end of file
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/conda-environment.yaml b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/conda-environment.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3cdca88046552a769a1422af9039909dbf6cce9e
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/conda-environment.yaml
@@ -0,0 +1,332 @@
+name: akhot2
+channels:
+  - pytorch
+  - anaconda
+  - conda-forge
+  - defaults
+dependencies:
+  - _libgcc_mutex=0.1=main
+  - _openmp_mutex=5.1=1_gnu
+  - _py-xgboost-mutex=2.0=cpu_0
+  - _tflow_select=2.3.0=mkl
+  - aiohttp=3.8.1=py39h7f8727e_1
+  - aiosignal=1.2.0=pyhd3eb1b0_0
+  - argon2-cffi=21.3.0=pyhd3eb1b0_0
+  - argon2-cffi-bindings=21.2.0=py39h7f8727e_0
+  - astor=0.8.1=py39h06a4308_0
+  - asttokens=2.0.5=pyhd3eb1b0_0
+  - astunparse=1.6.3=py_0
+  - async-timeout=4.0.1=pyhd3eb1b0_0
+  - atk-1.0=2.36.0=ha1a6a79_0
+  - attrs=21.4.0=pyhd3eb1b0_0
+  - awkward=0.15.0=pyhd3deb0d_0
+  - backcall=0.2.0=pyhd3eb1b0_0
+  - beautifulsoup4=4.11.1=py39h06a4308_0
+  - blas=1.0=mkl
+  - bleach=4.1.0=pyhd3eb1b0_0
+  - blinker=1.4=py39h06a4308_0
+  - blosc=1.21.0=h4ff587b_1
+  - bottleneck=1.3.4=py39hce1f21e_0
+  - brotli=1.0.9=he6710b0_2
+  - brotlipy=0.7.0=py39h27cfd23_1003
+  - bzip2=1.0.8=h7b6447c_0
+  - c-ares=1.18.1=h7f8727e_0
+  - ca-certificates=2023.01.10=h06a4308_0
+  - cachetools=4.2.2=pyhd3eb1b0_0
+  - cairo=1.16.0=h19f5f5c_2
+  - certifi=2022.12.7=pyhd8ed1ab_0
+  - cffi=1.15.0=py39hd667e15_1
+  - charset-normalizer=2.0.4=pyhd3eb1b0_0
+  - click=8.0.4=py39h06a4308_0
+  - cloudpickle=2.0.0=pyhd3eb1b0_0
+  - colorama=0.4.4=pyhd3eb1b0_0
+  - cramjam=2.5.0=py39h860a657_0
+  - cryptography=3.4.8=py39hd23ed53_0
+  - cudatoolkit=11.3.1=h2bc3f7f_2
+  - cython=0.29.28=py39h295c915_0
+  - dataclasses=0.8=pyh6d0b6a4_7
+  - dbus=1.13.18=hb2f20db_0
+  - debugpy=1.5.1=py39h295c915_0
+  - decorator=5.1.1=pyhd3eb1b0_0
+  - defusedxml=0.7.1=pyhd3eb1b0_0
+  - detectron2=0.5=py39hf2442f4_1
+  - docker-pycreds=0.4.0=pyhd3eb1b0_0
+  - entrypoints=0.4=py39h06a4308_0
+  - et_xmlfile=1.1.0=py39h06a4308_0
+  - executing=0.8.3=pyhd3eb1b0_0
+  - expat=2.4.4=h295c915_0
+  - fastparquet=0.8.1=py39hd257fcd_0
+  - ffmpeg=4.2.2=h20bf706_0
+  - filelock=3.7.1=pyhd8ed1ab_0
+  - font-ttf-dejavu-sans-mono=2.37=hd3eb1b0_0
+  - font-ttf-inconsolata=2.001=hcb22688_0
+  - font-ttf-source-code-pro=2.030=hd3eb1b0_0
+  - font-ttf-ubuntu=0.83=h8b1ccd4_0
+  - fontconfig=2.13.1=h6c09931_0
+  - fonts-anaconda=1=h8fa9717_0
+  - fonts-conda-ecosystem=1=hd3eb1b0_0
+  - fonttools=4.25.0=pyhd3eb1b0_0
+  - freetype=2.11.0=h70c0345_0
+  - fribidi=1.0.10=h7b6447c_0
+  - frozenlist=1.2.0=py39h7f8727e_0
+  - fsspec=2022.5.0=pyhd8ed1ab_0
+  - future=0.18.2=py39h06a4308_1
+  - fvcore=0.1.5.post20220506=pyhd8ed1ab_0
+  - gdk-pixbuf=2.42.8=h433bba3_0
+  - gdown=4.5.1=pyhd8ed1ab_0
+  - gensim=4.1.2=py39h295c915_0
+  - giflib=5.2.1=h7b6447c_0
+  - gitdb=4.0.7=pyhd3eb1b0_0
+  - gitpython=3.1.18=pyhd3eb1b0_1
+  - glib=2.69.1=h4ff587b_1
+  - gmp=6.2.1=h295c915_3
+  - gnutls=3.6.15=he1e5248_0
+  - gobject-introspection=1.68.0=py39he41a700_3
+  - google-auth-oauthlib=0.4.4=pyhd3eb1b0_0
+  - google-pasta=0.2.0=pyhd3eb1b0_0
+  - graphite2=1.3.14=h295c915_1
+  - graphviz=2.50.0=h3cd0ef9_0
+  - gst-plugins-base=1.14.0=h8213a91_2
+  - gstreamer=1.14.0=h28cd5cc_2
+  - gtk2=2.24.33=h73c1081_2
+  - gts=0.7.6=hb67d8dd_3
+  - h5py=3.6.0=py39ha0f2276_0
+  - harfbuzz=4.3.0=hd55b92a_0
+  - hdf5=1.10.6=hb1b8bf9_0
+  - icu=58.2=he6710b0_3
+  - importlib-metadata=4.11.3=py39h06a4308_0
+  - intel-openmp=2021.4.0=h06a4308_3561
+  - ipykernel=6.9.1=py39h06a4308_0
+  - ipython=8.3.0=py39h06a4308_0
+  - ipython_genutils=0.2.0=pyhd3eb1b0_1
+  - ipywidgets=7.6.5=pyhd3eb1b0_1
+  - jedi=0.18.1=py39h06a4308_1
+  - jinja2=3.0.3=pyhd3eb1b0_0
+  - joblib=1.1.0=pyhd3eb1b0_0
+  - jpeg=9e=h7f8727e_0
+  - jsonschema=4.4.0=py39h06a4308_0
+  - jupyter=1.0.0=py39h06a4308_7
+  - jupyter_client=7.2.2=py39h06a4308_0
+  - jupyter_console=6.4.3=pyhd3eb1b0_0
+  - jupyter_core=4.10.0=py39h06a4308_0
+  - jupyterlab_pygments=0.1.2=py_0
+  - jupyterlab_widgets=1.0.0=pyhd3eb1b0_1
+  - keras-preprocessing=1.1.2=pyhd3eb1b0_0
+  - kiwisolver=1.4.2=py39h295c915_0
+  - lame=3.100=h7b6447c_0
+  - lcms2=2.12=h3be6417_0
+  - ld_impl_linux-64=2.38=h1181459_1
+  - libffi=3.3=he6710b0_2
+  - libgcc-ng=11.2.0=h1234567_1
+  - libgd=2.3.3=h695aa2c_1
+  - libgfortran-ng=7.5.0=ha8ba4b0_17
+  - libgfortran4=7.5.0=ha8ba4b0_17
+  - libgomp=11.2.0=h1234567_1
+  - libidn2=2.3.2=h7f8727e_0
+  - libllvm11=11.1.0=h3826bc1_1
+  - libopus=1.3.1=h7b6447c_0
+  - libpng=1.6.37=hbc83047_0
+  - libprotobuf=3.20.3=he621ea3_0
+  - librsvg=2.54.4=h19fe530_0
+  - libsodium=1.0.18=h7b6447c_0
+  - libstdcxx-ng=11.2.0=h1234567_1
+  - libtasn1=4.16.0=h27cfd23_0
+  - libtiff=4.2.0=h2818925_1
+  - libtool=2.4.6=h295c915_1008
+  - libunistring=0.9.10=h27cfd23_0
+  - libuuid=1.0.3=h7f8727e_2
+  - libuv=1.40.0=h7b6447c_0
+  - libvpx=1.7.0=h439df22_0
+  - libwebp=1.2.2=h55f646e_0
+  - libwebp-base=1.2.2=h7f8727e_0
+  - libxcb=1.15=h7f8727e_0
+  - libxgboost=1.5.1=cpu_h3d145d1_2
+  - libxml2=2.9.14=h74e7548_0
+  - lime=0.2.0.1=pyh9f0ad1d_0
+  - lz4-c=1.9.3=h295c915_1
+  - lzo=2.10=h7b6447c_2
+  - markdown=3.3.4=py39h06a4308_0
+  - markupsafe=2.1.1=py39h7f8727e_0
+  - matplotlib=3.5.1=py39h06a4308_1
+  - matplotlib-base=3.5.1=py39ha18d171_1
+  - matplotlib-inline=0.1.2=pyhd3eb1b0_2
+  - mistune=0.8.4=py39h27cfd23_1000
+  - mkl=2021.4.0=h06a4308_640
+  - mkl-service=2.4.0=py39h7f8727e_0
+  - mkl_fft=1.3.1=py39hd3c417c_0
+  - mkl_random=1.2.2=py39h51133e4_0
+  - mock=4.0.3=pyhd3eb1b0_0
+  - multidict=5.2.0=py39h7f8727e_2
+  - munkres=1.1.4=py_0
+  - nbclient=0.5.13=py39h06a4308_0
+  - nbconvert=6.4.4=py39h06a4308_0
+  - nbformat=5.3.0=py39h06a4308_0
+  - ncurses=6.3=h7f8727e_2
+  - nest-asyncio=1.5.5=py39h06a4308_0
+  - nettle=3.7.3=hbbd107a_1
+  - ninja=1.10.2=h06a4308_5
+  - ninja-base=1.10.2=hd09550d_5
+  - notebook=6.4.11=py39h06a4308_0
+  - numexpr=2.8.1=py39h6abb31d_0
+  - numpy-base=1.21.5=py39ha15fc14_3
+  - oauthlib=3.2.0=pyhd3eb1b0_0
+  - openh264=2.1.1=h4ff587b_0
+  - openpyxl=3.0.10=py39h5eee18b_0
+  - openssl=1.1.1s=h7f8727e_0
+  - opt_einsum=3.3.0=pyhd3eb1b0_1
+  - packaging=21.3=pyhd3eb1b0_0
+  - pandas=1.4.2=py39h295c915_0
+  - pandocfilters=1.5.0=pyhd3eb1b0_0
+  - pango=1.50.7=h05da053_0
+  - parso=0.8.3=pyhd3eb1b0_0
+  - pathtools=0.1.2=pyhd3eb1b0_1
+  - pcre=8.45=h295c915_0
+  - pexpect=4.8.0=pyhd3eb1b0_3
+  - pickleshare=0.7.5=pyhd3eb1b0_1003
+  - pillow=9.0.1=py39h22f2fdc_0
+  - pip=21.2.4=py39h06a4308_0
+  - pixman=0.40.0=h7f8727e_1
+  - portalocker=2.3.0=py39h06a4308_0
+  - prometheus_client=0.13.1=pyhd3eb1b0_0
+  - promise=2.3=py39h06a4308_0
+  - prompt-toolkit=3.0.20=pyhd3eb1b0_0
+  - prompt_toolkit=3.0.20=hd3eb1b0_0
+  - psutil=5.8.0=py39h27cfd23_1
+  - ptyprocess=0.7.0=pyhd3eb1b0_2
+  - pure_eval=0.2.2=pyhd3eb1b0_0
+  - py-xgboost=1.5.1=cpu_py39h4655687_2
+  - pyasn1=0.4.8=pyhd3eb1b0_0
+  - pyasn1-modules=0.2.8=py_0
+  - pycocotools=2.0.2=py39hce5d2b2_2
+  - pycparser=2.21=pyhd3eb1b0_0
+  - pydot=1.4.2=py39hf3d152e_2
+  - pygments=2.11.2=pyhd3eb1b0_0
+  - pyjwt=2.1.0=py39h06a4308_0
+  - pyopenssl=21.0.0=pyhd3eb1b0_1
+  - pyqt=5.9.2=py39h2531618_6
+  - pyrsistent=0.18.0=py39heee7806_0
+  - pysocks=1.7.1=py39h06a4308_0
+  - pytables=3.6.1=py39h77479fe_1
+  - pythia8=8.305=py39he80948d_0
+  - python=3.9.12=h12debd9_1
+  - python-dateutil=2.8.2=pyhd3eb1b0_0
+  - python-fastjsonschema=2.15.1=pyhd3eb1b0_0
+  - python-graphviz=0.20.1=pyh22cad53_0
+  - python_abi=3.9=2_cp39
+  - pytorch=1.11.0=py3.9_cuda11.3_cudnn8.2.0_0
+  - pytorch-model-summary=0.1.1=py_0
+  - pytorch-mutex=1.0=cuda
+  - pytz=2022.1=py39h06a4308_0
+  - pyyaml=6.0=py39h7f8727e_1
+  - pyzmq=22.3.0=py39h295c915_2
+  - qt=5.9.7=h5867ecd_1
+  - qtconsole=5.3.0=pyhd3eb1b0_0
+  - qtpy=2.0.1=pyhd3eb1b0_0
+  - rclone=1.61.1=h519d9b9_0
+  - readline=8.1.2=h7f8727e_1
+  - requests=2.27.1=pyhd3eb1b0_0
+  - requests-oauthlib=1.3.0=py_0
+  - rsa=4.7.2=pyhd3eb1b0_1
+  - scikit-learn=1.0.2=py39h51133e4_1
+  - scipy=1.7.3=py39hc147768_0
+  - seaborn=0.11.2=pyhd3eb1b0_0
+  - send2trash=1.8.0=pyhd3eb1b0_1
+  - sentry-sdk=1.5.12=pyhd8ed1ab_0
+  - setproctitle=1.2.2=py39h27cfd23_1004
+  - shap=0.40.0=py39hde0f152_1
+  - shortuuid=1.0.8=py39hf3d152e_0
+  - sip=4.19.13=py39h295c915_0
+  - slicer=0.0.7=pyhd3eb1b0_0
+  - smart_open=5.2.1=py39h06a4308_0
+  - smmap=4.0.0=pyhd3eb1b0_0
+  - soupsieve=2.3.1=pyhd3eb1b0_0
+  - sqlite=3.38.3=hc218d9a_0
+  - stack_data=0.2.0=pyhd3eb1b0_0
+  - tabulate=0.8.9=py39h06a4308_0
+  - tbb=2021.5.0=hd09550d_0
+  - tensorboard-plugin-wit=1.6.0=py_0
+  - termcolor=1.1.0=py39h06a4308_1
+  - terminado=0.13.1=py39h06a4308_0
+  - testpath=0.5.0=pyhd3eb1b0_0
+  - threadpoolctl=2.2.0=pyh0d69192_0
+  - tk=8.6.12=h1ccaba5_0
+  - torchaudio=0.11.0=py39_cu113
+  - torchinfo=1.6.5=pyhd8ed1ab_0
+  - torchvision=0.12.0=py39_cu113
+  - tornado=6.1=py39h27cfd23_0
+  - tqdm=4.64.0=py39h06a4308_0
+  - traitlets=5.1.1=pyhd3eb1b0_0
+  - typing_extensions=4.1.1=pyh06a4308_0
+  - tzdata=2022a=hda174b7_0
+  - uproot-methods=0.9.2=pyhd8ed1ab_0
+  - urllib3=1.26.9=py39h06a4308_0
+  - wandb=0.12.15=pyhd8ed1ab_0
+  - wcwidth=0.2.5=pyhd3eb1b0_0
+  - webencodings=0.5.1=py39h06a4308_1
+  - werkzeug=2.0.3=pyhd3eb1b0_0
+  - widgetsnbextension=3.5.2=py39h06a4308_0
+  - x264=1!157.20191217=h7b6447c_0
+  - xgboost=1.5.1=cpu_py39h4655687_2
+  - xz=5.2.5=h7f8727e_1
+  - yacs=0.1.6=pyhd3eb1b0_1
+  - yaml=0.2.5=h7b6447c_0
+  - yarl=1.6.3=py39h27cfd23_0
+  - zeromq=4.3.4=h2531618_0
+  - zipp=3.8.0=py39h06a4308_0
+  - zlib=1.2.13=h5eee18b_0
+  - zstd=1.5.2=ha4553b6_0
+  - pip:
+    - absl-py==1.1.0
+    - chardet==4.0.0
+    - commonmark==0.9.1
+    - cycler==0.10.0
+    - energyflow==1.3.2
+    - flatbuffers==1.12
+    - gast==0.3.3
+    - google-auth==1.35.0
+    - grpcio==1.32.0
+    - idna==2.10
+    - imageio==2.19.3
+    - iniconfig==1.1.1
+    - keras==2.9.0
+    - keras-applications==1.0.8
+    - lbn==1.2.2
+    - libclang==14.0.1
+    - llvmlite==0.36.0
+    - modelstore==0.0.74
+    - networkx==2.8.3
+    - numba==0.53.0
+    - numpy==1.20.0
+    - opencv-python==4.7.0.68
+    - pd4ml==0.3
+    - pillow-heif==0.9.3
+    - pluggy==1.0.0
+    - protobuf==3.19.4
+    - py==1.11.0
+    - pyparsing==2.4.7
+    - pytest==7.1.2
+    - python-dotenv==0.21.1
+    - pywavelets==1.3.0
+    - requests-toolbelt==0.10.1
+    - rich==12.4.4
+    - roboflow==0.2.29
+    - scikit-image==0.19.2
+    - setuptools==67.3.2
+    - six==1.15.0
+    - tensorboard==2.9.1
+    - tensorboard-data-server==0.6.1
+    - tensorflow==2.9.1
+    - tensorflow-decision-forests==0.2.6
+    - tensorflow-estimator==2.9.0
+    - tensorflow-io-gcs-filesystem==0.26.0
+    - thop==0.1.1-2209072238
+    - tifffile==2022.5.4
+    - tomli==2.0.1
+    - typing-extensions==3.7.4.3
+    - vector==0.8.5
+    - wasserstein==1.0.1
+    - wget==3.2
+    - wheel==0.38.4
+    - wrapt==1.12.1
+    - wurlitzer==3.0.2
+prefix: /raid/projects/akhot2/conda/envs/akhot2
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/config.yaml b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0bafd8edf73803afbec98cb5159f413dae8a6a08
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/config.yaml
@@ -0,0 +1,176 @@
+wandb_version: 1
+
+_wandb:
+  desc: null
+  value:
+    cli_version: 0.12.15
+    framework: torch
+    is_jupyter_run: false
+    is_kaggle_kernel: false
+    python_version: 3.9.12
+    start_time: 1677190992
+    t:
+      1:
+      - 1
+      - 2
+      - 3
+      - 41
+      - 55
+      2:
+      - 1
+      - 2
+      - 3
+      - 41
+      - 55
+      3:
+      - 16
+      4: 3.9.12
+      5: 0.12.15
+      8:
+      - 5
+artifact_alias:
+  desc: null
+  value: latest
+batch_size:
+  desc: null
+  value: 16
+bbox_interval:
+  desc: null
+  value: -1
+bucket:
+  desc: null
+  value: ''
+cache:
+  desc: null
+  value: null
+cfg:
+  desc: null
+  value: ''
+cos_lr:
+  desc: null
+  value: false
+data:
+  desc: null
+  value: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/data/beetles.yaml
+device:
+  desc: null
+  value: ''
+entity:
+  desc: null
+  value: null
+epochs:
+  desc: null
+  value: 150
+evolve:
+  desc: null
+  value: null
+exist_ok:
+  desc: null
+  value: false
+freeze:
+  desc: null
+  value:
+  - 0
+hyp:
+  desc: null
+  value:
+    anchor_t: 4.0
+    box: 0.05
+    cls: 0.5
+    cls_pw: 1.0
+    copy_paste: 0.0
+    degrees: 0.0
+    fl_gamma: 0.0
+    fliplr: 0.5
+    flipud: 0.0
+    hsv_h: 0.015
+    hsv_s: 0.7
+    hsv_v: 0.4
+    iou_t: 0.2
+    lr0: 0.01
+    lrf: 0.01
+    mixup: 0.0
+    momentum: 0.937
+    mosaic: 1.0
+    obj: 1.0
+    obj_pw: 1.0
+    perspective: 0.0
+    scale: 0.5
+    shear: 0.0
+    translate: 0.1
+    warmup_bias_lr: 0.1
+    warmup_epochs: 3.0
+    warmup_momentum: 0.8
+    weight_decay: 0.0005
+image_weights:
+  desc: null
+  value: false
+imgsz:
+  desc: null
+  value: 1280
+label_smoothing:
+  desc: null
+  value: 0.0
+local_rank:
+  desc: null
+  value: -1
+multi_scale:
+  desc: null
+  value: false
+name:
+  desc: null
+  value: exp
+noautoanchor:
+  desc: null
+  value: false
+noplots:
+  desc: null
+  value: false
+nosave:
+  desc: null
+  value: false
+noval:
+  desc: null
+  value: false
+optimizer:
+  desc: null
+  value: SGD
+patience:
+  desc: null
+  value: 100
+project:
+  desc: null
+  value: runs/train
+quad:
+  desc: null
+  value: false
+rect:
+  desc: null
+  value: false
+resume:
+  desc: null
+  value: false
+save_dir:
+  desc: null
+  value: runs/train/exp
+save_period:
+  desc: null
+  value: -1
+seed:
+  desc: null
+  value: 0
+single_cls:
+  desc: null
+  value: false
+sync_bn:
+  desc: null
+  value: false
+upload_dataset:
+  desc: null
+  value: false
+weights:
+  desc: null
+  value: yolov5m.pt
+workers:
+  desc: null
+  value: 8
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_56974dde328e4058761d.jpg b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_56974dde328e4058761d.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..291fe7c397bd5b3f72f11363669dce04a64fde26
Binary files /dev/null and b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_56974dde328e4058761d.jpg differ
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_deb5d587a6efb91ecd69.jpg b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_deb5d587a6efb91ecd69.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..db9ff99fa8f6892bdd5ddb69f100d451ad14f44a
Binary files /dev/null and b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_deb5d587a6efb91ecd69.jpg differ
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..04bb973f0a89a18bedad9ed3283f6bc82da3044a
Binary files /dev/null and b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg differ
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..418ebf223d5d0f82b7e6d0678307f9335c1e79bc
Binary files /dev/null and b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg differ
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_df6952e0614ae1359ee0.jpg b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_df6952e0614ae1359ee0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7f2724b5c5e27d419526c2f8045c3833bfbc376e
Binary files /dev/null and b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_df6952e0614ae1359ee0.jpg differ
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
new file mode 100644
index 0000000000000000000000000000000000000000..b523558933134dfa6e0b6da2f2755a4abb0d76a0
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
@@ -0,0 +1,819 @@
+Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m.pt to yolov5m.pt...
+100%|████████████████████████████████████████████████████████████| 40.8M/40.8M [00:00<00:00, 80.6MB/s]
+Overriding model.yaml nc=80 with nc=1
+                 from  n    params  module                                  arguments
+  0                -1  1      5280  models.common.Conv                      [3, 48, 6, 2, 2]
+  1                -1  1     41664  models.common.Conv                      [48, 96, 3, 2]
+  2                -1  2     65280  models.common.C3                        [96, 96, 2]
+  3                -1  1    166272  models.common.Conv                      [96, 192, 3, 2]
+  4                -1  4    444672  models.common.C3                        [192, 192, 4]
+  5                -1  1    664320  models.common.Conv                      [192, 384, 3, 2]
+  6                -1  6   2512896  models.common.C3                        [384, 384, 6]
+  7                -1  1   2655744  models.common.Conv                      [384, 768, 3, 2]
+  8                -1  2   4134912  models.common.C3                        [768, 768, 2]
+  9                -1  1   1476864  models.common.SPPF                      [768, 768, 5]
+ 10                -1  1    295680  models.common.Conv                      [768, 384, 1, 1]
+ 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
+ 12           [-1, 6]  1         0  models.common.Concat                    [1]
+ 13                -1  2   1182720  models.common.C3                        [768, 384, 2, False]
+ 14                -1  1     74112  models.common.Conv                      [384, 192, 1, 1]
+ 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
+ 16           [-1, 4]  1         0  models.common.Concat                    [1]
+ 17                -1  2    296448  models.common.C3                        [384, 192, 2, False]
+ 18                -1  1    332160  models.common.Conv                      [192, 192, 3, 2]
+ 19          [-1, 14]  1         0  models.common.Concat                    [1]
+ 20                -1  2   1035264  models.common.C3                        [384, 384, 2, False]
+ 21                -1  1   1327872  models.common.Conv                      [384, 384, 3, 2]
+ 22          [-1, 10]  1         0  models.common.Concat                    [1]
+ 23                -1  2   4134912  models.common.C3                        [768, 768, 2, False]
+ 24      [17, 20, 23]  1     24246  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [192, 384, 768]]
+Model summary: 291 layers, 20871318 parameters, 20871318 gradients, 48.2 GFLOPs
+Transferred 475/481 items from yolov5m.pt
+AMP: checks passed ✅
+optimizer: SGD(lr=0.01) with parameter groups 79 weight(decay=0.0), 82 weight(decay=0.0005), 82 bias
+WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.
+See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.
+train: Scanning /projects/akhot2/group-01-phys371-sp2023/crop/data/train/labels... 1000 images, 0 back
+train: New cache created: /projects/akhot2/group-01-phys371-sp2023/crop/data/train/labels.cache
+val: Scanning /projects/akhot2/group-01-phys371-sp2023/crop/data/val/labels... 100 images, 0 backgroun
+val: New cache created: /projects/akhot2/group-01-phys371-sp2023/crop/data/val/labels.cache
+AutoAnchor: 4.34 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
+Plotting labels to runs/train/exp/labels.jpg...
+Image sizes 1280 train, 1280 val
+Using 8 dataloader workers
+Logging results to runs/train/exp
+Starting training for 150 epochs...
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      0/149      3.85G     0.0733    0.04143          0         29       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.189      0.497      0.156     0.0393
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      1/149      6.92G    0.05652    0.02238          0         51       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.164      0.562      0.184     0.0389
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      2/149      6.92G    0.05381    0.01854          0         36       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.313      0.864      0.311      0.115
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      3/149      6.92G    0.04763    0.01806          0         35       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.591      0.877      0.694      0.268
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      4/149      6.92G    0.04193    0.01692          0         43       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.497      0.966      0.617      0.299
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      5/149      6.92G    0.03882    0.01589          0         40       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.412      0.938      0.456      0.275
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      6/149      6.92G    0.03675    0.01475          0         43       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.914      0.945      0.973       0.53
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      7/149      6.92G    0.03364     0.0134          0         44       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292       0.97      0.986      0.992      0.618
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      8/149      6.92G    0.02877    0.01154          0         63       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292      0.997      0.996      0.992      0.484
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+      9/149      6.92G    0.02531    0.01031          0         40       1280: 100%|██████████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+                   all        100        292          1      0.996      0.995      0.644
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
+     10/149      6.92G    0.02668    0.01093          0         67       1280:   8%|â–Š         | 5/63 [
+     10/149      6.92G    0.02711    0.01033          0         75       1280:  13%|█▎        | 8/63 [
+     10/149      6.92G    0.02688    0.01042          0         78       1280:  16%|█▌        | 10/63
+     10/149      6.92G    0.02722    0.01024          0         85       1280:  25%|██▌       | 16/63
+     10/149      6.92G    0.02669   0.009986          0         87       1280:  37%|███▋      | 23/63
+     10/149      6.92G    0.02653   0.009965          0         73       1280:  38%|███▊      | 24/63
+     10/149      6.92G    0.02626   0.009753          0         60       1280:  44%|████▍     | 28/63
+     10/149      6.92G    0.02627   0.009686          0         47       1280:  51%|█████     | 32/63
+     10/149      6.92G    0.02626   0.009718          0         74       1280:  54%|█████▍    | 34/63
+     10/149      6.92G    0.02604    0.00951          0         61       1280:  63%|██████▎   | 40/63
+     10/149      6.92G    0.02614   0.009647          0         76       1280:  73%|███████▎  | 46/63
+     10/149      6.92G    0.02613    0.00963          0         71       1280:  76%|███████▌  | 48/63
+     10/149      6.92G      0.026    0.00965          0         64       1280:  84%|████████▍ | 53/63
+     10/149      6.92G    0.02592   0.009631          0         79       1280:  89%|████████▉ | 56/63
+     10/149      6.92G    0.02588   0.009598          0         65       1280:  92%|█████████▏| 58/63
+     10/149      6.92G    0.02579   0.009659          0         47       1280: 100%|██████████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size       0.74██████| 63/63
+  0%|          | 0/63 [00:00<?, ?it/s]tances          P          R      mAP50   mAP50-95: 100%|███████
+     12/149      6.92G    0.02173   0.009549          0         79       1280:   3%|â–Ž         | 2/63 [
+     12/149      6.92G    0.02111   0.009075          0         86       1280:   6%|â–‹         | 4/63 [
+     12/149      6.92G    0.02451   0.009548          0         67       1280:  16%|█▌        | 10/63
+     12/149      6.92G    0.02207   0.009413          0         84       1280:  29%|██▊       | 18/63
+     12/149      6.92G    0.02219   0.009307          0         68       1280:  35%|███▍      | 22/63
+     12/149      6.92G    0.02191   0.009331          0         82       1280:  41%|████▏     | 26/63
+     12/149      6.92G    0.02184    0.00928          0         73       1280:  46%|████▌     | 29/63
+     12/149      6.92G    0.02188   0.009394          0         88       1280:  54%|█████▍    | 34/63
+     12/149      6.92G    0.02185   0.009426          0         90       1280:  56%|█████▌    | 35/63
+     12/149      6.92G     0.0223   0.009397          0         67       1280:  67%|██████▋   | 42/63
+     12/149      6.92G    0.02231   0.009361          0         74       1280:  76%|███████▌  | 48/63
+     12/149      6.92G    0.02227   0.009386          0         85       1280:  79%|███████▉  | 50/63
+     12/149      6.92G    0.02228    0.00938          0         63       1280:  86%|████████▌ | 54/63
+     12/149      6.92G     0.0223   0.009341          0         99       1280:  92%|█████████▏| 58/63
+     12/149      6.92G    0.02236   0.009435          0        115       1280:  97%|█████████▋| 61/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.728██████| 63/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.727:  50%|█████
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+     15/149      6.92G    0.02108   0.009471          0         62       1280:   6%|â–‹         | 4/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+     15/149      6.92G    0.02081   0.009127          0         75       1280:   8%|â–Š         | 5/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.818:   0%|
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.749:  25%|██▌
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.751:  25%|██▌
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+     19/149      6.92G    0.01921    0.01001          0         96       1280:   2%|▏         | 1/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     19/149      6.92G    0.01793   0.008058          0         57       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01736   0.007184          0         74       1280:   2%|▏         | 1/63 [
+     20/149      6.92G    0.01648   0.006719          0         58       1280:   3%|â–Ž         | 2/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+     20/149      6.92G    0.01618   0.006801          0         69       1280:   5%|▍         | 3/63 [
+  0%|          | 0/63 [00:00<?, ?it/s]tances          P          R      mAP50   mAP50-95: 100%|███████
+     21/149      6.92G    0.01556   0.009209          0         70       1280:   5%|▍         | 3/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+     21/149      6.92G    0.01436   0.008374          0         73       1280:   6%|â–‹         | 4/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.816:   0%|
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+     23/149      6.92G    0.01407   0.005771          0         51       1280:   8%|â–Š         | 5/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     23/149      6.92G    0.01577   0.005913          0         78       1280:  14%|█▍        | 9/63 [
+     24/149      6.92G    0.01628   0.007346          0         83       1280:   2%|▏         | 1/63 [
+     24/149      6.92G    0.01525    0.00753          0         83       1280:  10%|â–‰         | 6/63 [
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+     24/149      6.92G    0.01596   0.007379          0         65       1280:  21%|██        | 13/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.784:  50%|█████
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+  0%|          | 0/63 [00:00<?, ?it/s]tances          P          R      mAP50   mAP50-95: 100%|███████
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+     26/149      6.92G    0.01723   0.008207          0         71       1280:   5%|▍         | 3/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+     27/149      6.92G    0.01494   0.007127          0         77       1280:   2%|▏         | 1/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+     27/149      6.92G    0.01493   0.006791          0         74       1280:  14%|█▍        | 9/63 [
+  0%|          | 0/63 [00:00<?, ?it/s]tances          P          R      mAP50   mAP50-95: 100%|███████
+     28/149      6.92G    0.01756     0.0072          0         72       1280:   3%|â–Ž         | 2/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+     28/149      6.92G    0.01679   0.007039          0         89       1280:  13%|█▎        | 8/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+     29/149      6.92G    0.01532   0.006462          0         83       1280:   5%|▍         | 3/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+     29/149      6.92G    0.01351   0.006348          0         74       1280:  14%|█▍        | 9/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.814:  25%|██▌
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.821:  50%|█████
+  0%|          | 0/63 [00:00<?, ?it/s]tances          P          R      mAP50   mAP50-95: 100%|███████
+     32/149      6.92G    0.01331   0.006046          0         66       1280:  10%|â–‰         | 6/63 [
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+     32/149      6.92G    0.01423   0.005969          0         48       1280:  17%|█▋        | 11/63
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+     33/149      6.92G    0.01213   0.006171          0         69       1280:   6%|â–‹         | 4/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+     33/149      6.92G    0.01158   0.006151          0         87       1280:  11%|â–ˆ         | 7/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.811:  50%|█████
+  0%|          | 0/63 [00:00<?, ?it/s]tances          P          R      mAP50   mAP50-95: 100%|███████
+     35/149      6.92G    0.01393   0.006183          0         76       1280:   2%|▏         | 1/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+     35/149      6.92G    0.01398   0.006521          0         65       1280:   8%|â–Š         | 5/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.832:  50%|█████
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.843:  25%|██▌
+                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|███████
+     38/149      6.92G    0.01351   0.006319          0         72       1280:   6%|â–‹         | 4/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+     38/149      6.92G    0.01133   0.006638          0         93       1280:  14%|█▍        | 9/63 [
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.805:  25%|██▌
+                 Class     Images  Instances          P          R      mAP50   mAP50-95:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size      0.788:   0%|
+     41/149      6.92G    0.01194   0.004828          0         64       1280:   2%|▏         | 1/63 [
+     41/149      6.92G    0.01013   0.005716          0         64       1280:  11%|â–ˆ         | 7/63 [
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+     41/149      6.92G    0.01094   0.005835          0         75       1280:  17%|█▋        | 11/63
+    gotit = waiter.acquire(True, timeout)imeout) batch -------------------------------------------------------------
+    gotit = waiter.acquire(True, timeout)imeout) batch -------------------------------------------------------------
\ No newline at end of file
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/requirements.txt b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5a80c24390ca9a31f38b0630d7799dbc2def0735
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/requirements.txt
@@ -0,0 +1,216 @@
+absl-py==1.1.0
+aiohttp==3.8.1
+aiosignal==1.2.0
+argon2-cffi-bindings==21.2.0
+argon2-cffi==21.3.0
+astor==0.8.1
+asttokens==2.0.5
+astunparse==1.6.3
+async-timeout==4.0.1
+attrs==21.4.0
+awkward==0.14.0
+backcall==0.2.0
+beautifulsoup4==4.11.1
+bleach==4.1.0
+blinker==1.4
+bottleneck==1.3.4
+brotlipy==0.7.0
+cachetools==4.2.2
+certifi==2022.12.7
+cffi==1.15.0
+chardet==4.0.0
+charset-normalizer==2.0.4
+click==8.0.4
+cloudpickle==2.0.0
+colorama==0.4.4
+commonmark==0.9.1
+cramjam==2.5.0
+cryptography==3.4.8
+cycler==0.11.0
+cython==0.29.28
+debugpy==1.5.1
+decorator==5.1.1
+defusedxml==0.7.1
+detectron2==0.5
+docker-pycreds==0.4.0
+energyflow==1.3.2
+entrypoints==0.4
+et-xmlfile==1.1.0
+executing==0.8.3
+fastjsonschema==2.15.1
+fastparquet==0.8.1
+filelock==3.7.1
+flatbuffers==1.12
+fonttools==4.25.0
+frozenlist==1.2.0
+fsspec==2022.5.0
+future==0.18.2
+fvcore==0.1.5.post20220506
+gast==0.4.0
+gdown==4.5.1
+gensim==4.1.2
+gitdb==4.0.7
+gitpython==3.1.18
+google-auth-oauthlib==0.4.4
+google-auth==2.6.0
+google-pasta==0.2.0
+graphviz==0.20.1
+grpcio==1.42.0
+h5py==3.6.0
+idna==3.4
+imageio==2.19.3
+importlib-metadata==4.11.3
+iniconfig==1.1.1
+ipykernel==6.9.1
+ipython-genutils==0.2.0
+ipython==8.3.0
+ipywidgets==7.6.5
+jedi==0.18.1
+jinja2==3.0.3
+joblib==1.1.0
+jsonschema==4.4.0
+jupyter-client==7.2.2
+jupyter-console==6.4.3
+jupyter-core==4.10.0
+jupyter==1.0.0
+jupyterlab-pygments==0.1.2
+jupyterlab-widgets==1.0.0
+keras-applications==1.0.8
+keras-preprocessing==1.1.2
+keras==2.9.0
+kiwisolver==1.4.2
+lbn==1.2.2
+libclang==14.0.1
+lime==0.2.0.1
+llvmlite==0.38.0
+markdown==3.3.4
+markupsafe==2.1.1
+matplotlib-inline==0.1.2
+matplotlib==3.5.1
+mistune==0.8.4
+mkl-fft==1.3.1
+mkl-random==1.2.2
+mkl-service==2.4.0
+mock==4.0.3
+modelstore==0.0.74
+multidict==5.2.0
+munkres==1.1.4
+nbclient==0.5.13
+nbconvert==6.4.4
+nbformat==5.3.0
+nest-asyncio==1.5.5
+networkx==2.8.3
+notebook==6.4.11
+numba==0.55.1
+numexpr==2.8.1
+numpy==1.21.5
+oauthlib==3.2.0
+opencv-python==4.7.0.68
+openpyxl==3.0.10
+opt-einsum==3.3.0
+packaging==21.3
+pandas==1.4.2
+pandocfilters==1.5.0
+parso==0.8.3
+pathtools==0.1.2
+pd4ml==0.3
+pexpect==4.8.0
+pickleshare==0.7.5
+pillow-heif==0.9.3
+pillow==9.0.1
+pip==21.2.4
+pluggy==1.0.0
+portalocker==2.3.0
+prometheus-client==0.13.1
+promise==2.3
+prompt-toolkit==3.0.20
+protobuf==3.19.6
+psutil==5.8.0
+ptyprocess==0.7.0
+pure-eval==0.2.2
+py==1.11.0
+pyasn1-modules==0.2.8
+pyasn1==0.4.8
+pycocotools==2.0.2
+pycparser==2.21
+pydot==1.4.2
+pygments==2.11.2
+pyjwt==2.1.0
+pyopenssl==21.0.0
+pyparsing==3.0.9
+pyrsistent==0.18.0
+pysocks==1.7.1
+pytest==7.1.2
+python-dateutil==2.8.2
+python-dotenv==0.21.1
+pytorch-model-summary==0.1.1
+pytz==2022.1
+pywavelets==1.3.0
+pyyaml==6.0
+pyzmq==22.3.0
+qtconsole==5.3.0
+qtpy==2.0.1
+requests-oauthlib==1.3.0
+requests-toolbelt==0.10.1
+requests==2.27.1
+rich==12.4.4
+roboflow==0.2.29
+rsa==4.7.2
+scikit-image==0.19.2
+scikit-learn==1.0.2
+scipy==1.7.3
+seaborn==0.11.2
+send2trash==1.8.0
+sentry-sdk==1.5.12
+setproctitle==1.2.2
+setuptools==67.3.2
+shap==0.40.0
+shortuuid==1.0.8
+sip==4.19.13
+six==1.16.0
+slicer==0.0.7
+smart-open==5.2.1
+smmap==4.0.0
+soupsieve==2.3.1
+stack-data==0.2.0
+tables==3.6.1
+tabulate==0.8.9
+tensorboard-data-server==0.6.1
+tensorboard-plugin-wit==1.6.0
+tensorboard==2.9.1
+tensorflow-decision-forests==0.2.6
+tensorflow-estimator==2.9.0
+tensorflow-io-gcs-filesystem==0.26.0
+tensorflow==2.9.1
+termcolor==1.1.0
+terminado==0.13.1
+testpath==0.5.0
+thop==0.1.1.post2209072238
+threadpoolctl==2.2.0
+tifffile==2022.5.4
+tomli==2.0.1
+torch==1.11.0
+torchaudio==0.11.0
+torchinfo==1.6.5
+torchvision==0.12.0
+tornado==6.1
+tqdm==4.64.0
+traitlets==5.1.1
+typing-extensions==4.1.1
+uproot-methods==0.9.2
+urllib3==1.26.9
+vector==0.8.5
+wandb==0.12.15
+wasserstein==1.0.1
+wcwidth==0.2.5
+webencodings==0.5.1
+werkzeug==2.0.3
+wget==3.2
+wheel==0.38.4
+widgetsnbextension==3.5.2
+wrapt==1.13.3
+wurlitzer==3.0.2
+xgboost==1.5.1
+yacs==0.1.6
+yarl==1.6.3
+zipp==3.8.0
\ No newline at end of file
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-metadata.json b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-metadata.json
new file mode 100644
index 0000000000000000000000000000000000000000..61a5d5fde5d73e682776407e8340a9746e3b5d8e
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-metadata.json
@@ -0,0 +1,35 @@
+{
+    "os": "Linux-3.10.0-1160.81.1.el7.x86_64-x86_64-with-glibc2.17",
+    "python": "3.9.12",
+    "heartbeatAt": "2023-02-23T22:23:17.091737",
+    "startedAt": "2023-02-23T22:23:12.379441",
+    "docker": null,
+    "gpu": "A100-SXM4-40GB",
+    "gpu_count": 8,
+    "cpu_count": 256,
+    "cuda": "11.0.228",
+    "args": [
+        "--img",
+        "1280",
+        "--batch",
+        "16",
+        "--epochs",
+        "150",
+        "--data",
+        "beetles.yaml",
+        "--weights",
+        "yolov5m.pt"
+    ],
+    "state": "running",
+    "program": "/projects/akhot2/group-01-phys371-sp2023/yolov5_model/train.py",
+    "codePath": "yolov5_model/train.py",
+    "git": {
+        "remote": "https://gitlab.engr.illinois.edu/akhot2/group-01-phys371-sp2023",
+        "commit": "593b911d70c928d2b7b54a597a3f8af0c60e615c"
+    },
+    "email": "khotayush@gmail.com",
+    "root": "/projects/akhot2/group-01-phys371-sp2023",
+    "host": "hal-dgx",
+    "username": "akhot2",
+    "executable": "/raid/projects/akhot2/conda/envs/akhot2/bin/python"
+}
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
new file mode 100644
index 0000000000000000000000000000000000000000..61d80b85806ce9e34b3e9e368ec8044acea5de5e
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
@@ -0,0 +1 @@
+{"best/epoch": 26, "best/precision": 0.9997816930242053, "best/recall": 1.0, "best/mAP_0.5": 0.995, "best/mAP_0.5:0.95": 0.850879398761624, "Labels": {"_type": "images/separated", "width": 1600, "height": 1600, "format": "jpg", "count": 2, "filenames": ["media/images/Labels_0_deb5d587a6efb91ecd69.jpg", "media/images/Labels_0_56974dde328e4058761d.jpg"], "captions": ["labels.jpg", "labels_correlogram.jpg"]}, "Mosaics": {"_type": "images/separated", "width": 1920, "height": 1920, "format": "jpg", "count": 3, "filenames": ["media/images/Mosaics_0_df6952e0614ae1359ee0.jpg", "media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg", "media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg"], "captions": ["train_batch0.jpg", "train_batch1.jpg", "train_batch2.jpg"]}, "train/box_loss": 0.012572210282087326, "train/obj_loss": 0.006082851439714432, "train/cls_loss": 0.0, "metrics/precision": 0.999808552035337, "metrics/recall": 1.0, "metrics/mAP_0.5": 0.995, "metrics/mAP_0.5:0.95": 0.7838830850552568, "val/box_loss": 0.01194077730178833, "val/obj_loss": 0.006499290466308594, "val/cls_loss": 0.0, "x/lr0": 0.007426, "x/lr1": 0.007426, "x/lr2": 0.007426, "_timestamp": 1677195825, "_runtime": 4833, "_step": 40, "_wandb": {"runtime": 4918}}
\ No newline at end of file
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug-internal.log b/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug-internal.log
new file mode 100644
index 0000000000000000000000000000000000000000..13d68ce272956d0370d56006cf33908d9d5fc4e0
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug-internal.log
@@ -0,0 +1,2047 @@
+2023-02-23 16:23:14,173 INFO    MainThread:139351 [internal.py:wandb_internal():90] W&B internal server running at pid: 139351, started at: 2023-02-23 16:23:14.171801
+2023-02-23 16:23:14,176 INFO    WriterThread:139351 [datastore.py:open_for_write():75] open: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/run-1o0qidel.wandb
+2023-02-23 16:23:14,178 DEBUG   SenderThread:139351 [sender.py:send():232] send: header
+2023-02-23 16:23:14,178 DEBUG   SenderThread:139351 [sender.py:send():232] send: run
+2023-02-23 16:23:14,188 INFO    SenderThread:139351 [sender.py:_maybe_setup_resume():489] checking resume status for None/YOLOv5/1o0qidel
+2023-02-23 16:23:14,335 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: check_version
+2023-02-23 16:23:14,347 INFO    SenderThread:139351 [dir_watcher.py:__init__():166] watching files in: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files
+2023-02-23 16:23:14,347 INFO    SenderThread:139351 [sender.py:_start_run_threads():811] run started: 1o0qidel with start time 1677190992
+2023-02-23 16:23:14,348 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:23:14,349 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:23:14,350 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: check_version
+2023-02-23 16:23:14,388 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: run_start
+2023-02-23 16:23:15,350 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:23:17,091 DEBUG   HandlerThread:139351 [meta.py:__init__():35] meta init
+2023-02-23 16:23:17,091 DEBUG   HandlerThread:139351 [meta.py:__init__():49] meta init done
+2023-02-23 16:23:17,091 DEBUG   HandlerThread:139351 [meta.py:probe():209] probe
+2023-02-23 16:23:17,101 DEBUG   HandlerThread:139351 [meta.py:_setup_git():199] setup git
+2023-02-23 16:23:17,189 DEBUG   HandlerThread:139351 [meta.py:_setup_git():206] setup git done
+2023-02-23 16:23:17,189 DEBUG   HandlerThread:139351 [meta.py:_save_pip():53] save pip
+2023-02-23 16:23:17,212 DEBUG   HandlerThread:139351 [meta.py:_save_pip():67] save pip done
+2023-02-23 16:23:17,216 DEBUG   HandlerThread:139351 [meta.py:_save_conda():74] save conda
+2023-02-23 16:23:17,415 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/requirements.txt
+2023-02-23 16:23:17,416 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/conda-environment.yaml
+2023-02-23 16:23:19,417 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:21,422 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:23,291 DEBUG   HandlerThread:139351 [meta.py:_save_conda():84] save conda done
+2023-02-23 16:23:23,291 DEBUG   HandlerThread:139351 [meta.py:probe():247] probe done
+2023-02-23 16:23:23,306 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:23:23,309 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:23:23,377 DEBUG   SenderThread:139351 [sender.py:send():232] send: telemetry
+2023-02-23 16:23:23,381 DEBUG   SenderThread:139351 [sender.py:send():232] send: files
+2023-02-23 16:23:23,381 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-metadata.json with policy now
+2023-02-23 16:23:23,428 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:23,428 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/conda-environment.yaml
+2023-02-23 16:23:23,428 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-metadata.json
+2023-02-23 16:23:23,780 INFO    Thread-11 :139351 [upload_job.py:push():137] Uploaded file /tmp/tmpsejb6_47wandb/1sjux09j-wandb-metadata.json
+2023-02-23 16:23:31,447 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:35,452 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:37,456 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:38,397 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:23:38,398 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:23:39,469 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:41,472 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:23:45,495 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/config.yaml
+2023-02-23 16:23:52,589 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:23:53,450 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:23:53,450 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:24:08,502 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:24:08,503 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:24:23,830 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:24:23,831 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:24:31,058 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:24:38,881 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:24:38,882 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:24:41,662 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:24:43,671 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:24:45,675 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:24:47,700 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:24:49,699 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:24:51,701 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:24:53,941 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:24:53,945 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:25:03,732 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:05,744 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:09,000 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:25:09,001 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:25:13,311 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:25:17,796 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:19,808 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:24,051 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:25:24,052 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:25:33,838 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:35,844 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:39,103 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:25:39,104 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:25:47,897 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:49,936 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:25:54,151 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:25:54,151 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:25:56,024 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:26:01,981 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:03,989 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:09,198 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:26:09,200 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:26:18,020 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:18,899 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:26:18,901 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:26:18,902 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:26:18,903 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:26:18,904 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:26:18,905 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:26:18,905 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:26:18,906 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:26:18,906 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:26:18,907 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:26:18,994 DEBUG   SenderThread:139351 [sender.py:send():232] send: files
+2023-02-23 16:26:18,994 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file media/images/Labels_0_deb5d587a6efb91ecd69.jpg with policy now
+2023-02-23 16:26:18,998 DEBUG   SenderThread:139351 [sender.py:send():232] send: files
+2023-02-23 16:26:19,004 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file media/images/Labels_0_56974dde328e4058761d.jpg with policy now
+2023-02-23 16:26:19,024 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:26:19,024 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_56974dde328e4058761d.jpg
+2023-02-23 16:26:19,024 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_deb5d587a6efb91ecd69.jpg
+2023-02-23 16:26:19,024 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images
+2023-02-23 16:26:19,024 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media
+2023-02-23 16:26:19,066 DEBUG   SenderThread:139351 [sender.py:send():232] send: files
+2023-02-23 16:26:19,067 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file media/images/Mosaics_0_df6952e0614ae1359ee0.jpg with policy now
+2023-02-23 16:26:19,079 DEBUG   SenderThread:139351 [sender.py:send():232] send: files
+2023-02-23 16:26:19,081 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg with policy now
+2023-02-23 16:26:19,084 DEBUG   SenderThread:139351 [sender.py:send():232] send: files
+2023-02-23 16:26:19,086 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg with policy now
+2023-02-23 16:26:19,195 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:26:19,197 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:26:19,198 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:26:19,201 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:26:19,392 INFO    Thread-13 :139351 [upload_job.py:push():137] Uploaded file /tmp/tmpsejb6_47wandb/295urbxw-media/images/Labels_0_56974dde328e4058761d.jpg
+2023-02-23 16:26:19,400 INFO    Thread-12 :139351 [upload_job.py:push():137] Uploaded file /tmp/tmpsejb6_47wandb/fkkvf1j5-media/images/Labels_0_deb5d587a6efb91ecd69.jpg
+2023-02-23 16:26:19,472 INFO    Thread-15 :139351 [upload_job.py:push():137] Uploaded file /tmp/tmpsejb6_47wandb/1i8rjfpd-media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg
+2023-02-23 16:26:19,476 INFO    Thread-16 :139351 [upload_job.py:push():137] Uploaded file /tmp/tmpsejb6_47wandb/w5d3j7fi-media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg
+2023-02-23 16:26:19,506 INFO    Thread-14 :139351 [upload_job.py:push():137] Uploaded file /tmp/tmpsejb6_47wandb/2l609qj2-media/images/Mosaics_0_df6952e0614ae1359ee0.jpg
+2023-02-23 16:26:20,027 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:20,027 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:26:20,028 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg
+2023-02-23 16:26:20,028 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg
+2023-02-23 16:26:20,028 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_created():213] file/dir created: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_df6952e0614ae1359ee0.jpg
+2023-02-23 16:26:20,028 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images
+2023-02-23 16:26:22,040 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:24,286 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:26:24,287 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:26:32,075 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:34,083 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:36,088 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:37,681 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:26:39,349 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:26:39,350 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:26:48,184 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:50,191 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:26:54,409 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:26:54,410 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:27:02,320 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:04,324 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:09,471 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:27:09,472 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:27:16,433 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:18,470 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:20,317 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:27:20,487 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:24,526 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:27:24,526 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:27:32,610 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:34,623 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:39,590 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:27:39,591 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:27:46,691 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:48,695 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:27:54,648 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:27:54,649 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:28:02,744 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:28:02,774 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:04,824 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:09,701 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:28:09,702 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:28:15,904 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:17,057 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:28:17,059 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:28:17,060 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:28:17,061 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:28:17,062 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:28:17,062 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:28:17,064 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:28:17,064 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:28:17,065 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:28:17,065 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:28:17,066 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:28:17,066 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:28:17,067 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:28:17,068 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:28:17,908 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:17,909 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:28:19,931 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:24,760 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:28:24,761 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:28:32,040 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:34,058 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:39,824 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:28:39,825 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:28:45,221 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:28:46,210 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:48,214 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:52,260 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:28:54,880 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:28:54,881 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:29:02,290 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:08,363 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:09,937 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:29:09,938 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:29:16,426 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:18,454 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:22,507 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:24,994 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:29:24,995 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:29:28,029 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:29:30,601 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:32,611 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:36,663 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:38,711 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:40,058 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:29:40,059 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:29:46,765 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:52,818 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:29:55,113 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:29:55,114 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:30:00,867 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:02,899 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:06,908 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:09,590 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:30:10,168 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:30:10,169 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:30:14,952 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:15,545 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:30:15,547 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:30:15,551 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:30:15,551 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:30:15,553 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:30:15,553 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:30:15,556 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:30:15,556 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:30:15,558 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:30:15,558 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:30:15,560 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:30:15,560 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:30:15,560 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:30:15,561 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:30:15,956 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:30:16,958 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:18,985 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:21,014 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:23,018 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:25,221 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:30:25,227 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:30:31,061 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:37,073 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:40,295 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:30:40,296 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:30:45,136 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:47,140 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:51,211 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:51,438 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:30:53,215 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:30:55,349 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:30:55,350 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:30:59,289 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:01,291 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:07,305 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:10,408 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:31:10,408 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:31:15,360 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:21,420 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:23,423 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:25,476 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:31:25,477 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:31:29,515 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:31,533 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:33,516 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:31:35,582 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:37,586 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:40,545 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:31:40,546 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:31:43,599 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:45,621 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:50,660 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:31:55,603 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:31:55,604 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:31:58,711 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:06,760 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:10,667 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:32:10,668 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:32:12,815 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:13,610 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:32:13,613 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:32:13,615 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:32:13,615 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:32:13,616 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:32:13,616 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:32:13,618 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:32:13,618 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:32:13,620 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:32:13,620 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:32:13,621 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:32:13,621 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:32:13,621 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:32:13,623 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:32:13,818 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:32:14,820 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:14,897 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:32:16,825 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:20,891 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:25,724 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:32:25,725 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:32:26,945 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:28,981 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:35,014 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:37,024 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:40,787 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:32:40,788 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:32:43,040 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:51,076 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:55,913 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:32:55,914 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:32:57,136 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:32:57,319 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:32:59,160 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:05,198 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:10,981 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:33:10,982 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:33:13,219 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:21,269 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:26,040 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:33:26,041 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:33:27,418 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:29,417 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:35,447 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:38,940 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:33:41,101 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:33:41,102 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:33:41,507 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:43,510 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:49,538 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:51,540 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:33:56,174 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:33:56,175 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:33:57,613 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:05,679 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:11,193 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:34:11,193 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:34:11,196 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:34:11,196 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:34:11,201 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:34:11,201 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:34:11,203 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:34:11,203 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:34:11,204 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:34:11,205 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:34:11,206 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:34:11,206 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:34:11,206 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:34:11,208 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:34:11,232 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:34:11,232 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:34:11,708 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:11,708 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:34:13,713 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:15,721 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:19,748 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:20,387 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:34:26,290 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:34:26,290 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:34:27,824 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:35,905 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:41,351 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:34:41,352 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:34:41,949 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:43,973 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:50,006 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:56,025 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:34:56,430 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:34:56,431 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:34:58,028 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:01,860 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:35:04,066 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:06,090 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:11,487 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:35:11,487 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:35:12,148 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:20,187 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:26,214 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:26,541 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:35:26,541 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:35:28,218 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:34,260 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:36,299 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:40,323 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:41,606 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:35:41,606 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:35:42,361 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:43,856 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:35:49,443 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:55,476 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:35:56,668 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:35:56,669 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:36:03,594 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:04,634 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:36:04,635 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:36:04,636 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:36:04,638 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:36:05,601 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:05,601 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:36:07,630 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:11,721 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:36:11,722 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:36:17,680 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:19,684 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:21,720 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:26,781 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:36:26,784 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:36:26,854 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:36:33,878 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:35,937 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:41,842 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:36:41,843 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:36:48,048 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:50,068 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:36:56,898 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:36:56,899 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:37:02,152 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:04,157 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:10,070 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:37:11,953 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:37:11,954 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:37:18,219 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:20,224 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:27,018 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:37:27,019 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:37:32,264 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:34,268 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:42,069 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:37:42,070 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:37:46,301 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:48,308 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:37:52,001 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:37:57,129 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:37:57,130 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:38:01,607 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:38:01,609 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:38:01,614 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:38:01,614 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:38:01,617 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:38:01,618 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:38:01,620 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:38:01,621 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:38:01,623 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:38:01,624 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:38:01,628 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:38:01,628 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:38:01,628 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:38:01,630 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:38:02,347 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:02,347 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:38:04,352 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:06,359 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:12,189 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:38:12,190 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:38:16,396 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:18,400 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:27,252 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:38:27,253 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:38:32,441 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:34,237 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:38:34,446 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:42,316 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:38:42,316 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:38:46,485 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:48,515 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:38:57,379 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:38:57,380 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:39:04,592 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:39:06,598 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:39:12,440 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:39:12,441 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:39:15,784 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:39:24,666 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:39:26,670 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:39:27,513 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:39:27,514 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:39:42,575 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:39:42,575 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:39:44,777 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:39:46,782 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:39:57,184 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:39:57,740 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:39:57,741 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:40:00,940 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:02,944 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:12,797 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:40:12,797 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:40:14,038 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:14,381 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:40:14,383 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:40:14,385 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:40:14,385 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:40:14,387 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:40:14,387 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:40:14,388 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:40:14,389 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:40:14,390 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:40:14,390 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:40:14,391 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:40:14,391 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:40:14,392 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:40:14,393 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:40:15,042 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:40:16,046 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:18,052 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:27,855 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:40:27,856 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:40:30,097 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:38,978 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:40:42,914 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:40:42,914 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:40:44,193 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:46,200 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:40:57,979 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:40:57,980 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:40:58,293 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:00,384 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:02,398 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:13,044 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:41:13,045 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:41:14,474 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:16,477 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:20,777 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:41:28,145 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:41:28,146 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:41:28,528 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:30,544 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:43,378 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:41:43,379 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:41:44,685 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:46,690 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:41:58,488 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:41:58,488 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:41:58,758 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:00,790 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:02,593 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:42:04,881 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:42:04,883 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:42:04,884 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:42:04,886 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:42:05,835 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:42:06,838 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:08,841 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:13,687 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:42:13,688 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:42:20,936 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:22,940 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:28,740 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:42:28,741 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:42:35,045 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:37,048 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:43,794 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:42:43,795 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:42:44,233 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:42:51,121 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:53,137 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:42:58,853 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:42:58,854 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:43:05,197 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:07,201 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:13,912 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:43:13,915 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:43:21,253 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:23,260 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:25,699 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:43:28,972 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:43:28,972 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:43:35,352 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:37,358 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:44,035 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:43:44,036 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:43:50,497 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:50,884 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:43:50,884 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:43:50,887 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:43:50,887 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:43:50,889 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:43:50,889 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:43:50,890 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:43:50,890 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:43:50,891 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:43:50,892 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:43:50,893 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:43:50,893 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:43:50,893 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:43:50,894 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:43:51,500 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:43:52,551 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:43:59,090 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:43:59,091 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:44:04,676 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:06,705 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:07,727 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:44:14,146 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:44:14,150 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:44:18,891 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:20,922 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:29,209 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:44:29,210 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:44:35,189 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:37,193 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:44,265 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:44:44,266 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:44:49,225 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:50,171 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:44:51,231 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:44:59,320 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:44:59,320 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:45:03,353 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:05,360 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:14,381 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:45:14,381 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:45:19,462 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:21,483 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:29,442 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:45:29,443 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:45:32,520 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:45:33,584 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:35,617 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:44,497 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:45:44,498 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:45:47,708 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:48,866 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:45:48,868 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:45:48,870 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:45:48,870 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:45:48,872 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:45:48,872 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:45:48,873 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:45:48,874 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:45:48,875 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:45:48,875 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:45:48,876 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:45:48,876 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:45:48,876 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:45:48,878 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:45:49,752 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:49,752 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:45:51,766 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:45:59,715 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:45:59,716 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:46:02,831 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:46:14,713 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:46:14,772 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:46:14,773 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:46:16,954 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:46:18,981 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:46:29,862 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:46:29,863 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:46:31,182 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:46:33,191 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:46:45,065 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:46:45,065 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:46:47,334 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:46:49,419 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:46:57,527 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:47:00,247 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:47:00,248 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:47:01,509 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:03,515 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:15,310 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:47:15,311 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:47:15,590 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:17,596 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:30,433 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:47:30,434 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:47:31,656 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:33,660 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:39,848 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:47:45,494 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:47:45,495 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:47:45,636 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:47:45,639 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:47:45,640 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:47:45,641 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:47:45,643 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:47:45,643 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:47:45,644 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:47:45,645 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:47:45,646 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:47:45,646 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:47:45,647 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:47:45,648 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:47:45,648 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:47:45,649 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:47:45,701 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:45,702 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:47:47,707 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:49,713 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:47:59,809 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:48:00,549 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:48:00,549 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:48:01,864 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:48:15,615 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:48:15,615 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:48:15,969 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:48:21,998 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:48:30,049 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:48:30,679 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:48:30,680 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:48:32,072 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:48:44,125 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:48:45,746 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:48:45,746 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:48:46,130 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:48:58,193 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:00,198 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:00,802 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:49:00,806 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:49:04,501 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:49:14,349 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:15,868 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:49:15,869 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:49:16,356 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:27,420 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:29,429 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:30,921 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:49:30,922 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:49:42,473 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:42,666 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:49:42,668 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:49:42,668 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:49:42,670 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:49:43,476 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:49:44,500 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:45,974 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:49:45,975 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:49:46,526 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:46,886 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:49:57,633 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:49:59,637 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:01,022 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:50:01,026 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:50:11,682 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:13,709 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:16,125 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:50:16,125 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:50:25,762 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:27,790 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:29,099 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:50:29,808 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:31,367 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:50:31,370 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:50:41,925 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:44,004 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:46,453 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:50:46,457 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:50:56,165 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:50:58,173 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:01,509 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:51:01,510 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:51:10,243 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:11,409 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:51:12,252 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:16,561 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:51:16,563 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:51:24,314 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:26,342 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:28,385 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:31,618 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:51:31,625 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:51:39,754 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:51:39,756 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:51:39,757 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:51:39,758 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:51:40,484 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:40,485 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:51:42,488 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:44,513 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:46,694 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:51:46,696 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:51:53,375 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:51:54,613 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:51:56,624 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:01,743 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:52:01,744 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:52:10,819 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:16,801 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:52:16,801 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:52:23,936 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:25,940 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:31,854 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:52:31,855 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:52:36,108 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:52:38,074 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:40,105 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:42,135 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:46,926 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:52:46,927 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:52:54,228 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:52:56,267 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:01,978 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:53:01,985 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:53:08,366 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:10,376 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:17,079 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:53:17,079 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:53:18,645 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:53:22,500 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:24,543 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:26,561 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:32,133 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:53:32,134 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:53:36,584 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:37,453 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:53:37,454 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:53:37,455 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:53:37,456 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:53:37,457 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:53:37,457 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:53:37,458 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:53:37,458 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:53:37,459 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:53:37,459 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:53:37,460 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:53:37,460 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:53:37,460 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:53:37,461 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:53:37,613 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:53:38,615 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:40,620 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:42,628 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:47,189 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:53:47,190 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:53:52,648 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:53:54,669 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:00,379 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:54:02,237 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:54:02,238 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:54:06,779 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:08,783 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:17,301 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:54:17,302 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:54:22,837 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:24,848 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:32,356 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:54:32,357 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:54:36,887 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:38,891 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:42,103 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:54:47,415 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:54:47,416 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:54:50,956 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:54:52,962 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:02,478 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:55:02,479 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:55:06,999 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:17,535 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:55:17,536 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:55:21,047 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:23,061 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:23,922 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:55:32,594 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:55:32,595 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:55:34,821 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:55:34,823 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:55:34,824 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:55:34,824 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:55:34,825 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:55:34,825 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:55:34,826 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:55:34,827 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:55:34,828 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:55:34,828 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:55:34,829 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:55:34,829 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:55:34,829 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:55:34,830 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:55:35,087 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:35,087 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:55:37,107 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:39,112 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:47,646 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:55:47,648 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:55:51,149 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:55:53,153 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:02,696 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:56:02,698 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:56:05,623 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:56:07,206 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:09,228 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:17,753 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:56:17,754 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:56:21,298 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:23,303 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:32,806 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:56:32,806 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:56:35,390 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:37,410 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:47,855 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:56:47,855 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:56:48,023 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:56:51,543 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:56:53,560 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:02,954 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:57:02,957 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:57:05,637 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:07,642 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:18,017 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:57:18,022 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:57:18,750 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:20,756 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:22,772 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:26,625 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:57:26,626 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:57:26,627 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:57:26,629 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:57:26,783 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:26,784 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:57:28,789 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:29,768 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:57:30,794 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:33,092 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:57:33,093 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:57:42,918 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:44,944 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:48,143 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:57:48,147 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:57:57,129 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:57:59,137 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:03,194 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:58:03,194 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:58:11,237 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:12,230 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:58:13,254 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:18,549 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:58:18,549 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:58:27,384 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:29,388 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:33,604 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:58:33,611 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:58:41,435 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:43,440 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:48,682 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:58:48,683 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:58:54,361 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:58:55,530 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:58:57,575 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:03,734 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:59:03,739 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:59:11,737 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:13,107 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 16:59:13,108 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 16:59:13,108 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 16:59:13,112 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 16:59:13,775 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:13,776 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 16:59:15,814 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:18,804 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:59:18,804 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:59:25,892 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:27,908 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:29,915 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:33,854 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:59:33,855 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:59:36,566 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 16:59:42,014 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:44,032 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:48,902 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 16:59:48,903 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 16:59:56,127 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 16:59:58,151 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:03,951 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:00:03,960 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:00:09,300 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:11,311 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:13,327 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:18,370 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:00:19,023 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:00:19,024 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:00:25,399 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:27,406 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:34,076 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:00:34,078 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:00:39,450 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:41,457 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:49,136 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:00:49,137 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:00:53,555 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:00:55,575 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:01,056 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:01:04,195 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:01:04,195 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:01:09,704 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:10,381 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:01:10,394 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:01:10,395 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:01:10,400 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:01:10,414 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:01:10,414 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:01:10,425 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:01:10,426 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:01:10,442 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:01:10,442 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:01:10,445 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:01:10,445 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:01:10,445 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:01:10,463 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:01:10,707 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:01:11,715 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:13,729 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:19,260 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:01:19,261 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:01:23,804 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:25,826 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:27,853 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:34,315 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:01:34,316 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:01:39,885 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:42,578 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:01:49,376 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:01:49,376 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:01:53,968 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:01:55,985 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:04,431 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:02:04,434 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:02:08,038 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:10,042 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:19,489 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:02:19,490 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:02:24,126 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:24,653 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:02:26,152 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:34,546 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:02:34,547 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:02:38,326 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:40,348 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:49,604 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:02:49,605 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:02:54,505 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:02:56,523 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:04,661 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:03:04,662 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:03:07,143 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:03:08,603 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:08,892 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:03:08,893 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:03:08,894 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:03:08,897 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:03:09,607 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:03:10,609 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:12,627 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:19,747 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:03:19,747 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:03:22,698 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:24,702 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:34,805 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:03:34,805 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:03:38,843 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:39,848 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:48,780 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:03:49,873 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:03:49,874 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:03:51,931 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:03:53,936 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:05,048 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:04:05,049 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:04:06,030 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:08,035 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:20,249 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:04:20,249 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:04:22,071 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:24,076 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:30,464 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:04:35,306 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:04:35,306 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:04:36,106 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:38,132 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:50,284 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:04:50,370 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:04:50,371 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:04:52,288 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:05,457 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:05:05,458 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:05:06,433 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:06,952 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:05:06,953 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:05:06,954 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:05:06,955 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:05:07,435 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:05:08,438 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:10,462 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:12,284 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:05:20,558 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:20,673 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:05:20,674 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:05:22,562 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:24,565 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:35,751 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:05:35,751 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:05:36,692 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:38,695 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:50,762 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:50,824 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:05:50,825 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:05:52,799 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:05:54,644 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:06:05,889 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:06:05,893 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:06:06,922 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:06:08,945 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:06:20,967 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:06:20,968 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:06:21,021 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:06:23,052 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:06:35,130 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:06:36,014 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:06:36,015 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:06:36,853 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:06:37,137 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:06:51,077 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:06:51,078 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:06:51,182 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:06:53,192 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:04,347 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:04,647 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:07:04,648 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:07:04,649 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:07:04,651 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:07:05,352 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:07:06,137 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:07:06,138 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:07:06,355 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:08,360 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:18,438 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:18,520 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:07:20,443 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:21,187 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:07:21,187 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:07:22,462 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:34,553 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:36,250 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:07:36,257 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:07:36,654 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:48,771 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:50,795 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:07:51,346 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:07:51,349 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:08:00,573 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:08:02,915 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:04,913 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:06,408 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:08:06,409 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:08:18,994 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:21,006 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:21,509 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:08:21,512 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:08:33,073 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:35,089 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:36,588 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:08:36,588 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:08:42,581 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:08:47,203 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:49,210 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:08:51,649 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:08:51,650 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:09:01,732 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:09:01,734 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:09:01,734 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:09:01,736 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:09:02,255 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:09:03,270 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:05,304 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:06,701 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:09:06,702 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:09:17,354 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:19,379 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:21,771 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:09:21,771 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:09:24,158 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:09:31,465 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:33,487 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:36,829 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:09:36,830 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:09:47,549 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:49,574 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:09:51,877 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:09:51,881 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:10:01,635 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:03,639 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:05,847 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:10:06,940 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:10:06,941 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:10:15,674 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:17,700 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:21,997 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:10:21,999 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:10:31,849 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:33,883 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:37,059 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:10:37,060 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:10:45,013 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:47,050 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:48,488 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:10:52,142 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:10:52,142 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:10:59,127 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:10:59,752 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:10:59,754 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:10:59,755 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:10:59,757 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:11:00,131 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:11:01,156 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:03,163 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:07,218 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:11:07,222 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:11:15,263 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:17,270 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:22,271 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:11:22,274 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:11:29,433 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:31,173 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:11:31,438 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:37,378 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:11:37,379 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:11:43,567 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:45,571 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:11:52,444 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:11:52,445 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:11:59,692 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:01,709 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:07,501 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:12:07,502 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:12:13,639 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:12:13,737 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:15,743 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:22,556 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:12:22,561 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:12:27,785 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:29,792 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:37,630 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:12:37,630 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:12:43,845 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:45,854 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:49,371 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:12:49,372 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:12:49,373 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:12:49,375 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:12:49,882 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:49,882 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:12:51,889 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:52,684 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:12:52,684 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:12:53,893 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:12:55,416 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:13:03,992 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:06,005 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:07,756 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:13:07,756 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:13:10,043 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:20,150 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:22,158 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:22,845 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:13:22,845 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:13:24,163 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:34,246 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:36,256 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:37,290 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:13:37,905 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:13:37,905 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:13:38,261 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:50,307 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:52,327 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:13:52,960 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:13:52,962 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:13:54,351 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:04,492 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:06,511 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:08,049 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:14:08,050 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:14:08,569 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:18,706 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:20,002 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:14:20,711 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:22,716 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:23,101 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:14:23,101 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:14:32,765 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:34,775 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:35,255 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:14:35,258 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:14:35,266 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:14:35,279 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:14:35,779 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:14:36,794 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:38,148 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:14:38,149 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:14:38,799 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:48,895 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:50,932 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:14:53,198 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:14:53,199 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:15:02,332 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:15:05,097 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:07,172 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:08,247 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:15:08,248 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:15:18,226 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:20,231 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:23,313 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:15:23,319 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:15:32,300 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:34,320 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:36,325 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:38,370 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:15:38,371 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:15:44,670 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:15:48,423 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:50,447 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:15:53,429 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:15:53,430 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:16:02,571 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:04,575 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:08,513 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:16:08,514 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:16:18,631 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:20,635 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:23,571 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:16:23,571 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:16:27,122 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:16:32,744 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:34,007 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:16:34,009 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:16:34,018 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:16:34,018 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:16:34,026 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:16:34,026 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:16:34,034 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:16:34,034 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:16:34,046 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:16:34,046 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:16:34,054 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:16:34,054 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:16:34,055 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:16:34,063 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:16:34,749 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:34,749 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:16:36,760 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:38,628 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:16:38,629 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:16:48,863 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:16:53,688 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:16:53,689 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:17:02,971 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:04,975 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:08,744 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:17:08,745 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:17:09,260 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:17:17,050 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:19,054 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:23,798 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:17:23,799 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:17:31,102 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:33,108 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:38,853 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:17:38,854 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:17:47,191 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:49,226 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:17:51,210 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:17:53,911 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:17:53,912 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:18:01,332 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:03,336 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:08,969 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:18:08,970 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:18:17,428 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:19,449 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:24,133 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:18:24,133 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:18:31,511 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:32,122 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:18:32,124 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:18:32,125 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:18:32,127 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:18:32,512 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:18:32,657 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:18:33,515 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:35,519 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:39,196 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:18:39,197 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:18:47,591 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:49,607 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:18:54,256 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:18:54,257 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:19:01,673 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:03,694 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:09,314 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:19:09,321 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:19:14,497 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:19:15,769 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:17,774 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:19,779 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:24,385 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:19:24,386 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:19:31,932 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:33,938 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:39,450 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:19:39,451 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:19:46,016 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:48,019 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:19:54,506 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:19:54,507 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:19:56,767 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:19:59,150 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:01,183 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:03,232 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:09,778 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:20:09,779 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:20:15,386 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:17,386 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:24,835 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:20:24,836 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:20:29,505 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:30,422 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:20:30,424 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:20:30,425 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:20:30,427 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:20:30,507 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:20:31,511 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:33,519 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:39,019 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:20:39,889 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:20:39,890 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:20:45,566 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:47,598 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:20:54,945 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:20:54,946 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:20:59,656 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:01,664 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:10,000 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:21:10,000 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:21:15,747 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:17,755 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:20,969 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:21:25,061 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:21:25,062 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:21:29,854 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:31,879 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:40,130 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:21:40,132 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:21:46,058 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:48,060 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:21:55,198 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:21:55,199 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:22:00,134 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:02,140 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:03,450 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:22:10,271 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:22:10,272 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:22:14,230 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:16,239 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:25,324 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:22:25,325 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:22:29,543 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:22:29,544 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:22:29,545 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:22:29,546 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:22:30,319 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:30,320 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:22:32,325 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:34,347 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:40,382 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:22:40,383 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:22:44,449 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:45,673 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:22:46,470 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:22:55,458 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:22:55,462 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:23:00,575 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:02,579 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:10,533 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:23:10,535 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:23:13,671 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:15,695 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:25,614 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:23:25,614 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:23:27,699 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:23:27,799 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:29,804 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:40,682 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:23:40,686 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:23:41,886 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:43,893 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:23:55,790 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:23:55,803 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:23:58,054 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:00,079 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:10,061 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:24:10,871 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:24:10,872 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:24:12,196 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:14,200 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:26,039 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:24:26,040 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:24:27,741 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:24:27,742 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:24:27,743 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:24:27,745 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:24:28,270 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:28,271 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:24:30,294 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:32,333 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:41,127 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:24:41,128 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:24:42,381 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:44,405 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:52,256 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:24:56,203 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:24:56,204 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:24:56,513 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:24:58,537 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:00,542 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:11,391 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:25:11,391 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:25:12,603 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:14,608 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:26,457 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:25:26,458 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:25:26,695 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:28,725 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:34,342 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:25:41,541 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:25:41,542 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:25:42,802 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:56,651 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:25:56,651 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:25:56,917 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:25:58,953 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:11,706 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:26:11,707 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:26:13,026 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:15,032 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:16,668 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:26:26,920 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:26:26,921 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:26:27,084 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:27,200 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:26:27,202 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:26:27,204 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:26:27,207 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:26:28,088 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:26:29,091 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:31,098 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:42,063 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:26:42,064 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:26:43,145 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:45,149 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:57,148 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:26:57,152 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:26:57,277 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:26:58,575 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:26:59,300 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:01,323 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:12,218 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:27:12,219 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:27:12,446 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:14,452 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:27,296 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:27:27,297 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:27:28,585 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:30,586 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:40,694 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:27:42,447 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:27:42,452 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:27:42,706 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:44,710 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:56,770 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:27:57,518 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:27:57,519 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:27:58,786 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:12,579 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:28:12,580 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:28:12,844 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:18,113 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:28:18,115 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:28:18,117 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:28:18,119 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:28:18,883 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:18,883 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:28:20,914 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:22,337 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:28:22,940 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:27,658 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:28:27,664 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:28:32,978 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:34,983 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:36,994 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:42,792 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:28:42,794 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:28:49,171 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:51,200 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:28:57,847 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:28:57,848 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:29:03,263 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:04,465 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:29:05,269 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:07,274 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:12,912 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:29:12,913 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:29:19,327 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:21,348 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:27,963 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:29:27,963 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:29:33,418 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:35,446 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:37,451 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:43,019 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:29:43,019 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:29:46,708 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:29:49,528 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:51,564 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:29:58,080 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:29:58,081 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:30:03,757 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:04,410 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:30:04,411 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:30:04,411 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:30:04,413 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:30:04,760 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:30:05,783 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:07,787 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:13,131 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:30:13,132 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:30:16,892 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:18,899 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:28,197 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:30:28,204 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:30:28,908 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:30:33,025 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:35,076 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:43,283 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:30:43,284 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:30:47,196 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:49,201 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:30:58,333 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:30:58,336 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:31:03,299 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:05,322 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:11,302 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:31:13,393 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:31:13,394 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:31:17,402 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:19,416 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:28,454 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:31:28,455 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:31:31,510 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:33,514 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:43,509 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:31:43,509 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:31:47,560 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:49,566 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:31:52,602 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:31:58,568 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:31:58,569 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:32:01,633 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:02,525 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:32:02,526 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:32:02,527 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:32:02,529 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:32:02,635 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:32:03,638 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:05,640 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:13,642 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:32:13,643 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:32:15,680 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:17,684 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:28,736 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:32:28,737 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:32:31,739 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:33,749 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:34,234 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:32:43,788 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:32:43,789 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:32:45,839 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:47,854 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:32:58,849 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:32:58,865 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:32:59,942 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:01,964 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:04,009 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:13,938 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:33:13,938 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:33:16,050 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:33:16,076 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:18,136 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:29,031 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:33:29,032 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:33:32,241 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:34,252 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:44,162 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:33:44,162 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:33:46,352 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:48,366 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:33:58,330 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:33:59,219 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:33:59,219 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:34:00,425 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:01,267 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:34:01,268 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:34:01,269 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:34:01,270 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:34:01,456 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:34:02,458 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:04,474 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:14,287 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:34:14,288 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:34:16,595 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:18,599 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:29,356 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:34:29,356 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:34:29,666 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:31,681 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:41,161 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:34:43,744 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:44,425 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:34:44,425 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:34:45,749 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:34:59,491 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:34:59,491 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:34:59,926 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:01,954 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:14,013 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:14,550 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:35:14,551 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:35:16,022 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:23,295 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:35:29,620 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:35:29,621 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:35:30,162 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:32,167 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:44,233 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:44,677 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:35:44,677 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:35:46,241 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:35:59,796 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:35:59,797 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:35:59,976 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:35:59,977 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:35:59,978 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:35:59,982 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:36:00,332 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:00,332 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:36:02,359 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:04,419 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:06,204 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:36:14,565 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:14,844 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:36:14,845 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:36:16,580 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:28,697 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:29,894 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:36:29,894 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:36:30,702 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:32,722 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:44,769 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:44,957 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:36:44,958 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:36:46,778 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:36:48,252 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:36:58,825 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:00,020 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:37:00,020 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:37:00,831 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:12,882 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:14,886 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:15,083 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:37:15,083 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:37:28,943 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:30,166 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:37:30,166 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:37:30,285 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:37:30,968 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:43,065 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:44,116 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:45,231 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:37:45,232 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:37:57,545 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:37:57,547 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:37:57,548 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:37:57,551 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:37:58,178 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:37:58,178 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:38:00,199 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:00,292 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:38:00,292 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:38:12,315 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:12,488 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:38:14,316 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:15,364 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:38:15,365 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:38:26,412 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:28,427 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:30,431 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:30,450 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:38:30,450 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:38:42,517 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:44,521 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:45,504 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:38:45,505 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:38:54,247 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:38:56,550 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:38:58,574 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:00,727 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:39:00,736 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:39:10,678 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:12,703 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:14,706 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:15,808 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:39:15,815 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:39:26,782 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:28,789 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:30,900 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:39:30,901 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:39:35,729 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:39:40,844 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:42,851 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:45,949 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:39:45,950 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:39:56,479 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:39:56,481 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:39:56,481 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:39:56,484 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:39:56,915 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:39:56,916 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:39:58,924 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:00,931 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:01,176 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:40:01,176 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:40:10,982 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:12,988 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:16,222 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:40:16,223 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:40:17,575 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:40:27,075 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:29,158 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:31,275 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:40:31,275 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:40:41,267 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:43,272 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:46,364 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:40:46,364 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:40:55,342 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:57,347 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:40:59,366 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:01,201 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:41:01,422 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:41:01,425 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:41:10,494 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:12,507 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:16,487 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:41:16,487 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:41:24,558 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:26,565 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:31,547 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:41:31,548 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:41:40,669 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:42,675 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:43,194 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:41:46,599 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:41:46,599 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:41:54,756 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:54,945 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:41:54,946 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:41:54,947 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:41:54,949 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:41:55,760 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:41:56,762 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:41:58,780 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:01,648 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:42:01,649 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:42:10,865 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:12,878 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:16,707 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:42:16,707 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:42:25,029 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:25,669 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:42:27,042 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:29,064 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:31,765 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:42:31,766 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:42:41,119 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:46,822 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:42:46,822 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:42:55,174 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:42:57,188 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:01,880 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:43:01,881 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:43:07,004 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:43:09,232 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:11,238 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:16,940 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:43:16,940 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:43:25,282 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:27,288 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:32,025 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:43:32,026 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:43:39,460 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:41,465 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:45,704 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: partial_history
+2023-02-23 17:43:45,705 DEBUG   SenderThread:139351 [sender.py:send():232] send: history
+2023-02-23 17:43:45,706 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:43:45,708 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:43:46,510 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:43:47,200 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:43:47,201 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:43:47,515 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:43:48,889 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:43:49,524 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:01,583 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:02,307 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:44:02,307 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:44:03,589 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:17,390 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:44:17,390 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:44:17,730 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:19,738 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:30,855 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:44:31,860 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:32,595 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:44:32,596 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:44:33,866 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:45,970 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:44:47,661 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:44:47,661 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:44:47,988 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:45:02,098 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:45:02,715 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: stop_status
+2023-02-23 17:45:02,716 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: stop_status
+2023-02-23 17:45:04,118 INFO    Thread-7  :139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:45:10,767 WARNING MainThread:139351 [internal.py:wandb_internal():153] Internal process interrupt: 1
+2023-02-23 17:45:10,802 DEBUG   SenderThread:139351 [sender.py:send():232] send: telemetry
+2023-02-23 17:45:13,094 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:45:13,240 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:13,241 DEBUG   SenderThread:139351 [sender.py:send():232] send: exit
+2023-02-23 17:45:13,241 INFO    SenderThread:139351 [sender.py:send_exit():368] handling exit code: 255
+2023-02-23 17:45:13,242 INFO    SenderThread:139351 [sender.py:send_exit():370] handling runtime: 4918
+2023-02-23 17:45:13,244 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:45:13,244 INFO    SenderThread:139351 [sender.py:send_exit():376] send defer
+2023-02-23 17:45:13,245 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:13,245 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:13,246 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 0
+2023-02-23 17:45:13,246 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:13,246 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 0
+2023-02-23 17:45:13,246 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 1
+2023-02-23 17:45:13,247 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:13,247 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 1
+2023-02-23 17:45:13,958 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:13,959 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:13,959 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 1
+2023-02-23 17:45:13,960 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 2
+2023-02-23 17:45:13,960 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:13,960 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:13,960 DEBUG   SenderThread:139351 [sender.py:send():232] send: stats
+2023-02-23 17:45:13,960 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 2
+2023-02-23 17:45:13,962 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:13,962 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 2
+2023-02-23 17:45:13,962 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 3
+2023-02-23 17:45:13,963 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:13,963 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 3
+2023-02-23 17:45:13,963 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:13,963 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 3
+2023-02-23 17:45:13,963 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 4
+2023-02-23 17:45:13,963 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:13,964 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 4
+2023-02-23 17:45:13,964 DEBUG   SenderThread:139351 [sender.py:send():232] send: summary
+2023-02-23 17:45:13,966 INFO    SenderThread:139351 [sender.py:_save_file():946] saving file wandb-summary.json with policy end
+2023-02-23 17:45:13,966 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:13,966 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 4
+2023-02-23 17:45:13,966 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 5
+2023-02-23 17:45:13,967 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:13,967 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 5
+2023-02-23 17:45:13,967 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:13,967 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 5
+2023-02-23 17:45:14,072 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:14,076 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 6
+2023-02-23 17:45:14,076 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:14,077 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:14,078 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 6
+2023-02-23 17:45:14,078 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:14,078 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 6
+2023-02-23 17:45:14,078 INFO    SenderThread:139351 [dir_watcher.py:finish():279] shutting down directory watcher
+2023-02-23 17:45:14,129 INFO    SenderThread:139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:45:14,129 INFO    SenderThread:139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/config.yaml
+2023-02-23 17:45:14,130 INFO    SenderThread:139351 [dir_watcher.py:_on_file_modified():226] file/dir modified: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:45:14,130 INFO    SenderThread:139351 [dir_watcher.py:finish():309] scan: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files
+2023-02-23 17:45:14,131 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log output.log
+2023-02-23 17:45:14,131 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/requirements.txt requirements.txt
+2023-02-23 17:45:14,131 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/config.yaml config.yaml
+2023-02-23 17:45:14,133 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-metadata.json wandb-metadata.json
+2023-02-23 17:45:14,136 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/conda-environment.yaml conda-environment.yaml
+2023-02-23 17:45:14,141 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json wandb-summary.json
+2023-02-23 17:45:14,148 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg media/images/Mosaics_0_34cd7fa05afdfa8f39d2.jpg
+2023-02-23 17:45:14,148 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg media/images/Mosaics_0_5776f9d88eab2e40f6af.jpg
+2023-02-23 17:45:14,148 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_56974dde328e4058761d.jpg media/images/Labels_0_56974dde328e4058761d.jpg
+2023-02-23 17:45:14,148 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Mosaics_0_df6952e0614ae1359ee0.jpg media/images/Mosaics_0_df6952e0614ae1359ee0.jpg
+2023-02-23 17:45:14,148 INFO    SenderThread:139351 [dir_watcher.py:finish():323] scan save: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/media/images/Labels_0_deb5d587a6efb91ecd69.jpg media/images/Labels_0_deb5d587a6efb91ecd69.jpg
+2023-02-23 17:45:14,148 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 7
+2023-02-23 17:45:14,149 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:14,149 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 7
+2023-02-23 17:45:14,149 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:14,150 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 7
+2023-02-23 17:45:14,150 INFO    SenderThread:139351 [file_pusher.py:finish():145] shutting down file pusher
+2023-02-23 17:45:14,178 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:14,179 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:14,280 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:14,280 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:14,382 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:14,382 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:14,484 INFO    Thread-20 :139351 [upload_job.py:push():137] Uploaded file /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/conda-environment.yaml
+2023-02-23 17:45:14,502 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:14,508 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:14,518 INFO    Thread-18 :139351 [upload_job.py:push():137] Uploaded file /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/requirements.txt
+2023-02-23 17:45:14,529 INFO    Thread-21 :139351 [upload_job.py:push():137] Uploaded file /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/wandb-summary.json
+2023-02-23 17:45:14,530 INFO    Thread-17 :139351 [upload_job.py:push():137] Uploaded file /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/output.log
+2023-02-23 17:45:14,549 INFO    Thread-19 :139351 [upload_job.py:push():137] Uploaded file /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/files/config.yaml
+2023-02-23 17:45:14,614 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:14,618 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:14,722 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:14,726 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:14,750 INFO    Thread-6  :139351 [sender.py:transition_state():389] send defer: 8
+2023-02-23 17:45:14,753 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:14,753 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 8
+2023-02-23 17:45:14,757 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:14,757 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 8
+2023-02-23 17:45:14,830 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:15,088 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 9
+2023-02-23 17:45:15,088 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:15,100 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:15,107 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 9
+2023-02-23 17:45:15,110 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:15,110 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 9
+2023-02-23 17:45:15,110 INFO    SenderThread:139351 [sender.py:transition_state():389] send defer: 10
+2023-02-23 17:45:15,118 DEBUG   SenderThread:139351 [sender.py:send():232] send: final
+2023-02-23 17:45:15,118 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: defer
+2023-02-23 17:45:15,118 DEBUG   SenderThread:139351 [sender.py:send():232] send: footer
+2023-02-23 17:45:15,118 INFO    HandlerThread:139351 [handler.py:handle_request_defer():164] handle defer: 10
+2023-02-23 17:45:15,119 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: defer
+2023-02-23 17:45:15,119 INFO    SenderThread:139351 [sender.py:send_request_defer():385] handle sender defer: 10
+2023-02-23 17:45:15,210 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: poll_exit
+2023-02-23 17:45:15,210 DEBUG   SenderThread:139351 [sender.py:send_request():246] send_request: poll_exit
+2023-02-23 17:45:15,211 INFO    SenderThread:139351 [file_pusher.py:join():150] waiting for file pusher
+2023-02-23 17:45:15,401 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: sampled_history
+2023-02-23 17:45:15,403 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: get_summary
+2023-02-23 17:45:15,404 DEBUG   HandlerThread:139351 [handler.py:handle_request():141] handle_request: shutdown
+2023-02-23 17:45:15,404 INFO    HandlerThread:139351 [handler.py:finish():806] shutting down handler
+2023-02-23 17:45:16,118 INFO    WriterThread:139351 [datastore.py:close():279] close: /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/run-1o0qidel.wandb
+2023-02-23 17:45:16,300 INFO    SenderThread:139351 [sender.py:finish():1106] shutting down sender
+2023-02-23 17:45:16,300 INFO    SenderThread:139351 [file_pusher.py:finish():145] shutting down file pusher
+2023-02-23 17:45:16,300 INFO    SenderThread:139351 [file_pusher.py:join():150] waiting for file pusher
+2023-02-23 17:45:16,330 INFO    MainThread:139351 [internal.py:handle_exit():80] Internal process exited
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug.log b/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug.log
new file mode 100644
index 0000000000000000000000000000000000000000..71c55eb122320a9084b8562a38a4d1be28f969f5
--- /dev/null
+++ b/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug.log
@@ -0,0 +1,135 @@
+2023-02-23 16:23:12,407 INFO    MainThread:138854 [wandb_setup.py:_flush():75] Loading settings from /home/akhot2/.config/wandb/settings
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_setup.py:_flush():75] Loading settings from /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/settings
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_setup.py:_flush():75] Loading settings from environment variables: {}
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': 'yolov5_model/train.py', 'program': '/projects/akhot2/group-01-phys371-sp2023/yolov5_model/train.py'}
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_setup.py:_flush():75] Applying login settings: {'login_timeout': 30}
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_init.py:_log_setup():437] Logging user logs to /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug.log
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_init.py:_log_setup():438] Logging internal logs to /projects/akhot2/group-01-phys371-sp2023/yolov5_model/wandb/run-20230223_162312-1o0qidel/logs/debug-internal.log
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_init.py:init():471] calling init triggers
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_init.py:init():474] wandb.init called with sweep_config: {}
+config: {'weights': 'yolov5m.pt', 'cfg': '', 'data': '/projects/akhot2/group-01-phys371-sp2023/yolov5_model/data/beetles.yaml', 'hyp': {'lr0': 0.01, 'lrf': 0.01, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 1.0, 'mixup': 0.0, 'copy_paste': 0.0}, 'epochs': 150, 'batch_size': 16, 'imgsz': 1280, 'rect': False, 'resume': False, 'nosave': False, 'noval': False, 'noautoanchor': False, 'noplots': False, 'evolve': None, 'bucket': '', 'cache': None, 'image_weights': False, 'device': '', 'multi_scale': False, 'single_cls': False, 'optimizer': 'SGD', 'sync_bn': False, 'workers': 8, 'project': 'runs/train', 'name': 'exp', 'exist_ok': False, 'quad': False, 'cos_lr': False, 'label_smoothing': 0.0, 'patience': 100, 'freeze': [0], 'save_period': -1, 'seed': 0, 'local_rank': -1, 'entity': None, 'upload_dataset': False, 'bbox_interval': -1, 'artifact_alias': 'latest', 'save_dir': 'runs/train/exp'}
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [wandb_init.py:init():524] starting backend
+2023-02-23 16:23:12,408 INFO    MainThread:138854 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
+2023-02-23 16:23:12,426 INFO    MainThread:138854 [backend.py:ensure_launched():217] starting backend process...
+2023-02-23 16:23:12,435 INFO    MainThread:138854 [backend.py:ensure_launched():222] started backend process with pid: 139351
+2023-02-23 16:23:12,436 INFO    MainThread:138854 [wandb_init.py:init():533] backend started and connected
+2023-02-23 16:23:12,441 INFO    MainThread:138854 [wandb_init.py:init():597] updated telemetry
+2023-02-23 16:23:12,487 INFO    MainThread:138854 [wandb_init.py:init():628] communicating run to backend with 30 second timeout
+2023-02-23 16:23:14,334 INFO    MainThread:138854 [wandb_run.py:_on_init():1923] communicating current version
+2023-02-23 16:23:14,386 INFO    MainThread:138854 [wandb_run.py:_on_init():1927] got version response upgrade_message: "wandb version 0.13.10 is available!  To upgrade, please run:\n $ pip install wandb --upgrade"
+
+2023-02-23 16:23:14,386 INFO    MainThread:138854 [wandb_init.py:init():659] starting run threads in backend
+2023-02-23 16:23:19,392 INFO    MainThread:138854 [wandb_run.py:_console_start():1897] atexit reg
+2023-02-23 16:23:19,393 INFO    MainThread:138854 [wandb_run.py:_redirect():1770] redirect: SettingsConsole.REDIRECT
+2023-02-23 16:23:19,394 INFO    MainThread:138854 [wandb_run.py:_redirect():1775] Redirecting console.
+2023-02-23 16:23:19,395 INFO    MainThread:138854 [wandb_run.py:_redirect():1831] Redirects installed.
+2023-02-23 16:23:19,395 INFO    MainThread:138854 [wandb_init.py:init():684] run started, returning control to user process
+2023-02-23 17:45:10,796 INFO    MainThread:138854 [wandb_run.py:_atexit_cleanup():1866] got exitcode: 255
+2023-02-23 17:45:10,801 INFO    MainThread:138854 [wandb_run.py:_restore():1838] restore
+2023-02-23 17:45:13,246 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 1
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1576803
+  total_bytes: 1576803
+}
+
+2023-02-23 17:45:13,961 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 1
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1576803
+  total_bytes: 1576803
+}
+
+2023-02-23 17:45:14,078 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 1
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1576803
+  total_bytes: 1576803
+}
+
+2023-02-23 17:45:14,180 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1576803
+  total_bytes: 1661983
+}
+
+2023-02-23 17:45:14,281 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1659592
+  total_bytes: 1661983
+}
+
+2023-02-23 17:45:14,387 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1661983
+  total_bytes: 1661983
+}
+
+2023-02-23 17:45:14,514 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1661983
+  total_bytes: 1661983
+}
+
+2023-02-23 17:45:14,622 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1661983
+  total_bytes: 1661983
+}
+
+2023-02-23 17:45:14,730 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1661983
+  total_bytes: 1661983
+}
+
+2023-02-23 17:45:15,110 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1661983
+  total_bytes: 1661983
+}
+
+2023-02-23 17:45:15,300 INFO    MainThread:138854 [wandb_run.py:_on_finish():1995] got exit ret: done: true
+exit_result {
+}
+file_counts {
+  wandb_count: 6
+  media_count: 5
+}
+pusher_stats {
+  uploaded_bytes: 1661983
+  total_bytes: 1661983
+}
+local_info {
+}
+
+2023-02-23 17:45:18,295 INFO    MainThread:138854 [wandb_run.py:_footer_history_summary_info():3102] rendering history
+2023-02-23 17:45:18,296 INFO    MainThread:138854 [wandb_run.py:_footer_history_summary_info():3134] rendering summary
+2023-02-23 17:45:18,298 INFO    MainThread:138854 [wandb_run.py:_footer_sync_info():3057] logging synced files
diff --git a/yolov5_model/wandb/run-20230223_162312-1o0qidel/run-1o0qidel.wandb b/yolov5_model/wandb/run-20230223_162312-1o0qidel/run-1o0qidel.wandb
new file mode 100644
index 0000000000000000000000000000000000000000..24ca3eb419b4881185648ac038504aa4d35f91e5
Binary files /dev/null and b/yolov5_model/wandb/run-20230223_162312-1o0qidel/run-1o0qidel.wandb differ
diff --git a/yolov5_model/yolov5m.pt b/yolov5_model/yolov5m.pt
new file mode 100644
index 0000000000000000000000000000000000000000..babd90d7f044a66c69384c31909cb8b7accc808c
Binary files /dev/null and b/yolov5_model/yolov5m.pt differ